Spectral Distribution and Density Functions

e We started with the basic model X; = Rcos(wt) + €
where w is the ’dominant’ frequency; f = w/27 is the
number of cycles per unit of time and A = 27 /w is the

’dominant’ wavelength or period.

This model can be generalized to

k
X = Z R; cos(wjt + @) + €
j=1

which considers the existence of k-relevant frequencies

Wi,wW2,...,Wk.

e Given the trigonometric identity
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cos(x +y) = cos(x)cos(y) — sin(x)sin(y), we have that

k
Z a; cos(w;t) + b; sin(w;t)) + &

with a; = Rjcos(¢;) and b; = —R;sin(o;).

By making £k — oo, it can be shown that

X; = /077 cos(wt)du(w) + /07T sin(wt)dv(w)

where u(w) and v(w) are continuous stochastic processes.

This is the spectral representation of Xj.

The Wiener-Khintchine Theorem says that if v(k) is the

autocovariance function of X;, there must exist a
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monotonically increasing function F'(w) such that
/ cos(wk)dF(w)
0

e The function F'(w) is the spectral distribution function of

the process X;.
e Notice that for £k = 0,

1(0) = [ dF(@) = F(x) = o

so all other variation in the process is for 0 < w < .

e We can redefine the spectral distribution function as:
F*(w) = F(w)/o;

and so F*(w) is the proportion of variance accounted by

w.
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Also notice that F*(0) =0, F*(m) = 1 and since F'(w) is
monotonically increasing then F*(w) is a cummulative
distribution function (CDF).

The Spectral Density function is denoted by f(w) and

defined as %
dF'(w
flw)=—-

This function is also known as the power spectral function

O<w<m

or spectrum

The existence of f(w) is under the assumption that the

spectral distribution function is differentiable everywhere

(except in a set of measure zero).

This spectral density gives us an alternative
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representation for the covariance function

/077 cos(wk) f(w)dw

This characterization is also known as Wold’s Theorem.

If the spectrum has a 'peak’ at wg, this implies that wq is

an important frequency of the process X;.

The spectrum or spectral density is a theoretical function
of the process X; . In practice, the spectrum is usually

unknown and we use the pertodogram to estimate it.

There is an inverse relationship between the f(w) and




so the spectrum is the Fourier transformation of the

autocovariance function.

e From complex analysis, recall that
—wk

e = cos(wk) — sin(wk)i

e This implies that

fw)

e The normalized spectral density f*(w) is defined as:

flw) _ dF*(w)

frw) =
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@)

% 142 Z p(k)cos(wk)
k=1

so the normalized spectrum is the Fourier transform of

the autocorrelation function (ACF).

Example 1: White noise process. Suppose that X; is a
purely random process where F(X;) = 0 and

Var(X;) = 0. The autocovariance function is v(0) = o*
and (k) = 0; k # 0. Thus, the spectral density function
is given by

flw)=o%/n

Example 2: Consider a first order autoregressive (AR)

process

X =aX; 1+ €56 ~ N(O, 02)
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The autocovariance function of this process is given by

2 |K|
O L
~(k) = = = o2alfl k= 0,41, 42, ...

Then, the spectral density function is given by

f(w) _ <1 4+ Z ake—zkw + Z aezkw)
4 k=1 k=1

after some algebra, this gives
f(w) = o?/[n(1 = 2acos(w) + a?)]
e Example 3: Define the sequence X; by
X; = A cos(0t) + B sin(0t) + €

where €, is white noise sequence with variance o2, A and
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B are independent random variables with mean zero and

variance 72. It can be shown that
BE(Xy)=0;Var(Xy) =1° + 0°
Also, for t £ s
cov(Xy, Xs) = m°cos{6(t — s)}

Then X; is a stationary series with autocovariance

v(k)

{ o2+ 7% k=0
T2cos(k), k # 0

The spectrum can be evaluated as

flw) = o 4+71°+27° i cos(k@)cos(kw)
k=1
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= 2472192 Z [cos{k(0 + w)} + cos{k(0 — w)}]

If 0 = w, then cos{k(6 —w)} =1 for all k£ and the

summation is infinite.

This means that the spectrum has a ’spike’ at w = 6.

The spectrum can only exist if we allow f(w) = oo at

isolated values of w.
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Periodogram revisited

e For 0 < w < m, the periodogram is defined as

I(w) =

g(fﬂ + b%)

<z’”: acwos(wt)) + <Z acwz'n(wt))

o If w=27mj/n;j <n/2is a Fourier frequency and since
>, cos(wt) = >, sin(wt) = 0 then

n

>

t=1

(2 — a:)cos(wt)) + <

n

2

t=1

(2 — m)sm(wt))

e [xpanding each square term and by the trigonometric
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identities

n

(ﬁ) I(w) = Z(:Et — )2 42 z_: Z (¢ — &) (xi—k — T)cos(wk)

2
t=1 k=1t=k+1

This gives an alternative expression for the periodogram,

I(w) =2 (go + 2712_: gwas(wk))

k=1

We also have a normalized periodogram

[*(w) _ M — 9 (1 + QnZ_: kaOS(Wk‘)> y Pk =— gk/gO

g0 k=1

The last two expressions justify the used of the

periodogram as an estimate of the spectral density.

What is the sampling distribution of I(w) ?
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By definition, the periodogram satisfies the relation:
nl(w) = A(w)? + B(w)?

where

Alw) = zn: ricos(wt); B(w) = Z rysin(wt)

To understand the sampling distribution of the
periodogram, lets suppose x; is a realization of a white

noise process (i.i.d. X; ~ N(0,0?)).
What is the distribution of A(w) and B(w)?
Linear combinations of normal variables are normal.

In fact, F(A(w)) = F(B(w)) =0
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e Additionally, by the trigonometric identities,

Var(A(w))

Var(B(w))

=0

e It follows that A(w)\/2/no? and A(w)\/2/no? are

independent Normal random variables.
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Therefore,

2{AW)}* +{Bw)}*)/(ne®) ~ x3

so 2I(w)/o? is a chi-square distribution with 2 degrees of

freedom or
I( ) ~ 0 X2/2

In particular,

p— 0‘2

p— 0‘4

Recall that if X; is white noise, the spectrum f(w) = o2

so in this case I(w) is unbiased but an inconsistent
estimator of f(w)

In fact there is a theorem presented in Diggle’s book
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(page 97) that generalizes these results to the case of a

Gaussian and stationary process.

Let X; be a stationary and Gaussian process with
spectrum f(w). Let x4;t = 1...,n be a partial realization

of this process and I(w) the periodogram of x;.

Let w; = 27j/n for j < n/2, then as n — oo

L () ~ fw3)x3/2
2. I(w;) independent of I(wy) for all j # &k

As an example, consider n = 200 observations of a white

noise process N(0,1) and its corresponding periodogram
I(w) for n = 50, n = 200.

The obtain the periodogram, I used the following

commands:
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x <= rnorm(200)

per <- spec.pgram(x,plot=FALSE)

plot (2*pi*per$freq,perPspec,type=’1’,
xlab="omega" ,ylab="1f (omega)")

per <- spec.pgram(x[1:50],plot=FALSE)

lines (2*pi*per$freq,per$spec,lty=2)
abline (h=qchisq(0.95,2)/2,1ty=3)
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(ebawo)}

235



The solid line is the periodogram for all 200 observations
and the dashed line is the periodogram only for the first

50 observations.

The horizontal line is the .95% quantile of x3/2 random

variable.

Notice that variability for the periodogram based on 50
obsevations is similar to the periodogram obtained with

all 200 observations.

Only a few values of I(w) are greater than the 0.95
quantile. These values are scattered through the

frequency range.

The quantile value gives a valid test of significance of the

X% /2 distribution for a prespecified value of w.
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A Test for White Noise

e To test for white noise, the proposed test statistic is to

use the maximum periodogram ordinate
T = ma,x{ll, 12, ce Im}

where I; = I(2mj/n); 7 < n/2 and m is the largest integer
less than n /2.

e We known that under the null hypothesis (i.e. X; white
noise) the periodogram ordinates I; are a random sample

with a scaled x3 distribution.

e The distribution of I; is

G(u) = Prll; <u] =1 — exp(—u/c?)

e Given the mutual independence of I;, under the white

237



noise hypothesis, the distribution function for T is:

G(t)™ = (1 — exp(—u/o®))™

In practice, usually o2 is unknown. We can substitute

and estimaor of the variance in H (t) ,

s =S (x; —T)?/(n — 1), to obtain an approximate test.

Fisher(1929) deduced the exact distribution for
To =T/{> ;% I;/m} under a white noise process:

PT[TQ > mac] = i[m'/k'(m _ T)!](—l)k_l(l . kx)m—l
k=1

where 7 is the largest integer less than z=1.

Example For n = 200 observations following a N (0, 1)
distribution, I obtained a value of t = 5.867294 and
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s? = 1.037762
1. For the approximate test, the p-value is 0.296048.

2. For Fisher’s test, tg = 5.619912 and the p-value is
0.2907733

x <- rnorm(200)

I <- spec.pgram(x,plot=F)$spec

t <- max(I)

t0 <- max(I)/mean(I)
s2 <- var(x)

m <- length(I)
1-(1-exp(-t/s2)) m
# k!=gamma(k+1)
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Tapering

e This is an option that is available within this function

spec.pgram.

spec.pgram(x,taper=0.2)

A data taper is a transformation of x; into a new series

by multiplying it by constants and to reduce the effect of

extreme observations,
Y =cxy; t=1,2,...n

The sequence c; is chosen to be close to zero at the end
sections of the series, but close to one towards the central
part. (0 < ¢ <1).

e If p is the proportion of observations to be tapered, n is
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total number of observations and m = np, the split cosine

bell taper is defined as :

y

5(1 — cos(mw(t —.5)/m)) t=1,...,m

1 t=m+1,....n—m

51 —=cos(r(n—t—.5)/m)) t=n—m+1,...,n

\
Smoothing the Periodogram

e If we have the spectrum f(w) is a smooth function of w,

another periodogram based estimator of f(w) is:

flwj)=p+1) Y Iwjy)

[=—p

o f(w) is a simple moving average of I(w)
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o If X, is a stationary random process with spectrum f(w)

for any Fourier frequency w; as n — oo

- f(wj) ~ f(wj)X%(sz)/(Q(zp +1))
— f (w;) is independent of f (wg) whenever j —k > 2p+1

e A general version of this estimator is defined as

e The asymptotic distribution of f (w) is given by
f(w) ~ flw)xi/v

but now the degrees of freedom are defined as
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v =2/ Zf:_p w?
Now recall that the periodogram can be expressed as

n—1

I(w) = go+ 2 Z grcos(kw)
k=1
A possible explanation of why I(w) is not such a great
estimator of the spectrum is because g, can be large

when rp = 0, particularly for high values of k.

As we showed before, the variability of I(w) is not a

function of the number of data points.

Alternatively, we could use a truncated Periodogram
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defined as

K
Ix(w) =go+ 2 Z grcos(kw)
k=1

for a value of K that is less than n — 1.

e We also have a Lag window Periodogram,

n—1

Aw) =go+2> " Agrcos(kw)
k=1

where \; is a sequence of constants that needs to be

specified by the user.

e Bartlett (1950) proposed that
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1—-k/S kK<S
A =
0 kK>S

e Daniell (1946) proposed a sequence which corresponds to

the “spans” option of spec.pgram in R/Splus.
A\, = sin(wk/S)/(mk/S)

e Parzen (1961) proposed that

(1-6(k/S)2 +6(k/S)® k<S/2
At =14 2(1—k/S)3 S/2<k<S
0 k>S5

\

where large values of S correspond to less smoothing.
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e We consider again the CO2 data and we will look into

different versions of the periodogram. Here is the R code.

data(co2)

co2diff <- as.vector(diff(co2))

par (mfrow=c(2,2))
per<-spec.pgram(co2diff,taper=0,pad=0,detrend=F,
demean=F ,plot=F)

lam<-1/per$freq

plam<-per$spec

i<-2<lam & lam<16

plot(lam[i] ,plam[i] ,type=’1’,ylab=’periodogram’)

mtext ("Raw periodogram")
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per<-spec.pgram(co2diff,spans=c(6),taper=0,pad=0,
detrend=F,demean=F,plot=F)

per<-spec.pgram(co2diff,taper=0.3,pad=0,detrend=F,
demean=F ,plot=F)

per<-spec.pgram(co2diff,spans=c(6),taper=0.2,pad=0,
detrend=F,demean=F,plot=F)
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Raw periodogram smoothed

periodogram
periodogram

tapered with 0.2 smoothed and tapered

periodogram
periodogram
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