Inference on Cycles or Periodicities

- The goal is to propose a parametric model for cycles.
- Bayesian Periodogram: marginal log-likelihood of the parametric model.
- Connection of this Bayesian periodogram with the standard or raw periodogram.
- Example with a CO2 time series. R code.
- Some properties of the classical periodogram.

Basic model for cycles

- Assume we have a time series X_{t} observed at arbitrary times $t_{1}, t_{2}, \ldots, t_{n}$.
- Also assume that the time series lacks trend or that the trend has been previously removed by one of our detrending techniques (i.e. differencing, lowess, etc.).
- We wish to estimate periodicities in the data.
- Our basic model is a deterministic cyclical term defined by a cosine plus some noise term:

$$
x_{t_{i}}=r \cos \left(\omega t_{i}+\phi\right)+\epsilon_{i}
$$

- ω defines the fundamental frequency.
- The associated cycle, periodicity or wavelength is

$$
\lambda=2 \pi / \omega .
$$

- ϕ denotes the phase $(0<\phi<2 \pi)$.
- $r(r>0)$ is the amplitude of the cosine curve.
- As usual the errors ϵ_{i} are assumed i.i.d with a Normal distribution. $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$
- By applying a known trigonometric identity, we can rewrite the model as

$$
x_{t_{i}}=a \cos \left(\omega t_{i}\right)+b \sin \left(\omega t_{i}\right)+\epsilon_{i}
$$

- where a and b are model coefficients with $a=r \cos (\phi)$; $b=-r \sin (\phi)$.
- both amplitude and phase can be rexpressed in terms of a and b.
- For the amplitude $r=\sqrt{a^{2}+b^{2}}$.
- For the phase $\phi=\tan ^{-1}(-b / a)$.
- For equally spaced times $\left(t_{1}=1, t_{2}=2, \ldots, t_{n}=n\right)$ and fixed values of a, b and σ^{2}, the model is equivalent if we add a multiple of 2π to ω. (Why?)
- To avoid such redundancy, take $\omega<2 \pi$.
- Also, notice that if $0<\omega<\pi$, we obtain the same model representation for the frequency $2 \pi-\omega$ by setting $b=-b$.
- Then, we restrict ω to be between 0 and π.

$$
0 \leq \omega \leq \pi
$$

- With this restriction, the periodocity λ is between 2 and ∞.
- Notice that if ω is given (known) our basic model is a linear regression model of the form:

$$
x_{t_{i}}=f_{i}^{\prime} \beta+\epsilon_{i}
$$

- The parameter vector is $\beta=(a, b)$,
- The regressor vector is $f_{i}^{\prime}=\left(c_{i}, s_{i}\right)$ where $c_{i}=\cos \left(\omega t_{i}\right)$ and $s_{i}=\sin \left(\omega t_{i}\right)$.

Summary of Bayes results for the Linear Model

- For the linear model, β and σ^{2} are essentially location/scale parameters.
- The default non-informative prior for β and σ^{2} is:

$$
p\left(\beta, \sigma^{2}\right) \propto 1 / \sigma^{2}
$$

- With Bayes theorem the posterior distribution is given by

$$
p\left(\beta, \sigma^{2} \mid x, F\right) \propto f\left(x \mid \beta, \sigma^{2}\right)\left(1 / \sigma^{2}\right)
$$

- Under this prior, the posterior distribution for $\left(\beta, \sigma^{2}\right)$ is a Normal-Gamma distribution.
- Conditional on σ^{2}, the posterior for β is a p-dimensional Normal with mean b and a covariance matrix $\sigma^{2}\left(F^{\prime} F\right)^{-1}$

$$
\text { or } \beta \sim N\left(b, \sigma^{2}\left(F^{\prime} F\right)^{-1}\right)
$$

- The marginal posterior distribution for σ^{2} is an Inverse Gamma with shape parameter $n / 2$ and scale parameter $R / 2$ or $\sigma^{2} \sim I G(n / 2, R / 2)$
- The product of this p-dimensional Normal and the Inverse Gamma defines the Normal/Gamma posterior.
- For the marginal posterior distribution of β we need

$$
p(\beta \mid x, F)=\int p\left(\beta, \sigma^{2} \mid x, F\right) d \sigma^{2}
$$

- After some algebraic manipulation, it can be shown that

$$
p(\beta \mid x, F)=c(n, p)\left|F^{\prime} F\right|^{1 / 2} /\left(1+(\beta-b)^{\prime} F^{\prime} F(\beta-b) / p s^{2}\right)^{n / 2}
$$

- Roughly, for n large $p(\beta \mid x, F) \approx N\left(b, s^{2}\left(F^{\prime} F\right)^{-1}\right)$.
- The marginal density of x given F is,

$$
p(x \mid F)=\int p\left(x \mid \beta, \sigma^{2}\right) p\left(\beta, \sigma^{2}\right) d \beta d \sigma^{2}=c\left|F^{\prime} F\right|^{-1 / 2} / R^{(n-p) / 2}
$$

- Due to the sum of squares factorization, we can establish that

$$
p(x \mid F) \propto\left|F^{\prime} F\right|^{-1 / 2}\left(1-b^{\prime} F^{\prime} F b /\left(x^{\prime} x\right)\right)^{(p-n) / 2}
$$

- If we think of F as a "parameter", $p(x \mid F)$ is a likelihood that could be used to produce inferences on F or on quantities that determine F (marginal likelihood).
- Under orthogonality of the F matrix, the evaluation of $p(x \mid F)$ becomes really easy.
- F orthogonal means that $F^{\prime} F=k I$
- For the cyclical model we consider $p(x \mid F)$ as $p(x \mid \omega)$. This defines the Bayesian Periodogram.
- Given a fixed value of ω, the basic cyclical model is a linear model with two parameters.
- In the linear model notation, $x=\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n}}\right)^{\prime}$, $p=2, \beta=(a, b)^{\prime}$.
- $f_{i}^{\prime}=\left(c_{i}, s_{i}\right)$ is the i th row of F, where $c_{i}=\cos \left(\omega t_{i}\right)$, $s_{i}=\sin \left(\omega t_{i}\right) ; i=1, \ldots, n$.
- Lets simply denote $x_{t_{i}}=x_{i}$ and define $C=\sum_{i=1}^{n} c_{i}^{2}$, $S=\sum_{i=1}^{n} s_{i}^{2}, K=\sum_{i=1}^{n} c_{i} s_{i}$ and $D=S C-K^{2}$.
- The MLE or LSE of $\beta, b=(\hat{a}, \hat{b})^{\prime}$ is given by:
$-\hat{a}=\frac{S}{D}\left(\sum_{i=1}^{n} x_{i} c_{i}\right)-\frac{K}{D}\left(\sum_{i=1}^{n} x_{i} s_{i}\right)$

$$
-\quad \hat{b}=\frac{C}{D}\left(\sum_{i=1}^{n} x_{i} c_{i}\right)-\frac{K}{D}\left(\sum_{i=1}^{n} x_{i} s_{i}\right)
$$

- If ω is restricted to the values

$$
\omega_{j}=2 \pi j / n ; \quad j=1, \ldots n / 2
$$

we could use the trigonometric identities

$$
\begin{aligned}
& -\quad \sum_{i=1}^{n} \cos \left(\omega_{j} i\right)=\sum_{i=1}^{n} \sin \left(\omega_{j} i\right)=0 \\
& -\quad \sum_{i=1}^{n} \cos \left(\omega_{j} i\right) \cos \left(\omega_{l} i\right)=\left\{\begin{array}{l}
0, j \neq l \\
n, j=l=n / 2 \\
n / 2, j=l \neq n / 2
\end{array}\right. \\
& -\quad \sum_{i=1}^{n} \sin \left(\omega_{j} i\right) \sin \left(\omega_{l} i\right)=\left\{\begin{array}{l}
0, j \neq l \\
0, j=l=n / 2 \\
n / 2, j=l \neq n / 2
\end{array}\right.
\end{aligned}
$$

- $\quad \sum_{i=1}^{n} \cos \left(\omega_{j} i\right) \sin \left(\omega_{l} i\right)=0$ for all j and l
- These identities imply that for the equally spaced case $t_{1}=1, t_{2}=2, \ldots, t_{n}=n, F^{\prime} F=(n / 2) I_{p \times p}$.
- The MLE of b for $\omega_{j} \neq n / 2$ is:

$$
\begin{aligned}
& -\quad \hat{a}=(2 / n) \sum_{i=1}^{n} x_{i} \cos \left(\omega_{j} i\right) \\
& -\quad \hat{b}=(2 / n) \sum_{i=1}^{n} x_{i} \sin \left(\omega_{j} i\right)
\end{aligned}
$$

- For n large $C / D \approx S / D \approx(2 / n)$ and $K / D \approx 0$ when ω is not close to zero.
- Under the same conditions $\left(F^{\prime} F\right)^{-1} \approx(2 / n) I_{p \times p}$ and then

$$
b^{\prime} F^{\prime} F b \approx(n / 2)\left(\hat{a}^{2}+\hat{b}^{2}\right)
$$

- This implies

$$
p(x \mid F) \propto\left(1-\left(\hat{a}^{2}+\hat{b}^{2}\right) n /\left(2 x^{\prime} x\right)\right)^{(2-n) / 2}
$$

- This last formula gives us an approximation for the marginal density $p(x \mid F)$ or in other words an approximation for the Bayesian Periodogram.
- If we define

$$
I(\omega)=\left(\hat{a}^{2}+\hat{b}^{2}\right) / n
$$

a plot of ω vs. $I(\omega)$ is known as the Periodogram

- $I(\omega)$ is basically the MLE for the amplitude of the sin-cos function that defines our basic model.
- Traditionally, the periodogram is used to find values of ω that produce a high estimated amplitude $I(\omega)$.
- With the Bayesian Periodogram we look for values of ω that produce a high marginal likelihood $p(x \mid \omega)$.
- From the approximation, notice that

$$
\log (p(x \mid F)) \approx(2-n) / 2 \log \left(1-I(\omega) /\left(x^{\prime} x\right)\right)
$$

- The Periodogram and the Bayesian Periodogram will contain similar information.
- Illustration with athmospheric concentrations of CO2.
- 468 monthly observations from 1959 to 1997.
co2 data set

Series co2smooth

Series co2diff

GIZ

