
Inference on Cycles or Periodicities

• The goal is to propose a parametric model for cycles.

• Bayesian Periodogram: marginal log-likelihood of the

parametric model.

• Connection of this Bayesian periodogram with the

standard or raw periodogram.

• Example with a CO2 time series. R code.

• Some properties of the classical periodogram.
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Basic model for cycles

• Assume we have a time series Xt observed at arbitrary

times t1, t2, . . . , tn.

• Also assume that the time series lacks trend or that the

trend has been previously removed by one of our

detrending techniques (i.e. differencing, lowess, etc.).

• We wish to estimate periodicities in the data.

• Our basic model is a deterministic cyclical term defined

by a cosine plus some noise term:

xti = r cos(ωti + φ) + εi

• ω defines the fundamental frequency.

• The associated cycle, periodicity or wavelength is
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λ = 2π/ω.

• φ denotes the phase (0 < φ < 2π).

• r (r > 0) is the amplitude of the cosine curve.

• As usual the errors εi are assumed i.i.d with a Normal

distribution. εi ∼ N(0, σ2)

• By applying a known trigonometric identity, we can

rewrite the model as

xti = a cos(ωti) + b sin(ωti) + εi

• where a and b are model coefficients with a = r cos(φ);

b = −r sin(φ).

• both amplitude and phase can be rexpressed in terms of

a and b.
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• For the amplitude r =
√

a2 + b2.

• For the phase φ = tan−1(−b/a).

• For equally spaced times (t1 = 1, t2 = 2, . . . , tn = n) and

fixed values of a, b and σ2, the model is equivalent if we

add a multiple of 2π to ω. (Why?)

• To avoid such redundancy, take ω < 2π.

• Also, notice that if 0 < ω < π, we obtain the same model

representation for the frequency 2π−ω by setting b = −b.

• Then, we restrict ω to be between 0 and π.

0 ≤ ω ≤ π

• With this restriction, the periodocity λ is between 2 and

∞.

202



• Notice that if ω is given (known) our basic model is a

linear regression model of the form:

xti = f
′

iβ + εi

• The parameter vector is β = (a, b),

• The regressor vector is f
′

i = (ci, si) where ci = cos(ωti)

and si = sin(ωti).
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Summary of Bayes results for the Linear Model

• For the linear model, β and σ2 are essentially

location/scale parameters.

• The default non-informative prior for β and σ2 is:

p(β, σ2) ∝ 1/σ2

• With Bayes theorem the posterior distribution is given by

p(β, σ2|x, F ) ∝ f(x|β, σ2)(1/σ2)

• Under this prior, the posterior distribution for (β, σ2) is a

Normal-Gamma distribution.

• Conditional on σ2, the posterior for β is a p-dimensional

Normal with mean b and a covariance matrix σ2(F
′

F )−1
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or β ∼ N(b, σ2(F
′

F )−1).

• The marginal posterior distribution for σ2 is an Inverse

Gamma with shape parameter n/2 and scale parameter

R/2 or σ2 ∼ IG(n/2, R/2)

• The product of this p-dimensional Normal and the

Inverse Gamma defines the Normal/Gamma posterior.

• For the marginal posterior distribution of β we need

p(β|x, F ) =

∫

p(β, σ2|x, F )dσ2

• After some algebraic manipulation, it can be shown that

p(β|x, F ) = c(n, p)|F ′

F |1/2/(1+(β−b)
′

F
′

F (β−b)/ps2)n/2

• Roughly, for n large p(β|x, F ) ≈ N(b, s2(F
′

F )−1).
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• The marginal density of x given F is,

p(x|F ) =

∫

p(x|β, σ2)p(β, σ2)dβdσ2 = c|F ′

F |−1/2/R(n−p)/2

• Due to the sum of squares factorization, we can establish

that

p(x|F ) ∝ |F ′

F |−1/2(1 − b
′

F
′

Fb/(x
′

x))(p−n)/2

• If we think of F as a “parameter”, p(x|F ) is a likelihood

that could be used to produce inferences on F or on

quantities that determine F (marginal likelihood).

• Under orthogonality of the F matrix, the evaluation of

p(x|F ) becomes really easy.

• F orthogonal means that F
′

F = kI
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• For the cyclical model we consider p(x|F ) as p(x|ω). This

defines the Bayesian Periodogram.

• Given a fixed value of ω, the basic cyclical model is a

linear model with two parameters.

• In the linear model notation, x = (xt1 , xt2 , . . . , xtn)′,

p = 2, β = (a, b)′.

• f
′

i = (ci, si) is the ith row of F , where ci = cos(ωti),

si = sin(ωti); i = 1, . . . , n.

• Lets simply denote xti = xi and define C =
∑n

i=1 c2
i ,

S =
∑n

i=1 s2
i , K =

∑n
i=1 cisi and D = SC − K2.

• The MLE or LSE of β, b = (â, b̂)′ is given by:

– â = S
D (

∑n
i=1 xici) − K

D (
∑n

i=1 xisi)
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– b̂ = C
D (

∑n
i=1 xici) − K

D (
∑n

i=1 xisi)

• If ω is restricted to the values

ωj = 2π j/n; j = 1, . . . n/2

we could use the trigonometric identities

–
∑n

i=1 cos(ωji) =
∑n

i=1 sin(ωji) = 0

–
∑n

i=1 cos(ωji)cos(ωli) =

{
0, j 6= l

n, j = l = n/2

n/2, j = l 6= n/2

–
∑n

i=1 sin(ωji)sin(ωli) =

{
0, j 6= l

0, j = l = n/2

n/2, j = l 6= n/2
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–
∑n

i=1 cos(ωji)sin(ωli) = 0 for all j and l

• These identities imply that for the equally spaced case

t1 = 1, t2 = 2, . . . , tn = n, F ′F = (n/2)Ip×p .

• The MLE of b for ωj 6= n/2 is:

– â = (2/n)
∑n

i=1 xicos(ωji)

– b̂ = (2/n)
∑n

i=1 xisin(ωji)

• For n large C/D ≈ S/D ≈ (2/n) and K/D ≈ 0 when ω is

not close to zero.

• Under the same conditions (F
′

F )−1 ≈ (2/n)Ip×p and

then

b
′

F
′

Fb ≈ (n/2)(â2 + b̂2)
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• This implies

p(x|F ) ∝ (1 − (â2 + b̂2)n/(2x
′

x))(2−n)/2

• This last formula gives us an approximation for the

marginal density p(x|F ) or in other words an

approximation for the Bayesian Periodogram.

• If we define

I(ω) = (â2 + b̂2)/n

a plot of ω vs. I(ω) is known as the Periodogram

• I(ω) is basically the MLE for the amplitude of the sin-cos

function that defines our basic model.

• Traditionally, the periodogram is used to find values of ω

that produce a high estimated amplitude I(ω).
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• With the Bayesian Periodogram we look for values of ω

that produce a high marginal likelihood p(x|ω).

• From the approximation, notice that

log(p(x|F )) ≈ (2 − n)/2log(1 − I(ω)/(x
′

x))

• The Periodogram and the Bayesian Periodogram will

contain similar information.

• Illustration with athmospheric concentrations of CO2.

• 468 monthly observations from 1959 to 1997.
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