
Comment about AR spectral estimation

• Usually an estimate is produced by computing the AR

theoretical spectrum at (φ̂, σ̂2).

• With our Monte Carlo simulation approach, for every

draw (φ, σ2), we can compute the spectrum and obtain a

draw for f(ω).

• Typically the mean of these draws will be similar to the

spectrum at (φ̂, σ̂2).

• With this posterior simulation, we have the possibility of

computing quantiles, probability intervals or simply a

“band” for the spectral density.

• The purpose of the “band” is to get an idea of the

uncertainty of the estimation.
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• EEG example. The next figure shows several spectrum

curves for 50 draws of (φ, σ2).

• Recall that the object phsim has the draws of φ

coefficients and sigma2, the draws for the variance of the

error term σ2.
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50 posterior samples of AR(10) spectrum
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a=ar(eeg,order=10,aic=F)

a$ar=as.vector(apply(phsim,2,mean))

a$var=mean(sigma2)

x=spec.ar(a,n.freq=500,plot=F)

plot(2*pi*x$freq,x$spec,type="l",axes=F)

axis(1)

axis(2)

for(i in 1:50){

a$ar=as.vector(phsim[i,])

a$var=sigma2[i]

x=spec.ar(a,n.freq=500,plot=F)

lines(2*pi*x$freq,x$spec)

print(i)

}
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Portmanteau lack of fit test

• For this test we need to consider the estimated residuals

for the AR model ǫ̂t = xt −
∑p

j=1 φ̂jxt−j where φ̂j is some

estimator of the model parameters.

• The purpose of this test is to determine if the residuals

are correlated or not..

• The null hypothesis is Ho : ρ1 = ρ2 = . . . = ρK = 0

• The proposed test statistic is:

Q = n(n + 2)
K

∑

k=1

(n − k)−1ρ̂k
2

where ρ̂k is the sample ACF of the estimated residuals

and K is a fixed integer.
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• The paper by Ljung and Box (1978), “On a measure of

lack of fit in time series models”, Biometrika, 65, 297-303

shows that under the null hypothesis, Q approximately

follows a a chi-square distribution with K − (p + 1)

degrees of freedom or Q ∼ χ2
K−(p+1)

• The testing procedure is: reject the null hypothesis at the

α level if

Q > χ2
K−(p+1)(1 − α).

where χ2
K−(p+1)(1 − α) is the (1 − α) quantile of the

chi-square distribution with K − (p + 1) degrees of

freedom.

• A problem with this test is that there is no formal rule to

select the value K.
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• A common approach is to compute the p-value of test for

different values of K.

fit=arima(eeg,order=c(10,0,0))

tsdiag(fit)
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Standardized Residuals
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Model order via likelihood approaches: AIC, BIC

• We want to define a criteria that allows to select the

order p of an AR process.

• We are thinking of the AR model as a linear regression

model with p covariates.

• As p increases the likelihood (or log-likelihood) of the

model evaluated at the MLE (φ̂, s2) also increases.

• However, as p increases we may have high

autocorrelations of regressors.

• A penalty function could be added to the likelihood

function to compensate for more parameters in the

model.

• A general selection criteria is to find the value of p such
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that minimizes

−2log[L(φ̂, s2)] + f(p)

where L(·) is the likelihood function of the regression

model and f(·) is a penalty function.

• This penalty function f(p) is assumed to be an increasing

function of p.

• Since we are working with a Normal linear model, we can

show that

−2ln[L(φ̂, s2)] = m(log(2π + 1)) + mlog(s2
p)

where m = n − p is the length of the response vector

• In fact, for the AR model x = Fφ + ǫ, the likelihood
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function

L(φ, s2) =

(

1

2πσ2

)m/2

exp

(

−
1

2σ2
(x − Fφ)′(x − Fφ)

)

• Recall that the MLE, φ̂ = (F ′F )−1F ′x and

s2 = (x − Fφ̂)′(x − Fφ̂)/m and so

L(φ̂, s2) =

(

1

2πs2

)m/2

exp

(

−
m

2

)

• The first term of −2ln[L(φ̂, s2)] does not depend on p.

• The criteria reduces to find the value of p for which

nlog(s2
p) + f(p)

is minimum.

• The evaulation must based on a common sample size. We
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fix a maximum order p∗ and fit AR models for values of

p ≤ p∗ based only on n∗ = n − p∗ observations.

• Then we compute n∗log(s2
p) + f(p); p = 0, 1, . . . , p∗ and

find the max over the range 0, 1, . . . p∗

• If we set f(p) = 2p, we have the Akaike information

criteria (AIC).

• This AIC tends to give overestimated values of p.

• If we fix f(p) = log(n∗)p we have the Bayesian

information criteria (BIC).

• The BIC tends to give smaller values of p in comparison

to AIC.
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Forecasting with AR models

• We will consider forecasting from both Bayesian and

non-Bayesian perspectives.

• We wish to produce inference about the “future”.

• From time n , we wish to produce a statement about

Xn+1,Xn+2, . . . ,Xn+h where h is the forecasting horizon

(how far we wish to predict in time).

• In a Bayesian setup, this translates into considering the

Predictive distribution for the future values,

p(xn+h, xn+h−1, . . . , xn+1|xn, . . . , x1) =
∫ ∫

p(xn+h, xn+h−1, . . . , xn+1|xn, . . . , x1, φ, σ2)p(φ, σ2)dφdσ2

• For AR models even with the non-informative prior
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p(φ, σ2) ∝ 1/σ2, this distribution does not have a

recognizable form.

• However, using posterior simulation it is relatively simple

to obtain samples of values for Xn+1,Xn+2, . . . ,Xn+h

• We can proceed in the following way:

– Draw a pair (φ, σ2) from the Normal-Inverse Gamma

distribution as we discussed before.

– Using this pair, draw a value xn+1 from a Normal

distribution with mean
∑p

j=1 φjxn+1−j and variance

σ2.

– Draw xn+2 from a Normal distribution with mean
∑p

j=1 φjxn+2−j and variance σ2. (In one of the terms

of the autoregression we are using the draw for xn+1).
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– Continue in this way until we generate a value for

xn+h from a Normal with mean
∑p

j=1 φjxn+h−j and

variance σ2

– Repeat all the steps until we obtain M samples of

values xn+1, xn+2, . . . , xn+h

• An approximation to this scheme is to make draws from

a predictive distribution which is conditional to an

estimate of the model parameters (φ̂, σ̂2)

p(xn+h, xn+h−1, . . . , xn+1|φ̂, σ̂2, xn, xn−1, . . . , x2, x1).

• We are treating (φ̂, σ̂2) as the “true” parameter.

• If the sample size n is large this should produce similar

results with respect to full Bayesian approach that uses
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draws of (φ, σ2).

• However, if the sample size is small we could find

differences between the distributions.

• Once again, consider the EEG data with an AR(10)

model.

• The figures show:

– Samples of predictive values and data.

– Comparison of ’full predictive’ with ’MLE predictive’

– Posterior mean of forecasts.

– Posterior mean and 95% predictive forecasts.

– Parts of code included in file code6.s
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# function to produce forecasts

# ph are the model coefficients,

#h is the forecasting horizon

# zt last p values of time series

forcar=function(ph,v,h,zt)

{

x=rep(NA,h);p=length(zt)

for(i in 1:h)

{

x[i]=sum(ph*zt)+sqrt(v)*rnorm(1)

zt[2:p]=zt[1:(p-1)]

zt[1]=x[i]

}

return(x)
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}

p=10

zt=rev(eeg[(n-p+1):n])

forcar(phsim[10,],sigma2[10],200,zt)

forcar(phhat,s,200,zt)

# 500 samples and mean

fr=matrix(NA,200,500)

for(i in 1:500){

fr[,i]=forcar(phsim[i,],sigma2[i],200,zt)

}

meanfor=apply(fr,1,mean)
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