Comment about AR spectral estimation

- Usually an estimate is produced by computing the AR theoretical spectrum at $(\hat{\phi}, \hat{\sigma^2})$.
- With our Monte Carlo simulation approach, for every draw (ϕ, σ^2) , we can compute the spectrum and obtain a draw for $f(\omega)$.
- Typically the mean of these draws will be similar to the spectrum at $(\hat{\phi}, \hat{\sigma^2})$.
- With this posterior simulation, we have the possibility of computing *quantiles*, *probability intervals* or simply a "band" for the spectral density.
- The purpose of the "band" is to get an idea of the uncertainty of the estimation.

- EEG example. The next figure shows several spectrum curves for 50 draws of (ϕ, σ^2) .
- Recall that the object *phsim* has the draws of ϕ coefficients and *sigma2*, the draws for the variance of the error term σ^2 .


```
a=ar(eeg,order=10,aic=F)
a$ar=as.vector(apply(phsim,2,mean))
a$var=mean(sigma2)
x=spec.ar(a,n.freq=500,plot=F)
plot(2*pi*x$freq,x$spec,type="l",axes=F)
axis(1)
axis(2)
for(i in 1:50){
     a$ar=as.vector(phsim[i,])
     a$var=sigma2[i]
     x=spec.ar(a,n.freq=500,plot=F)
     lines(2*pi*x$freq,x$spec)
     print(i)
```

167

}

Portmanteau lack of fit test

- For this test we need to consider the estimated residuals for the AR model $\hat{\epsilon}_t = x_t - \sum_{j=1}^p \hat{\phi}_j x_{t-j}$ where $\hat{\phi}_j$ is some estimator of the model parameters.
- The purpose of this test is to determine if the residuals are correlated or not..
- The null hypothesis is $H_o: \rho_1 = \rho_2 = \ldots = \rho_K = 0$
- The proposed test statistic is:

$$Q = n(n+2) \sum_{k=1}^{K} (n-k)^{-1} \hat{\rho_k}^2$$

where $\hat{\rho}_k$ is the sample ACF of the estimated residuals and K is a fixed integer.

- The paper by Ljung and Box (1978), "On a measure of lack of fit in time series models", *Biometrika*, **65**, 297-303 shows that under the null hypothesis, Q approximately follows a chi-square distribution with K (p + 1) degrees of freedom or $Q \sim \chi^2_{K-(p+1)}$
- The testing procedure is: reject the null hypothesis at the α level if

$$Q > \chi^2_{K-(p+1)}(1-\alpha).$$

where $\chi^2_{K-(p+1)}(1-\alpha)$ is the $(1-\alpha)$ quantile of the chi-square distribution with K-(p+1) degrees of freedom.

• A problem with this test is that there is no formal rule to select the value K.

• A common approach is to compute the p-value of test for different values of K.

```
fit=arima(eeg,order=c(10,0,0))
tsdiag(fit)
```


Model order via likelihood approaches: AIC, BIC

- We want to define a criteria that allows to select the order *p* of an AR process.
- We are thinking of the AR model as a linear regression model with *p* covariates.
- As p increases the likelihood (or log-likelihood) of the model evaluated at the MLE $(\hat{\phi}, s^2)$ also increases.
- However, as p increases we may have high autocorrelations of regressors.
- A penalty function could be added to the likelihood function to compensate for more parameters in the model.
- A general selection criteria is to find the value of p such

that minimizes

$$-2log[L(\hat{\phi},s^2)] + f(p)$$

where $L(\cdot)$ is the likelihood function of the regression model and $f(\cdot)$ is a penalty function.

- This penalty function f(p) is assumed to be an increasing function of p.
- Since we are working with a Normal linear model, we can show that

$$-2ln[L(\hat{\phi}, s^2)] = m(log(2\pi + 1)) + mlog(s_p^2)$$

where m = n - p is the length of the response vector

• In fact, for the AR model $x = F\phi + \epsilon$, the likelihood

function

$$L(\phi, s^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{m/2} exp\left(-\frac{1}{2\sigma^2}(x - F\phi)'(x - F\phi)\right)$$

• Recall that the MLE, $\hat{\phi} = (F'F)^{-1}F'x$ and $s^2 = (x - F\hat{\phi})'(x - F\hat{\phi})/m$ and so

$$L(\hat{\phi}, s^2) = \left(\frac{1}{2\pi s^2}\right)^{m/2} exp\left(-\frac{m}{2}\right)$$

- The first term of $-2ln[L(\hat{\phi}, s^2)]$ does not depend on p.
- The criteria reduces to find the value of p for which

$$nlog(s_p^2) + f(p)$$

is minimum.

• The evallation must based on a common sample size. We

fix a maximum order p^* and fit AR models for values of $p \le p^*$ based only on $n^* = n - p^*$ observations.

- Then we compute $n^*log(s_p^2) + f(p); p = 0, 1, \dots, p^*$ and find the max over the range $0, 1, \dots, p^*$
- If we set f(p) = 2p, we have the Akaike information criteria (AIC).
- This AIC tends to give overestimated values of p.
- If we fix $f(p) = log(n^*)p$ we have the Bayesian information criteria (BIC).
- The BIC tends to give smaller values of p in comparison to AIC.

Forecasting with AR models

- We will consider forecasting from both Bayesian and non-Bayesian perspectives.
- We wish to produce inference about the "future".
- From time n, we wish to produce a statement about $X_{n+1}, X_{n+2}, \ldots, X_{n+h}$ where h is the forecasting horizon (how far we wish to predict in time).
- In a Bayesian setup, this translates into considering the *Predictive distribution* for the future values,

 $p(x_{n+h}, x_{n+h-1}, \dots, x_{n+1} | x_n, \dots, x_1) =$ $\int \int p(x_{n+h}, x_{n+h-1}, \dots, x_{n+1} | x_n, \dots, x_1, \phi, \sigma^2) p(\phi, \sigma^2) d\phi d\sigma^2$

• For AR models even with the non-informative prior

 $p(\phi, \sigma^2) \propto 1/\sigma^2$, this distribution does not have a recognizable form.

- However, using posterior simulation it is relatively simple to obtain samples of values for $X_{n+1}, X_{n+2}, \ldots, X_{n+h}$
- We can proceed in the following way:
 - Draw a pair (ϕ, σ^2) from the Normal-Inverse Gamma distribution as we discussed before.
 - Using this pair, draw a value x_{n+1} from a Normal distribution with mean $\sum_{j=1}^{p} \phi_j x_{n+1-j}$ and variance σ^2 .
 - Draw x_{n+2} from a Normal distribution with mean $\sum_{j=1}^{p} \phi_j x_{n+2-j}$ and variance σ^2 . (In one of the terms of the autoregression we are using the draw for x_{n+1}).

- Continue in this way until we generate a value for x_{n+h} from a Normal with mean $\sum_{j=1}^{p} \phi_j x_{n+h-j}$ and variance σ^2
- Repeat all the steps until we obtain M samples of values $x_{n+1}, x_{n+2}, \ldots, x_{n+h}$
- An approximation to this scheme is to make draws from a predictive distribution which is conditional to an estimate of the model parameters $(\hat{\phi}, \hat{\sigma^2})$

$$p(x_{n+h}, x_{n+h-1}, \dots, x_{n+1} | \hat{\phi}, \hat{\sigma^2}, x_n, x_{n-1}, \dots, x_2, x_1).$$

- We are treating $(\hat{\phi}, \hat{\sigma^2})$ as the "true" parameter.
- If the sample size *n* is large this should produce similar results with respect to full Bayesian approach that uses

draws of (ϕ, σ^2) .

- However, if the sample size is small we could find differences between the distributions.
- Once again, consider the EEG data with an AR(10) model.
- The figures show:
 - Samples of predictive values and data.
 - Comparison of 'full predictive' with 'MLE predictive'
 - Posterior mean of forecasts.
 - Posterior mean and 95% predictive forecasts.
 - Parts of code included in file code6.s

78₹

```
# function to produce forecasts
# ph are the model coefficients,
#h is the forecasting horizon
# zt last p values of time series
forcar=function(ph,v,h,zt)
{
x=rep(NA,h);p=length(zt)
for(i in 1:h)
{
  x[i]=sum(ph*zt)+sqrt(v)*rnorm(1)
  zt[2:p]=zt[1:(p-1)]
  zt[1]=x[i]
}
return(x)
```

```
}
p=10
zt=rev(eeg[(n-p+1):n])
forcar(phsim[10,],sigma2[10],200,zt)
forcar(phhat,s,200,zt)
# 500 samples and mean
fr=matrix(NA,200,500)
for(i in 1:500){
fr[,i]=forcar(phsim[i,],sigma2[i],200,zt)
}
meanfor=apply(fr,1,mean)
```