Time Series Stat 581, Homework 5 Due on Thursday December 11

- 1. This exercise tries to show the importance of detrending data in a periodogram analysis. For the CO_2 data available in R and WITHOUT applying any type of detrending compute and plot:
 - (a) Raw periodogram ω vs. $I(\omega)$.
 - (b) Bayesian periodogram (in likelihood scale).
 - (c) Autocorrelation function up to lag 100.

Also, look at the residuals of the simple cyclical model discussed in class using $\omega = 2\pi/12$. Do you think the fit of the model is adequate? Are there any obvious cycles noticeable from the different peridograms? Explain and compare the different results.

- 2. Generalize the cyclical model discussed in class to allow for 2 different frequencies ω_1, ω_2 . Can we still treat this extension as a linear model? If so and assuming $F'F \approx (n/2)I$, find an approximation for p(x|F) that depends on $I(\omega_1)$ and $I(\omega_2)$, the periodogram evaluated at the frequencies ω_1 and ω_2 . No computer is required for this problem.
- 3. Assume that $X_t = \alpha X_{t-1} + \epsilon_t$, so the time series follows an autoregressive process of order 1. Also assume that $-1 < \alpha < 1$. Using the definitions seen in class, derive an expression for the spectral density of X_t (see class notes). Make plots of this spectral density for values $\alpha = -.8, .25, .9$, plot this density as a function of ω where ω is between 0 and π . Write a brief interpretation of the plots. For this problem, it may help to look at exercise 4.5 in Shumway and Stoffer.
- 4. Using the 400 observations corresponding to the "short and central" EEG series compute the periodogram and produce a plot of the frequencies versus the values of the periodogram.
 - (a) Plot ω vs. $I(\omega)$.
 - (b) Make a plot of a smoothed and tapered periodogram. You are free to decide on the type/degree of smoothness and tapering.
 - (c) Test the null hypothesis H_o : observed process is a Normal white noise using the statistic T based on the maximum periodogram ordinate. Do you reject the null hypothesis?
- 5. From Shumway and Stoffer's text Exercise 3.31.