
Time Series Homework #1 Solutions 
 

1. a. (4 pts) 

  Below is the representation of the Carinae Star Data.  There does not appear top 

be a trend, but it does appear stationary as the mean does not seem to be 

dependent on time. 
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 b. (2 pts) 

  Below is the representation of the Carinae Star Data in sections of 400 (except the 

last section, which only has 349).  By breaking the data into smaller pieces, it is 

easier to see the stationarity of the process. 
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Carinae Star Data from 401 - 800
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Carinae Star Data from 801 - 1149
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2. Model:  ttt wsx +=  where tw  is Gaussian noise with 12 =wσ . 

a. (2 pts) 

 Below is a plot of ttt wsx +=  for t = 1, . . . . , 200, where 
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s[t]=10exp(-(t-100)/20)cos(2Pit/4) for t=101:200
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b. (2 pts) 

 Below is a plot of ttt wsx +=  for t = 1, . . . . , 200, where 
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s[t]=10exp(-(t-100)/200)cos(2Pit/4) for t=101:200
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c. (2 pts) 

 Below is a plot showing the series generated in a with the Earthquake series from 

Figure 1.7 and the signal modulator { }20exp t−  for t = 1, . . . , 100.  The series 

from (a) is most similar to the Earthquake series in the fact that there is fairly little 

noise from time 1 to 100 and then there is a jolt to the system after which the 

noise quickly dies down after that.  The signal modulator shows the fact that the 

noise will die down quickly.  It decreases fairly rapidly. 

 

s[t]=10exp(-(t-100)/20)cos(2Pit/4) for t=101:200
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Below is a plot showing the series generated in a with the Explosion series from 

Figure 1.7 and the signal modulator { }200exp t−  for t = 1, . . . , 100.  The series 

from (a) is most similar to the Explosion series in the fact that there is fairly little 

noise from time 1 to 100 and then there is a jolt to the system after which the 

noise slowly decreases.  The signal modulator shows the fact that the noise will 

die down slowly as its decrease is slow. 



 

s[t]=10exp(-(t-100)/20)cos(2Pit/4) for t=101:200
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3. a. (3 pts) 

  Model:  ttt wxx +−= −29.0  where tw  is Gaussian noise with 1=wσ . 

  Moving average filter:  ( ) 4321 −−− +++= ttttt xxxxv  

  Below is a plot of the series, generated by the model above, with the filter 

superimposed on the series.  In general, it looks as though the variability in the 

data increases over time, implying that the series may not be stationary.  

However, when the filter is added, it decreases the noise (which should happen 

with averages), but it also looks like the moving average is stationary.  The mean 

did not change after applying the MA filter (which should also happen with 

averages). 
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 b. (2 pts) 
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  Moving average filter:  ( ) 4321 −−− +++= ttttt xxxxv  

  Below is a plot of the series, generated by the model above, with the filter 

superimposed on the series.  Since this series has no random component, and it is 

based on cosine, the plot looks perfectly cyclical.  When the filter is added, it does 

not change the mean or but changes the variability to 0 in the data. 
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 c. (2 pts) 

  Model:  tt w
t

x +







=

4

2
cos

π
.where ( )1,0~ Nwt . 

  Moving average filter:  ( ) 4321 −−− +++= ttttt xxxxv  

  Below is a plot of the series, generated by the model above, with the filter 

superimposed on the series.  This series has a random component, and therefore, 

is not deterministic like the series in (b).  The series may be stationary as the 

mean is constant over time and the variability does not seem to increase or 

decrease over time.  When the filter is added, it does not change the mean, but 

does decrease the variability in the data slightly.   
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 d. (2 pts) 

  In series (a), we see an increase in the variability of the data toward the end of the 

series (ranging from –6 to 6), and the MA filter reduces that variability quite a bit 

in the second half of the series.  In contrast, (c) has smaller variability to start with 

(ranging from –2 to 2), so the filter does not smooth very much.  The MA filter 

smoothes the data slightly, but not as significantly as when the MA is applied to a 

series with much larger variability.  In (b), the MA filter basically removes the 

variability as the series is completely deterministic. 

 

4. Model 1:  ttt wsx +=  where tw  is Gaussian noise with 12 =wσ  and  
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 Model 2:  ttt wsx +=  where tw  is Gaussian noise with 12 =wσ  and  
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 a. (4 pts) 

  Mean for Model 1: 
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  Sketch of mean function for Model 1: 
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  Mean for Model 2: 
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  Sketch of mean function for Model 2: 
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 b. (2 pts) 

  Autocovariance function for Model 1: 
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  This is the same for Model 2. 

 

5. (5 pts) 

 Model:  11 2 +− ++= tttt wwwx  where tw  are ind. with zero means and variance 2

wσ . 
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6. Model:  t1tt wxx ++δ= − , t = 1, 2, . . . , 00 =x , tw  is white noise with variance 2

wσ . 

 a. (2 pts) 
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 b. (2 pts) 
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 c. (2 pts) 
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  This implies that as t becomes very large, the t
th

 value can be perfectly predicted 

from the (t-1)
th

.   

 d. (2 pts) 

  From part (b) we have already seen that the mean is dependent on time.  This 

implies that the process is not stationary. 

 e. (2 pts) 

  A possible transformation to make the process is  
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7. (4 pts) 

 Model:  ( ) ( )twcosUtwsinUxt 0201 22 π+π=  where U1 and U2 are independent with 

zero means and variance = 2σ . 
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8. Model:  ( )Utsinx t π= 2  where t = 1, 2, . . .  and U ~ Uniform (0,1) 

 a. (2 pts) 
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 b. (2 pts) 

  Strict Stationarity: ( ) ( ) t,hcx,cxPcx,cxP hshtst ∀Ν∈∀≤≤=≤≤ ++ 2121  

  Let t = 1, s = 2, h = 1. 

  NTS:  ( ) ( )23122211 cx,cxPcx,cxP ≤≤=≤≤  for strict stationarity 
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  ( ) ( )23122211 cx,cxPcx,cxP ≤≤≠≤≤  

  ⇒  The series is not strictly stationary. 

 


