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STA 590, Spring 05. Some Aspects on Extreme
Value Analysis

o If Xy, X5, X35, X, ... forms a sequence of independent

random variables, consider

M, = max{Xy,..., X, }
e Develop statistical models and study the statistical

behavior of M,,.

e The X's could be ozone levels, rainfall, sea levels,

temperature or a financial indexz.

e Model tail behavior of the distribution.




If the X[s have a common distribution function F'(x),
PriM, <z] = PriXi<zX,<z...,X,<Z
= I"(z)
Result not very useful, since F'is unknown.

If z, is the smallest value for which F(z) =1, if
2z < zy then F(z) < F(zy) =1 and
limy, oo F"(2) = 0.

Consider a new random variable M* = (M,, — a,,) /b,

where {a, > 0} and {b,} are sequences of numbers
Focus: Limit distribution of M.

Coles, S. (2001). An Introduction to Statistical
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Modeling of Extreme Values. Springer Verlag:New
York, discusses the following theorem.

o Frtremal Theorem: If {a, > 0} and {b,} are such
that

Pr{(M, —b,)/a, <z} — G(2); n — o0

then G must be a member of the so called
Generalized Extreme Value (GEV) family of

distributions.

e The Generalized Extreme Value (GEV) distribution

function is:
G(2) = exp { =1 +&(z — ) o)./}

. /




-

-

e —00 < i < o0 is a location parameter; o > 0 is a

scale parameter; —oo < £ < o0 is a shape parameter.

e + denotes the positive part of the argument.
o £ > 0 gives the Fréchet (type I) family;

o ¢ < 0 defines the Weibull (type II) family;

o { — 0 leads to the Gumbel (type I1I) family.

G(z) = exp{—exp(—(z — p)/0)};—00 <z < 00

o Frample: If X1, X,,..., X, are U(0,1). For z < 0;
n>—z;let a, =1/n and b, =1
Pr{(M, —b,)/a, <z} = PriM, <z/n+1}=

(1+n'2)" — e
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which is a Weibull type distribution £ = —1.

The difficulty with the normalizing constants is
“easily” resolved. Equivalently,

PriM, <z} =~ G{(z —b,)/a,} = G*(2)

for large enough n. G*(-) also belongs to the GEV
family:.

Estimation of the GEV: Consider
My = maz{ Xy 1, Xg2, -, Xint

n block size; k = 1,..., m number of blocks.

To simplify the notation,
21 — Mn,ly 29 = Mn’g, e Mn,m-
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o Let O = (u,0,§), if the z/s are independent
2~ GEV(0);i=1,...,m , the log-likelihood is

[(6) = —mlogo— (1+1/£)> log{1+&(z — p)/o}

—Z{1+£ u)/o} e

provided that 1 4+ &(z; — ) /o > 0;i=1,2,....m

e This log-likelihood function cannot be maximized
analytically:.

e To obtain the MLE, we require some kind of
computational method (Newton-Raphson, EM?).

e S. Coles created a S-plus/R package ismev to find the
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MLE for the parameters of the GEV distribution.

The Splus version can be downloaded from

http: //www.maths.bris.ac.uk/ masgc/ismev /summary.htn

The R-version (Alec Stephenson) is available at:
http://cran.r-project.org/

Pages 185-187 of the book by Coles give a description

of the functions.
The main tfunctions are gev.fit and gpd.fit.

Bayesian inference for @ can be performed using
MCMC.

A trivariate normal prior on 8" = (u, logo, &) leads to
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the prior density.

(0) o Zeap {—%(9’ _ TSN — y)}

o

Includes the case of independent priors on i, o.,£.

It > is a diagonal matrix, then
m(0) oc w(p)m(log(a))m(§)

Other priors: Beta Distributions for Probability
Ratios and Gamma Distribution for Quantile

Differences.

Set G(g,) =1 —p so g, is the 1 — p quantile of the
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GEV distribution, then
N _ —1el
exp § —[1+&(qp — 1) /ol p
e The solution for g, is:

ap=p+o(x,* —1)/¢
with x, = —log(1 — p)

e A prior can be constructed in terms of quantiles

Iy > Gps s Qps fOT probabilities p; > py > ps.

e Since q,, < qp, < Gp, 1t 1s simpler to deal with the

differences g, , p,, ¢p; Where

qg%’ = 4p;, — qu'—z‘;i =1,2,3
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Fix ¢,,(= 0) as a lower end point.

A proposed prior on the quantile differences is:
Q;z ™~ Gamma’(&iaﬁi); Q; > Ovﬁz > 077’ — 17 27 3

The prior for 0 is then

3
7(0) o< J | [, exp(—Bigp,)]
1=1

where (ala g, 053)7 (617 527 53)7 P1,DP2,P3 must all be
specified.

For posterior inference a Hybrid MCMC method is
used.

The full conditional distribution of each parameter is

/

10



-

-

simulated with a Metropolis-Hastings step.

e A simple choice is to specify random walks in the 3
model parameters:

ES

p = Bt €y
¢ = p+e
= Ete

where €, €4, € are normal RVs with zero mean and

variances v,,, vy, Ve respectively. ¢ = log(o)

e After some tunning, it is possible to obtain decent
MCMC simulations.

e The output of t<smev can be used to tune the
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proposal variances.

The R-library evdbayes available at
http://cran.r-project.org/ provides function for the
Bayesian Analysis of the GEV distribution.

This library was written by Alec Stephenson and can
also be downloaded from
http:/ /www.maths.lancs.ac.uk /~stephena/.

The package includes a user guide.

An alternative to extreme value analysis is to
consider threshold models.

X1, Xo, ... 1d observations. Extreme event: X; > u.

Model exceedances: P(X —u > y|X > u)
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1—F(u+y)

o Forany y >0, P(X >y +u|lX >u) = 1—F(u)

where F' is the distribution of X.

e Under similar conditions for the Extremal theorem,
it can be shown that for large enough u, the
distribution of ¥ = X — u conditional n X > u is
defined by the Generalized Pareto Distribution
(GPD).

e The GPD family is given by the expression:

H(y)=1— (1 + f—y> o

o

deﬁnedfory>0and1+%y>0
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It £ — 0 then

H(y)=1—exp (;y>

o

For specific applications, given u, the parameters &
and o can be estimated by maximum likelihood
(gpd.fit) or with Bayes approaches based on MCMC.

In general, is difficult to determine a reasonable value

or to estimate u.

FExtensions: Model changes across time. Trend or

seasonality.

Traditional approach: 21, 2o, ..., Zm;

Zr N GEV(,Ut, g, f)
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e Deterministic functions: u; = Gy + Git;
pe = Bo + B1 + Bat + Bst? or py = By + 51 Xe.

e Non-stationarity can also be included for the shape

and /or scale parameters: o, = exp(5y + Bit);

& = Po + Bt or & = By + Bit + Bat?.

e Alternatively, we propose the use of Dynamic Linear
Models (DLM) as in West and Harrison (1997) to
model the parameter changes in time. (see paper
Time-Vayring Models for Extreme Values on my

personal web page).

o Model Checking: Consider z, such that
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G(z,) =1 — p. Then,

Zp:“_%(l_yp_g)

where y, = —log(1 — p)
A return level plot is given by the points

{(logyp, 2p); 0 < p < 1}

If we have a point estimate of the parameters, we can
obtain a point estimate of the return level plot.

For a Bayessian approach, applying this
transformation to samples of (i, o, &) leads to
samples of the return level plot.

This curve can be compared to the Empirical Return
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level given by

(log(—=log(i/m)),zw);t=1,...m
where z(;) denotes the ordered data.

e If empirical and theoretical return levels match, then
we have a good fit of the GEV distribution.

e For the Gumbel case (£ =0), 2, = pu— olog(y,)

e For the non-stationary case a return level can be

obtain for every value of t.
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