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STA 590, Spring 05. Some Aspects on Extreme

Value Analysis

• If X1, X2, X3, X4 . . . forms a sequence of independent

random variables, consider

Mn = max{X1, . . . , Xn}

• Develop statistical models and study the statistical

behavior of Mn.

• The X ′

is could be ozone levels, rainfall, sea levels,

temperature or a financial index.

• Model tail behavior of the distribution.
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• If the X ′

is have a common distribution function F (x),

Pr[Mn ≤ z] = Pr[X1 ≤ z,X2 ≤ z, . . . , Xn ≤ z]

= F n(z)

• Result not very useful, since F is unknown.

• If z+ is the smallest value for which F (z) = 1, if

z < z+ then F (z) < F (z+) = 1 and

limn→∞F n(z) = 0.

• Consider a new random variable M ∗

n = (Mn − an)/bn

where {an > 0} and {bn} are sequences of numbers

• Focus: Limit distribution of M ∗

n.

• Coles, S. (2001). An Introduction to Statistical
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Modeling of Extreme Values. Springer Verlag:New

York, discusses the following theorem.

• Extremal Theorem: If {an > 0} and {bn} are such

that

Pr{(Mn − bn)/an ≤ z} → G(z); n → ∞

then G must be a member of the so called

Generalized Extreme Value (GEV) family of

distributions.

• The Generalized Extreme Value (GEV) distribution

function is:

G(z) = exp
{

−[1 + ξ(z − µ)/σ]
−1/ξ
+

}
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• −∞ < µ < ∞ is a location parameter; σ > 0 is a

scale parameter; −∞ < ξ < ∞ is a shape parameter.

• + denotes the positive part of the argument.

• ξ > 0 gives the Fréchet (type I) family;

• ξ < 0 defines the Weibull (type II) family;

• ξ → 0 leads to the Gumbel (type III) family.

G(z) = exp {− exp(−(z − µ)/σ)} ;−∞ < z < ∞

• Example: If X1, X2, . . . , Xn are U(0, 1). For z < 0;

n > −z; let an = 1/n and bn = 1

Pr{(Mn − bn)/an ≤ z} = Pr{Mn ≤ z/n + 1} =

(1 + n−1z)n → ez
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which is a Weibull type distribution ξ = −1.

• The difficulty with the normalizing constants is

“easily” resolved. Equivalently,

Pr{Mn ≤ z} ≈ G{(z − bn)/an} = G∗(z)

for large enough n. G∗(·) also belongs to the GEV

family.

• Estimation of the GEV: Consider

Mn,k = max{Xk,1, Xk,2, . . . , Xk,n}

• n block size; k = 1, . . . ,m number of blocks.

• To simplify the notation,

z1 = Mn,1, z2 = Mn,2, . . . , zm = Mn,m.
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• Let θ = (µ, σ, ξ), if the z′

is are independent

zi ∼ GEV (θ); i = 1, . . . ,m , the log-likelihood is

l(θ) = −m log σ − (1 + 1/ξ)
m

∑

i=1

log{1 + ξ(zi − µ)/σ}

−

m
∑

i=1

{1 + ξ(zi − µ)/σ}−1/ξ

provided that 1 + ξ(zi − µ)/σ > 0; i = 1, 2, . . . ,m.

• This log-likelihood function cannot be maximized

analytically.

• To obtain the MLE, we require some kind of

computational method (Newton-Raphson, EM?).

• S. Coles created a S-plus/R package ismev to find the
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MLE for the parameters of the GEV distribution.

• The Splus version can be downloaded from

http://www.maths.bris.ac.uk/ masgc/ismev/summary.html.

• The R-version (Alec Stephenson) is available at:

http://cran.r-project.org/

• Pages 185-187 of the book by Coles give a description

of the functions.

• The main functions are gev.fit and gpd.fit.

• Bayesian inference for θ can be performed using

MCMC.

• A trivariate normal prior on θ
′ = (µ, logσ, ξ) leads to
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the prior density.

π(θ) ∝
1

σ
exp

{

−
1

2
(θ′ − ν)T Σ−1(θ′ − ν)

}

• Includes the case of independent priors on µ, σ,ξ.

• If Σ is a diagonal matrix, then

π(θ) ∝ π(µ)π(log(σ))π(ξ)

• Other priors: Beta Distributions for Probability

Ratios and Gamma Distribution for Quantile

Differences.

• Set G(qp) = 1 − p so qp is the 1 − p quantile of the
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GEV distribution, then

exp
{

−[1 + ξ(qp − µ)/σ]
−1/ξ
+

}

= 1 − p

• The solution for qp is:

qp = µ + σ(x−ξ
p − 1)/ξ

with xp = −log(1 − p)

• A prior can be constructed in terms of quantiles

qp1
, qp2

, qp3
for probabilities p1 > p2 > p3.

• Since qp1
< qp2

< qp3
it is simpler to deal with the

differences q̃p1
, q̃p2

, q̃p3
where

q̃pi
= qpi

− qpi−i
; i = 1, 2, 3
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• Fix qp0
(= 0) as a lower end point.

• A proposed prior on the quantile differences is:

q̃pi
∼ Gamma(αi, βi);αi > 0;βi > 0; i = 1, 2, 3

• The prior for θ is then

π(θ) ∝ J
3

∏

i=1

[q̃pi

αi−1exp(−βiq̃pi
)]

where (α1, α2, α3), (β1, β2, β3), p1, p2, p3 must all be

specified.

• For posterior inference a Hybrid MCMC method is

used.

• The full conditional distribution of each parameter is
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simulated with a Metropolis-Hastings step.

• A simple choice is to specify random walks in the 3

model parameters:

µ∗ = µ + εµ

φ∗ = φ + εφ

ξ∗ = ξ + εξ

where εµ, εφ, εξ are normal RVs with zero mean and

variances vµ, vφ, vξ respectively. φ = log(σ)

• After some tunning, it is possible to obtain decent

MCMC simulations.

• The output of ismev can be used to tune the
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proposal variances.

• The R-library evdbayes available at

http://cran.r-project.org/ provides function for the

Bayesian Analysis of the GEV distribution.

• This library was written by Alec Stephenson and can

also be downloaded from

http://www.maths.lancs.ac.uk/∼stephena/.

• The package includes a user guide.

• An alternative to extreme value analysis is to

consider threshold models.

• X1, X2, . . . iid observations. Extreme event: Xi > u.

• Model exceedances: P (X − u > y|X > u)
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• For any y > 0, P (X > y + u|X > u) = 1−F (u+y)
1−F (u)

where F is the distribution of X.

• Under similar conditions for the Extremal theorem,

it can be shown that for large enough u, the

distribution of Y = X − u conditional n X > u is

defined by the Generalized Pareto Distribution

(GPD).

• The GPD family is given by the expression:

H(y) = 1 −

(

1 +
ξy

σ̃

)

−1/ξ

defined for y > 0 and 1 + ξy
σ̃

> 0
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• If ξ → 0 then

H(y) = 1 − exp

(

−y

σ̃

)

• For specific applications, given u, the parameters ξ

and σ̃ can be estimated by maximum likelihood

(gpd.fit) or with Bayes approaches based on MCMC.

• In general, is difficult to determine a reasonable value

or to estimate u.

• Extensions: Model changes across time. Trend or

seasonality.

• Traditional approach: z1, z2, . . . , zm;

zt ∼ GEV (µt, σ, ξ)
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• Deterministic functions: µt = β0 + β1t;

µt = β0 + β1 + β2t + β3t
2 or µt = β0 + β1Xt.

• Non-stationarity can also be included for the shape

and/or scale parameters: σt = exp(β0 + β1t);

ξt = β0 + β1t or ξt = β0 + β1t + β2t
2.

• Alternatively, we propose the use of Dynamic Linear

Models (DLM) as in West and Harrison (1997) to

model the parameter changes in time. (see paper

Time-Vayring Models for Extreme Values on my

personal web page).

• Model Checking: Consider zp such that
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G(zp) = 1 − p. Then,

zp = µ −
σ

ξ

(

1 − y−ξ
p

)

where yp = −log(1 − p)

• A return level plot is given by the points

{(logyp, zp); 0 < p < 1}

• If we have a point estimate of the parameters, we can

obtain a point estimate of the return level plot.

• For a Bayessian approach, applying this

transformation to samples of (µ, σ, ξ) leads to

samples of the return level plot.

• This curve can be compared to the Empirical Return
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level given by

(log(−log(i/m)), z(i)); i = 1, . . . m

where z(i) denotes the ordered data.

• If empirical and theoretical return levels match, then

we have a good fit of the GEV distribution.

• For the Gumbel case (ξ = 0), zp = µ − σlog(yp)

• For the non-stationary case a return level can be

obtain for every value of t.
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