Stat 440/540. Regression Analysis. Fall 2006 Solutions Name: _____

Midterm Exam (Solutions)

1. Table 1 in the output pages shows some data on total fat in grams and calories of breakfast sandwiches for a few fast food restaurants. There is an interest in understanding the relationship between calories (Y) and total fat (X).

Here are a few summary statistics about this data, $\bar{X} = 24.875$, $\bar{Y} = 421.5$, $\sum (x_i - \bar{X})^2 = 688.875$, $\sum (y_i - \bar{Y})^2 = 111046$, $\sum X_i Y_i = 91924$, SSE = 17081.

(a) Based on Figure 1 in the output pages, discuss on the relationship between calories and total fat. In particular, discuss about the appropriateness of a linear regression model to describe this data.

As total fat increases, calories also increases. It seems that proposing a linear relationship to this data is appropriate except perhaps for data point associated to "Burger King" (43,620) which makes us think more of polynomial relationship between X and Y.

(b) Find the least squares estimates of the two coefficients of the simple linear regression model

Notice that $S_{xy} = \sum X_i Y_i - n\bar{X}\bar{Y} = 91924 - 8(24.875)(421.5) = 8045.5$. Therefore $\hat{\beta}_1 = 8045.5/688.875 = 11.679$ and $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1\bar{X} = 421.5 - (11.679)(24.875) = 130.9849$.

(c) Find the value of the t-statistic for β_1 and used to test statistical significance of this intercept.

MSE = SSE/(n-2) = 17081/6 = 2846.83 and then $SE(\hat{\beta}_1) = \sqrt{2846.83/688.875} = 2.033$. The t-statistic value is $T = \hat{\beta}_1/SE(\hat{\beta}_1) = 11.679/2.033 = 5.744$ which is significant at an $\alpha = 0.05$ level.

(d) For this data, determine the values of the analysis of variance table. Fill in the blanks.

Realize that two of the entries in the table are already given SST = 111046, and SSE = 17081. We have a total of n = 8 observations

Source	df	Sum of Squares	Mean Squares	F
Regression	1	93965	93965	33.006
Error	6	17081	2846.833	
Total	7	111046		

- (e) Now discuss on the appropriateness of the regression fit based on the residual plots that appear in Figures 2, 3 of the output pages. Discuss if there are any violations to usual model assumptions. Is there a need for variable transformations? These residuals plots look ok given the fact that we only have 8 data points. There doesn't seem to be serious violation to normality or non-constant variance assumptions so no transformations are needed. Still, more data might be needed to understand better the relationship between these variables and detect problems with residuals
- (f) Find a 95% prediction interval for Y given that x = 26. Give an interpretation of this interval in terms of the context of the data. Here are some quantiles of the t-distribution t(.95, 8) = 1.86, t(.975, 8) = 2.31, t(.95, 7) = 1.89, t(.975, 6) = 2.45, t(.995, 6) = 3.71

First find the point estimate of the prediction at x = 26, this is $\hat{Y} = 130.9849 + (11.679)(26) = 434.6389$. Also,

$$SE(pred) = \sqrt{2846.33(1+1/8+(26-24.875)^2/688.875)} = 56.633$$

Since n = 8 and we wish a .95 probability level, we use t(.975, 6) = 2.45. Therefore, the prediction interval is $434.6389 \pm 2.45(56.633)$ which is (295.89, 573.39). With 95% probability the calories of a breakfast sandwich with x = 26 grams of fat is within these two limits.

- 2. Suppose we have a sample of 12 discount department stores that advertize on television, radio, and in the newspapers. The variables X_1 , X_2 and X_3 represent the respective amounts of money spent on these advertising activities during a certain month while y gives the store's revenues during that month. Regression output on this data is presented in the additional pages. The actual data is not included.
 - (a) Write down the fitted regression model equation.From the output pages, we get that the estimated regression equation is

$$\hat{Y} = -15.3 + 2.620X_1 + 7.556X_2 + 1.901X_3$$

- (b) What are the values of R² or R²? Give a brief interpretation of these values. Again from the output pages, we have R² = 0.32 and R² = 0.065. This low values means that very low variability of the store's revenues is explained by a regression model including these 3 predictor variables.
- (c) Comment on the significance for each coefficient. Use α = 0.05.
 None of the coefficients are significant at an α = 0.05 level. From the table of coefficient estimates, we can see that the minimum p-value is 0.139 which is greater than 0.05

- (d) With the information given, can you test the hypothesis H₀: β₁ = β₂ = β₃ = 0? Why or why not? Justify your answer.
 Yes, the F-statistic part of the model ANOVA table allows us to test this hypothesis. F=1.26, with a p-value of 0.353, so we do not reject the null hypothesis
- (e) Find the appropriate statistic to test whether the reduced model $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$ is an adequate explanation of the data as compared to the model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$. $F = \frac{SSR(X_2|X_1)}{MSE(X_1,X_2)} = 1193.1/386.5 = 3.086$. Also, notice that

 $MSE(X_1, X_2) = (SSR(X_3|X_1, X_2) + SSE(X_1, X_2, X_3))/(1+8) = (19.0 + 3459.7)/9 = 386.5$

- (f) Why is observation no. 7 reported as an usual observation? Justify your answer. Basically because it has a high standardized residual. $|r_7| > 2$. You could have also argued this in terms of Cook's distances but not using leverages.
- (g) Figure 4 from the output shows the added variable plot for adding variable X₃ to a model that already contains variables X₁ and X₂. Interpret the plot.
 After including variables X₁, X₂ in the regression, the added variable plot does not show any relationship between Y and X₃. Therefore, X₃ would not contribute any additional information to a regression model including X₁ and X₂
- (h) With this information, is it possible compute the sample partial correlation of $r_{y3\cdot12}$. Why or why not? If yes, find this value. Yes it is possible to compute this partial correlation,

$$r_{y3\cdot12} = \frac{SSR(X_3|X_1, X_2)}{SSE(X_1, X_2)} = 19.0/3478.7 = 0.00546$$