5.6 a. For $Z=X-Y$, set $W=X$. Then $Y=W-Z, X=W$, and $|J|=\left|\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right|=1$. Then $f_{Z, W}(z, w)=f_{X}(w) f_{Y}(w-z) \cdot 1$, thus $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(w) f_{Y}(w-z) d w$.
b. For $Z=X Y$, set $W=X$. Then $Y=Z / W$ and $|J|=\left|\begin{array}{cc}0 & 1 \\ 1 / w & -z / w^{2}\end{array}\right|=-1 / w$. Then $f_{Z, W}(z, w)=f_{X}(w) f_{Y}(z / w) \cdot|-1 / w|$, thus $f_{Z}(z)=\int_{-\infty}^{\infty}|-1 / w| f_{X}(w) f_{Y}(z / w) d w$.
c. For $Z=X / Y$, set $W=X$. Then $\mathrm{Y}=\mathrm{W} / \mathrm{Z}$ and $|J|=\left|\begin{array}{cc}0 & 1 \\ -w / z^{2} & 1 / z\end{array}\right|=w / z^{2}$. Then $f_{Z, W}(z, w)=f_{X}(w) f_{Y}(w / z) \cdot\left|w / z^{2}\right|$, thus $f_{Z}(z)=\int_{-\infty}^{\infty}\left|w / z^{2}\right| f_{X}(w) f_{Y}(w / z) d w$.
10
c. Use the fact that $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$ and $\operatorname{Var} \chi_{n-1}^{2}=2(n-1)$ to get

$$
\operatorname{Var}\left(\frac{(n-1) S^{2}}{\sigma^{2}}\right)=2(n-1)
$$

which implies $\left(\frac{(n-1)^{2}}{\sigma^{4}}\right) \operatorname{Var} S^{2}=2(n-1)$ and hence

$$
\operatorname{Var} S^{2}=\frac{2(n-1)}{(n-1)^{2} / \sigma^{4}}=\frac{2 \sigma^{4}}{n-1}
$$

Remark: Another approach to b), not using the $\chi^{2}$ distribution, is to use linear model theory. For any matrix $A \operatorname{Var}\left(X^{\prime} A X\right)=2 \mu_{2}^{2} \operatorname{tr} A^{2}+4 \mu_{2} \theta^{\prime} A \theta$, where $\mu_{2}$ is $\sigma^{2}, \theta=\mathrm{E} X=\mu 1$. Write $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=\frac{1}{n-1} X^{\prime}\left(I-\bar{J}_{n}\right) X$. Where

$$
I-\bar{J}_{n}=\left(\begin{array}{cccc}
1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & & \vdots \\
\vdots & & \ddots & \vdots \\
-\frac{1}{n} & \cdots & \cdots & 1-\frac{1}{n}
\end{array}\right)
$$

Notice that $\operatorname{tr} A^{2}=\operatorname{tr} A=n-1, A \theta=0$. So

$$
\operatorname{Var} S^{2}=\frac{1}{(n-1)^{2}} \operatorname{Var}\left(X^{\prime} A X\right)=\frac{1}{(n-1)^{2}}\left(2 \sigma^{4}(n-1)+0\right)=\frac{2 \sigma^{4}}{n-1}
$$

5.15 a.

$$
\bar{X}_{n+1}=\frac{\sum_{i=1}^{n+1} X_{i}}{n+1}=\frac{X_{n+1}+\sum_{i=1}^{n} X_{i}}{n+1}=\frac{X_{n+1}+n \bar{X}_{n}}{n+1}
$$

b.

$$
\begin{aligned}
n S_{n+1}^{2} & =\frac{n}{(n+1)-1} \sum_{i=1}^{n+1}\left(X_{i}-\bar{X}_{n+1}\right)^{2} \\
& =\sum_{i=1}^{n+1}\left(X_{i}-\frac{X_{n+1}+n \bar{X}_{n}}{n+1}\right)^{2} \quad \quad \text { (use (a)) } \\
& =\sum_{i=1}^{n+1}\left(X_{i}-\frac{X_{n+1}}{n+1}-\frac{n \bar{X}_{n}}{n+1}\right)^{2} \\
& =\sum_{i=1}^{n+1}\left[\left(X_{i}-\bar{X}_{n}\right)-\left(\frac{X_{n+1}}{n+1}-\frac{\bar{X}_{n}}{n+1}\right)\right]^{2} \quad\left( \pm \bar{X}_{n}\right) \\
& =\sum_{i=1}^{n+1}\left[\left(X_{i}-\bar{X}_{n}\right)^{2}-2\left(X_{i}-\bar{X}_{n}\right)\left(\frac{X_{n+1}-\bar{X}_{n}}{n+1}\right)+\frac{1}{(n+1)^{2}}\left(X_{n+1}-\bar{X}_{n}\right)^{2}\right] \\
& =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+\left(X_{n+1}-\bar{X}_{n}\right)^{2}-2 \frac{\left(X_{n+1}-\bar{X}_{n}\right)^{2}}{n+1}+\frac{n+1}{(n+1)^{2}}\left(X_{n+1}-\bar{X}_{n}\right)^{2} \\
& =(n-1) S_{n}^{2}+\frac{n}{n+1}\left(X_{n+1}-X_{n}\right)^{2} .
\end{aligned}
$$

5.16 a. $\sum_{i=1}^{3}\left(\frac{X_{i}-i}{i}\right)^{2} \sim \chi_{3}^{2}$
b. $\left(\frac{X_{i}-1}{i}\right) / \sqrt{\sum_{i=2}^{3}\left(\frac{X_{i}-i}{i}\right)^{2} / 2} \sim t_{2}$
c. Square the random variable in part b).
(in 5.16 b above, term should be $(\mathrm{X} 1-1) / 1$, not $(\mathrm{Xi}-1) / \mathrm{i}$.

17
c. Write $X=\frac{U / p}{V / p}$ then $\frac{1}{X}=\frac{V / q}{U / p} \sim F_{q, p}$, since $U \sim \chi_{p}^{2}, V \sim \chi_{q}^{2}$ and $U$ and $V$ are independent.
d. Let $Y=\frac{(p / q) X}{1+(p / q) X}=\frac{p X}{q+p X}$, so $X=\frac{q Y}{p(1-Y)}$ and $\left|\frac{d x}{d y}\right|=\frac{q}{p}(1-y)^{-2}$. Thus, $Y$ has pdf

$$
\begin{aligned}
f_{Y}(y) & =\frac{\Gamma\left(\frac{q+p}{2}\right)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}\left(\frac{p}{q}\right)^{\frac{p}{2}} \frac{\left(\frac{q y}{p(1-y)}\right)^{\frac{p-2}{2}}}{\left(1+\frac{p}{q} \frac{q y}{p(1-y)}\right)^{\frac{p+q}{2}}} \frac{q}{p(1-y)^{2}} \\
& =\left[B\left(\frac{p}{2}, \frac{q}{2}\right)\right]^{-1} y^{\frac{p}{2}-1}(1-y)^{\frac{q}{2}-1} \sim \operatorname{beta}\left(\frac{p}{2}, \frac{q}{2}\right) .
\end{aligned}
$$

5.21 Let $m$ denote the median. Then, for general $n$ we have

$$
\begin{aligned}
P\left(\max \left(X_{1}, \ldots, X_{n}\right)>m\right) & =1-P\left(X_{i} \leq m \text { for } i=1,2, \ldots, n\right) \\
& =1-\left[P\left(X_{1} \leq m\right)\right]^{n}=1-\left(\frac{1}{2}\right)^{n} .
\end{aligned}
$$

5.24 Use $f_{X}(x)=1 / \theta, F_{X}(x)=x / \theta, 0<x<\theta$. Let $Y=X_{(n)}, Z=X_{(1)}$. Then, from Theorem 5.4.6,
$f_{Z, Y}(z, y)=\frac{n!}{0!(n-2)!0!} \frac{1}{\theta} \frac{1}{\theta}\left(\frac{z}{\theta}\right)^{0}\left(\frac{y-z}{\theta}\right)^{n-2}\left(1-\frac{y}{\theta}\right)^{0}=\frac{n(n-1)}{\theta^{n}}(y-z)^{n-2}, 0<z<y<\theta$.
Now let $W=Z / Y, Q=Y$. Then $Y=Q, Z=W Q$, and $|J|=q$. Therefore

$$
f_{W, Q}(w, q)=\frac{n(n-1)}{\theta^{n}}(q-w q)^{n-2} q=\frac{n(n-1)}{\theta^{n}}(1-w)^{n-2} q^{n-1}, 0<w<1,0<q<\theta
$$

The joint pdf factors into functions of $w$ and $q$, and, hence, $W$ and $Q$ are independent.
5.27 a. $f_{X_{(t)} \mid X_{(j)}}(u \mid v)=f_{X_{(t)}, X_{(j)}}(u, v) / f_{X_{(j)}}(v)$. Consider two cases, depending on which of $i$ or $j$ is greater. Using the formulas from Theorems 5.4.4 and 5.4.6, and after cancellation, we obtain the following.
(i) If $i<j$,

$$
\begin{aligned}
f X_{(i)} \mid X_{(j)}(u \mid v) & =\frac{(j-1)!}{(i-1)!(j-1-i)!} f_{X}(u) F_{X}^{i-1}(u)\left[F_{X}(v)-F_{X}(u)\right]^{j-i-1} F_{X}^{1-j}(v) \\
& =\frac{(j-1)!}{(i-1)!(j-1-i)!} \frac{f_{X}(u)}{F_{X}(v)}\left[\frac{F_{X}(u)}{F_{X}(v)}\right]^{i-1}\left[1-\frac{F_{X}(u)}{F_{X}(v)}\right]^{j-i-1}, \quad u<v
\end{aligned}
$$

Note this interpretation. This is the pdf of the $i$ th order statistic from a sample of size $j-1$, from a population with pdf given by the truncated distribution, $f(u)=f_{X}(u) / F_{X}(v)$, $u<v$.
(ii) If $j<i$ and $u>v$,

$$
\begin{aligned}
& f_{X_{(v)} \mid X_{(j)}(u \mid v)} \\
& \quad=\frac{(n-j)!}{(n-1)!(i-1-j)!} f_{X}(u)\left[1-F_{X}(u)\right]^{n-i}\left[F_{X}(u)-F_{X}(v)\right]^{i-1-j}\left[1-F_{X}(v)\right]^{j-n} \\
& \quad=\frac{(n-j)!}{(i-j-1)!(n-i)!} \frac{f_{X}(u)}{1-F_{X}(v)}\left[\frac{F_{X}(u)-F_{X}(v)}{1-F_{X}(v)}\right]^{i-j-1}\left[1-\frac{F_{X}(u)-F_{X}(v)}{1-F_{X}(v)}\right]^{n-i} .
\end{aligned}
$$

This is the pdf of the $(i-j)$ th order statistic from a sample of size $n-j$, from a population with pdf given by the truncated distribution, $f(u)=f_{X}(u) /\left(1-F_{X}(v)\right), u>v$.
b. From Example 5.4.7,

$$
f_{V \mid R}(v \mid r)=\frac{n(n-1) r^{n-2} / a^{n}}{n(n-1) r^{n-2}(a-r) / a^{n}}=\frac{1}{a-r}, \quad r / 2<v<a-r / 2
$$

5.30 From the CLT we have, approximately, $\bar{X}_{1} \sim \mathrm{n}\left(\mu, \sigma^{2} / n\right), \bar{X}_{2} \sim \mathrm{n}\left(\mu, \sigma^{2} / n\right)$. Since $\bar{X}_{1}$ and $\bar{X}_{2}$ are independent, $\bar{X}_{1}-\bar{X}_{2} \sim \mathrm{n}\left(0,2 \sigma^{2} / n\right)$. Thus, we want

$$
\begin{aligned}
.99 & \approx P\left(\left|\bar{X}_{1}-\bar{X}_{2}\right|<\sigma / 5\right) \\
& =P\left(\frac{-\sigma / 5}{\sigma / \sqrt{n / 2}}<\frac{\bar{X}_{1}-\bar{X}_{2}}{\sigma / \sqrt{n / 2}}<\frac{\sigma / 5}{\sigma / \sqrt{n / 2}}\right) \\
& \approx P\left(-\frac{1}{5} \sqrt{\frac{n}{2}}<Z<\frac{1}{5} \sqrt{\frac{n}{2}}\right)
\end{aligned}
$$

where $Z \sim \mathrm{n}(0,1)$. Thus we need $P(Z \geq \sqrt{n} / 5(\sqrt{2})) \approx .005$. From Table $1, \sqrt{n} / 5 \sqrt{2}=2.576$, which implies $n=50(2.576)^{2} \approx 332$.
5.34 Using $\mathrm{E} \bar{X}_{n}=\mu$ and $\operatorname{Var} \bar{X}_{n}=\sigma^{2} / n$, we obtain

$$
\begin{gathered}
\mathrm{E} \frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}=\frac{\sqrt{n}}{\sigma} \mathrm{E}\left(\bar{X}_{n}-\mu\right)=\frac{\sqrt{n}}{\sigma}(\mu-\mu)=0 . \\
\operatorname{Var} \frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}=\frac{n}{\sigma^{2}} \operatorname{Var}\left(\bar{X}_{n}-\mu\right)=\frac{n}{\sigma^{2}} \operatorname{Var} \bar{X}=\frac{n}{\sigma^{2}} \frac{\sigma^{2}}{n}=1 .
\end{gathered}
$$

