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Preface

This (non)book assumes that the reader is familiar with the basic ideas of experi-
mental design and with linear models. I think most of the applied material should be
accessible to people with MS courses in regression and ANOVA but I had no hesi-
tation in using linear model theory, if I needed it, to discuss more technical aspects.

Over the last several years I’ve been working on revisions to my books Analysis
of Variance, Design, and Regression (ANREG); Plane Answers to Complex Ques-
tions: The Theory of Linear Models (PA); and Advanced Linear Modeling (ALM).
In each of these books there was material that no longer seemed sufficiently relevant
to the themes of the book for me to retain. Most of that material related to Exper-
imental Design. Additionally, due to Kempthorne’s (1952) book, many years ago I
figured out p f designs and wrote a chapter explaining them for the very first edition
of ALM, but it was never included in any of my books. I like all of this material and
think it is worthwhile, so I have accumulated it here. (I’m not actually all that wild
about the recovery of interblock information in BIBs.)

A few years ago my friend Chris Nachtsheim came to Albuquerque and gave a
wonderful talk on Definitive Screening Designs. Chapter 5 was inspired by that talk
along with my longstanding desire to figure out what was going on with Placett-
Burman designs.

I’m very slowly working on R code for this material. See http://www.
stat.unm.edu/˜fletcher/R-TD.pdf. Also, a retypeset version of the first
edition of ANREG (ANREG-I) is available at http://www.stat.unm.edu/
˜fletcher/anreg.pdf. R computer code for the second edition of ANREG is
available at http://www.stat.unm.edu/˜fletcher/Rcode.pdf.

As I have mentioned elsewhere, the large numbers of references to myself are as
much due to sloth as ego.

Ronald Christensen
Albuquerque, New Mexico

November 12, 2016
March 30, 2019
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Chapter 1
Fundamentals

Three fundamental ideas in experimental design are replication, blocking, and ran-
domization. Replication is required so that we have a measure of the variability of
the observations. Blocking is used to reduce experimental variability. Blocking has
inspired a number of standard designs including randomized complete blocks, Latin
squares, balanced incomplete blocks, Youden squares, balanced lattice designs, and
partially balanced incomplete blocks. Randomly assigning treatments to experimen-
tal units gives one a philosophical basis for inferring that the treatments cause the
results observed in the experiment, cf. Peirce and Jastrow (1885) and Fisher (1935).

An extremely useful concept in experimental design is the use of treatments with
factorial structure. For example, if you are interested in the effect of two factors, say
the effect of alcohol and the effect of sleeping pills, rather than performing separate
experiments on each, you can incorporate both factors into the treatments of a single
experiment. Briefly, suppose we are interested in two levels of alcohol, say, a0 – no
alcohol and a1 – a standard dose of alcohol, and we are also interested in two levels
of sleeping pills, say, s0 – no sleeping pills and s1 – a standard dose of sleeping pills.
A factorial treatment structure involves forming 4 treatments, a0s0 – no alcohol, no
sleeping pills, a0s1 – no alcohol, sleeping pills, a1s0 – alcohol, no sleeping pills,
a1s1 – alcohol and sleeping pills. A factorial treatment structure obtains when the
treatments in an experiment consist of all possible combinations of the levels of
some factors.

The point of using factorial treatment structures is that they allow one to look
very efficiently at the main effects of the factors but also that they allow examination
of interactions between the factors. If there is no interaction, i.e., if the effect of
alcohol does not depend on whether or not the subject has taken sleeping pills, you
can learn as much from running one experiment using factorial treatment structure
on, say, 20 people as you can from two separate experiments, one for alcohol and one
for sleeping pills, each involving 20 people. This is a 50% savings in the number
of observations needed. Second, if interaction exists, i.e., if the effect of alcohol
depends on the amount of sleeping pills a person has taken, you can study that
interaction in an experiment with factorial treatment structure but you cannot study
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2 1 Fundamentals

interaction in an experiment that was solely devoted to looking at the effects of
alcohol.

An experiment such as this involving two factors each at two levels is referred to
as a 2×2 = 22 factorial treatment structure. Note that 4 is the number of treatments
we end up with. If we had 3 levels of sleeping pills, it would be a 2× 3 factorial,
thus giving 6 treatments. If we had three levels of both alcohol and sleeping pills
it would be a 3× 3 = 32. If we had three factors, say, alcohol, sleeping pills, and
benzedrine each at 2 levels, we would have a 2×2×2 = 23 structure. If each factor
were at 3 levels, say, none of the drug, a standard dose, and twice the standard dose,
and we made up our treatments by taking every combination of the levels of each
factor, we would get 3×3×3 = 33 = 27 treatments. More generally, if we have f
factors each at p levels we have a p f factorial treatment structure.

Christensen (1996) and (2015) contain more information on the fundamentals
of experimental design including more on factorial treatment structures and more
on replication, blocking, and randomization. There are lots of excellent books on
Experimental Design many of which are cited in the references above.

EXAMPLE 1.0.1. Hare (1988) reported results on an experiment with five fac-
tors each at two levels for 25 = 32 factor combinations (treatments). The issue was
excessive variability in the taste of a dry soup mix. The source of variability was
identified as a particular component of the mix called the ‘intermix’ containing fla-
vorful ingredients such as salt and vegetable oil. Intermix is made in a large mixer.
Factor A is the number of ports for adding vegetable oil to the mixer. This was set
at either 1 (a0) or 3 (a1). Factor B is the temperature of the mixer. The mixer can
be cooled by circulating water through the mixer jacket (b0) or the mixer can be
used at room temperature (b1). Factor C is the mixing time, 60 seconds (c0) or 80
seconds (c1). Factor D is the size of the intermix batch, either 1500 pounds (d0) or
2000 pounds (d1). Factor E is the delay between making the intermix and using it in
the final soup mix. The delay is either 1 day (e0) or 7 days (e1). The experimenters
chose to collect data on only 16 of the 32 treatments. We will examine the data in
Chapters 2 and 5.

In general, I contend that if interaction exists, it is the only thing worth looking
at. In general, if interaction exists, main effects have no useful meaning. In partic-
ular, you could have an interaction between two factors, say alcohol and sleeping
pills, where responses are low when you use both alcohol and sleeping pills or use
neither alcohol nor sleeping pills but responses are high when you use either one
but not the other. In such a case, neither the main effect for alcohol nor the main
effect for sleeping pills may look important, because their average effects may be
unimportant, despite the importance of knowing the exact combination of alcohol
and sleeping pill used. When looking at more than two factors, interactions get even
more complicated. For example, the nature of an alcohol by sleeping pill interaction
could change depending on one’s use of benzedrine. Christensen et al. (2010, Sub-
section 7.4.7) and Christensen (2015, Section 9.9) contain extensive discussions of
interaction.
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To examine all the possible interactions, one needs to look at all of the treatments
defined by the factorial structure. To draw valid conclusions about the interactions,
one needs replications from which to estimate variability. When the number of treat-
ments is large, that can be expensive. If you want to save money, you have to give
something up. Obviously, you should give up the things that you think are unlikely
to be important.

Screening designs are used to look at many factors using relatively few obser-
vations; fewer observations than the number of treatments in a factorial structure.
Screening designs are based on the hope that most potential interactions will be
unimportant.

Historically, screening designs were first developed for f factors each at 2 lev-
els, i.e. 2 f designs. These allowed for consideration of some interactions and for
blocking. In fact, it would seem that the ideas were first developed as methods for
dividing the treatments into blocks. For example, with 24 = 16 drug treatments be-
ing applied to rats, one might want to divide the treatments into groups of four so
that they can be applied to a block of four rats from a single litter. Once you have
the treatments divided into blocks, an easy leap recognizes that a single block can
be used as a screening design. We consider such designs in Chapter 2. Chapter 3
extends the results of Chapter 2 for f factors each at p levels, i.e. p f designs, where
p is a prime number. Chapter 4 considers designs involving factors with different
numbers of levels. Chapter 5 discusses screening designs in general with emphasis
on Plackett-Burman designs and Definitive Screening Designs. Chapter 6 examines
response surface designs and their analysis. Chapter 7 discusses the recovery of
interblock information in balanced incomplete block designs.

1.1 Notation

The notation follows that of my other books. An r× c matrix of 1s is denoted Jc
r

with Jr ≡ J1
r and because n typically denotes the number of observation, J ≡ Jn.





Chapter 2
2 f Factorial Systems

A version of this material appeared in the first edition of ANREG. It references
ANREG-I frequently: www.stat.unm.edu/˜fletcher/anreg.pdf.

The use of treatment structures involving f factors each at 2 levels, i.e., 2 f facto-
rials, has been popular in agriculture from early in the 20th century and became very
popular in industrial applications during the last quarter of the 20th century. In par-
ticular, these can make for useful screening experiments in which one seeks to find
out which of many potential factors have important effects on some process. Even
when f is of moderate size, the number of treatments involved can get large in a
hurry. For example, 25 = 32 and 210 = 1024. With 1024 treatments, we probably do
not want to look at all of them, it is just too much work. Fractional factorial designs
have been developed that allow us to look at a subset of the 1024 treatments while
still being able to isolate the most important effects. With only, say, 32 treatments,
we may be willing to look at all of those treatments, perhaps even replicate the treat-
ments. But if we want to use blocking to reduce variability, we may be incapable
of finding blocks that allow us to apply 32 treatments within each block, hence we
may be incapable of constructing reasonable randomized complete block designs.
Confounding is a method for creating blocks of sizes smaller than 32 that still allow
us to examine the important effects. Most books on experimental design including
Christensen (1996, Chapter 17) discuss 2 f factorials in detail.

Confounding is a method of designing a factorial experiment that allows incom-
plete blocks, i.e., blocks of smaller size than the full number of factorial treatments.
In fractional replication an experiment has fewer observations than the full facto-
rial number of treatments. A basic idea in experimental design is ensuring adequate
replication to provide a good estimate of error. Fractional replication not only fails
to get replication – it fails to provide even an observation on every factor combi-
nation. Not surprisingly, fractional replications present new challenges in analyzing
data.

In this chapter, we will informally use concepts of modular arithmetic, e.g.,
7 mod 5 = 2 where 2 is the remainder when 7 is divided by 5. Modular arithmetic
is crucial to more advanced discussions of confounding and fractional replication,
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6 2 2 f Factorial Systems

but its use in this chapter will be minimal. To help minimize modular arithmetic, we
will refer to 0 as an even number.

In a 2 f experiment, the treatments have 2 f − 1 degrees of freedom and they are
broken down into 2 f −1 effects each with one degree of freedom.

EXAMPLE 2.0.1. A 24 factorial structure
Consider a 24 experiment with factors A, B, C, D at levels a0, a1, b0, b1, c0, c1,
and d0, d1, respectively. There are 24 = 16 treatment combinations, so there are 15
degrees of freedom for treatments. The sources in the ANOVA table can be broken
down as follows

Source df Source df Source df
A 1 AB 1 ABC 1
B 1 AC 1 ABD 1
C 1 AD 1 ACD 1
D 1 BC 1 BCD 1

BD 1 ABCD 1
CD 1

Since each effect has a single degree of freedom, it can be identified with a contrast
among the 16 treatments. 2

2.0.1 Effect contrasts in 2 f factorials

The simplest way to understand confounding and fractional replication in 2 f sys-
tems is in terms of contrasts corresponding to the different effects. As was just seen,
each effect in a 2 f has one degree of freedom and thus each effect corresponds to a
single contrast. We now review the correspondence between contrasts and factorial
effects.

EXAMPLE 2.0.2. A 22 experiment
Consider a 22 experiment with factors A and B at levels a0, a1 and b0, b1, respec-
tively. The coefficients of the contrasts that correspond to the main effects and in-
teraction are given below

Treatment A B AB
a0b0 1 1 1
a0b1 1 −1 −1
a1b0 −1 1 −1
a1b1 −1 −1 1

Christensen (1996, Example 11.1.1) examined a 22 experiment and showed that
these contrasts give the same sums of squares as the analysis of variance table meth-
ods for obtaining the sums of squares for A, B, and AB.



2 2 f Factorial Systems 7

The contrast coefficients are determined by the subscripts in the treatment com-
binations. The A contrast coefficient is 1 for any treatment that has an a subscript
of 0 and −1 for any treatment that has an a subscript of 1. In other words, the A
contrast is 1 for a0b0 and a0b1 and −1 for a1b0 and a1b1. Similarly the B contrast is
1 for any treatment that has a b subscript of 0 and−1 for any treatment that has an b
subscript of 1, i.e., a0b0 and a1b0 have coefficients of 1 and a0b1 and a1b1 have co-
efficients of −1. The AB contrast involves both factors, so the subscripts are added.
Treatments with an even total, 0 or 2, get contrast coefficients of 1, while treatments
with an odd total for the subscripts get −1. Thus a0b0 and a1b1 get 1s and a0b1 and
a1b0 get −1s. Actually, the key is modular arithmetic. For 2 f factorials, the contrast
coefficients are determined by an appropriate sum of the subscripts modulo 2. Thus
any sum that is an even number is 0 mod 2 and any odd sum is 1 mod 2. 2

EXAMPLE 2.0.3. A 23 experiment
Consider a 23 experiment with factors A, B, and C. The contrast coefficients for
main effects and interactions are given below.

Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b0c1 1 1 −1 1 −1 −1 −1
a0b1c0 1 −1 1 −1 1 −1 −1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c0 −1 1 1 −1 −1 1 −1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1
a1b1c1 −1 −1 −1 1 1 1 −1

Once again the contrast coefficients are determined by the subscripts of the treat-
ment combinations. The A contrast has 1s for a0s and −1s for a1s; similarly for B
and C. The AB contrast is determined by the sum of the a and b subscripts. The sum
of the a and b subscripts is even, either 0 or 2, for the treatments a0b0c0, a0b0c1,
a1b1c0, a1b1c1, so all have AB contrast coefficients of 1. The sum of the a and b sub-
scripts is 1 for the treatments a0b1c0, a0b1c1, a1b0c0, a1b0c1, so all have coefficients
of −1. The AC contrast is determined by the sum of the a and c subscripts and the
BC contrast is determined by the sum of the b and c subscripts. The ABC contrast
is determined by the sum of the a, b, and c subscripts. The sum of the a, b, and c
subscripts is even, either 0 or 2, for the treatments a0b0c0, a0b1c1, a1b0c1, a1b1c0,
so all have ABC coefficients of 1. The sum of the a, b, and c subscripts is odd, 1 or
3, for the treatments a0b0c1, a0b1c0, a1b0c0, a1b1c1, so all have coefficients of −1.

2

EXAMPLE 2.0.4. A 24 experiment
Consider a 24 experiment with factors A, B, C, and D. The contrast coefficients
are given in Tables 2.1 and 2.2. Again the contrast coefficients are determined by
the subscripts of the treatments. The A, B, C, and D contrasts are determined by
the subscripts of a, b, c, and d, respectively. The AB, AC, AD, BC, BD, and CD
contrasts are determined by the sums of the appropriate pair of subscripts. The ABC,
ABD, ACD, and BCD contrasts are determined by the sum of the three appropriate
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subscripts. The coefficients of the ABCD contrast are determined by the sum of all
four subscripts. As before, the contrast coefficient is 1 if the appropriate value or
sum equals 0 mod 2 (is even) and is −1 if it equals 1 mod 2 (is odd). 2

Table 2.1 Main effect and second-order interaction contrast coefficients for a 24 factorial.

Treatment A B C D AB AC AD BC BD CD
a0b0c0d0 1 1 1 1 1 1 1 1 1 1
a0b0c0d1 1 1 1 −1 1 1 −1 1 −1 −1
a0b0c1d0 1 1 −1 1 1 −1 1 −1 1 −1
a0b0c1d1 1 1 −1 −1 1 −1 −1 −1 −1 1
a0b1c0d0 1 −1 1 1 −1 1 1 −1 −1 1
a0b1c0d1 1 −1 1 −1 −1 1 −1 −1 1 −1
a0b1c1d0 1 −1 −1 1 −1 −1 1 1 −1 −1
a0b1c1d1 1 −1 −1 −1 −1 −1 −1 1 1 1
a1b0c0d0 −1 1 1 1 −1 −1 −1 1 1 1
a1b0c0d1 −1 1 1 −1 −1 −1 1 1 −1 −1
a1b0c1d0 −1 1 −1 1 −1 1 −1 −1 1 −1
a1b0c1d1 −1 1 −1 −1 −1 1 1 −1 −1 1
a1b1c0d0 −1 −1 1 1 1 −1 −1 −1 −1 1
a1b1c0d1 −1 −1 1 −1 1 −1 1 −1 1 −1
a1b1c1d0 −1 −1 −1 1 1 1 −1 1 −1 −1
a1b1c1d1 −1 −1 −1 −1 1 1 1 1 1 1

Table 2.2 Higher order interaction contrast coefficients for a 24 factorial.

Treatment ABC ABD ACD BCD ABCD
a0b0c0d0 1 1 1 1 1
a0b0c0d1 1 −1 −1 −1 −1
a0b0c1d0 −1 1 −1 −1 −1
a0b0c1d1 −1 −1 1 1 1
a0b1c0d0 −1 −1 1 −1 −1
a0b1c0d1 −1 1 −1 1 1
a0b1c1d0 1 −1 −1 1 1
a0b1c1d1 1 1 1 −1 −1
a1b0c0d0 −1 −1 −1 1 −1
a1b0c0d1 −1 1 1 −1 1
a1b0c1d0 1 −1 1 −1 1
a1b0c1d1 1 1 −1 1 −1
a1b1c0d0 1 1 −1 −1 1
a1b1c0d1 1 −1 1 1 −1
a1b1c1d0 −1 1 1 1 −1
a1b1c1d1 −1 −1 −1 −1 1

Most books on experimental design contain a discussion of confounding and
fractional replication for 2 f treatment structures. Daniel (1976), Box, Hunter, and
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Hunter (1978), and Box and Draper (1987) are excellent books that focus on indus-
trial applications.

2.1 Confounding

Confounding involves creating blocks that are smaller than the total number of treat-
ments. Thus, confounding is a method for arriving at an incomplete block design.
However, we will see that the analysis of confounding designs remains simple. For
example, the analysis is considerably simpler than the balanced incomplete block
analysis in Christensen (1996, Section 16.2).

EXAMPLE 2.1.1. Confounding in a 23 experiment
Suppose we have three drugs that we wish to investigate simultaneously. Each drug
is a factor; the levels are either no dose of the drug or a standard dose. There are 23 =
8 treatment combinations. The drugs will be applied to a certain type of animal. To
reduce variation, we may want to use different litters of animals as blocks. However,
it may be difficult to find litters containing 8 animals. On the other hand, litters of
size 4 may be readily available. In such a case, we want to use four treatments on
one litter and the other four treatments on a different litter. There are 70 ways to
do this. We need a systematic method of choosing the treatments for each litter that
allows us to perform as complete an analysis as possible.

To examine the application of the treatments from a 23 factorial in blocks of size
4, recall that the 23 has 8 treatments, so 1/2 the treatments will go in each block.
The table of contrast coefficients for a 23 factorial is repeated below.

Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b0c1 1 1 −1 1 −1 −1 −1
a0b1c0 1 −1 1 −1 1 −1 −1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c0 −1 1 1 −1 −1 1 −1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1
a1b1c1 −1 −1 −1 1 1 1 −1

We need to divide the treatments into two groups of size 4 but every contrast does
this. The two groups of four are those treatments that have contrast coefficients
of 1 and those that have −1. Thus we can use any contrast to define the blocks.
Unfortunately, the contrast we choose will be lost to us because it will be confounded
with blocks. In other words, we will not be able to tell what effects are due to blocks
(litters) and what effects are due to the defining contrast. We choose to define blocks
using the ABC contrast because it is the highest order interaction. Typically, it is the
least painful to lose. The ABC contrast defines two groups of treatments
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ABC coefficients
ABC(1) ABC(−1)
a0b0c0 a0b0c1
a0b1c1 a0b1c0
a1b0c1 a1b0c0
a1b1c0 a1b1c1

Each group of treatments is used in a separate block. The four treatments labeled
ABC(1) will be randomly assigned to the animals in one randomly chosen litter
and the four treatments labeled ABC(−1) will be randomly assigned to the animals
in another litter. Recall that all information about ABC has been lost because it is
confounded with blocks.

As indicated earlier, we could choose any of the contrasts to define the blocks.
Typically, we use high order interactions because they are the effects that are most
difficult to interpret and thus the most comfortable to live without. For illustrative
purposes, we also give the blocks defined by the BC contrast.

BC coefficients
BC(1) BC(−1)
a0b0c0 a0b0c1
a0b1c1 a0b1c0
a1b0c0 a1b0c1
a1b1c1 a1b1c0

If the subjects of the drug study are humans, it will be difficult to obtain ‘litters’
of four, but it may be practical to use identical twins. We now have 8 treatments
that need to be divided into blocks of 2 units. Each block will consist of 1/4 of the
treatments. Since each contrast divides the treatments into two groups of four, if we
use two contrasts we can divide each group of four into 2 groups of two. We take
as our first contrast ABC and as our second contrast AB. The four treatments with
ABC coefficients of 1 are a0b0c0, a0b1c1, a1b0c1, and a1b1c0. These can be divided
into 2 groups of two, depending on whether their AB coefficient is 1 or −1. The
two groups are a0b0c0, a1b1c0 and a0b1c1, a1b0c1. Similarly, the ABC(−1) group,
a0b0c1, a0b1c0, a1b0c0, and a1b1c1 can be divided into a0b0c1, a1b1c1 and a0b1c0,
a1b0c0 based on the AB coefficients. In tabular form we get

ABC(1) ABC(−1)
AB(1) AB(−1) AB(1) AB(−1)
a0b0c0 a1b0c1 a0b0c1 a1b0c0
a1b1c0 a0b1c1 a1b1c1 a0b1c0

To get blocks of size 2, we confounded two contrasts, ABC and AB. Thus we
have lost all information on both of these contrasts. It turns out that we have also
lost all information on another contrast, C. Exactly the same four blocks would be
obtained if we confounded ABC and C.

ABC(1) ABC(−1)
C(1) C(−1) C(−1) C(1)

a0b0c0 a1b0c1 a0b0c1 a1b0c0
a1b1c0 a0b1c1 a1b1c1 a0b1c0
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Similarly, if we had confounded AB and C, we would obtain the same four blocks.
Note that with four blocks, there are three degrees of freedom for blocks. Each
contrast has one degree of freedom, so there must be three contrasts confounded
with blocks.

Given the two defining contrasts ABC and AB, there is a simple way to identify
the other contrast that is confounded with blocks. The confounding is determined
by a form of modular multiplication where any even power is treated as 0; thus
A2 = A0 = 1 and B2 = 1. Multiplying the defining contrasts gives

ABC×AB = A2B2C =C,

so C is also confounded with blocks.
Typically, we want to retain information on all main effects. The choice of ABC

and AB for defining contrasts is poor because it leads to complete loss of information
on the main effect C. We would do better to choose AB and BC. In that case, the other
confounded contrast is

AB×BC = AB2C = AC,

which is another two-factor interaction. Using this confounding scheme, we get
information on all main effects. The blocking scheme is given below.

AB(1) AB(−1)
BC(1) BC(−1) BC(1) BC(−1)
a0b0c0 a0b0c1 a1b0c0 a1b0c1
a1b1c1 a1b1c0 a0b1c1 a0b1c0

2

EXAMPLE 2.1.2. Confounding in a 24 experiment
The ABCD contrast was given in Table 2.2. Dividing the treatments into two groups
based on their ABCD coefficients defines two blocks of size 8,

ABCD coefficients
ABCD(1) ABCD(−1)
a0b0c0d0 a0b0c0d1
a0b0c1d1 a0b0c1d0
a0b1c0d1 a0b1c0d0
a0b1c1d0 a0b1c1d1
a1b0c0d1 a1b0c0d0
a1b0c1d0 a1b0c1d1
a1b1c0d0 a1b1c0d1
a1b1c1d1 a1b1c1d0

To define four blocks of size 4 requires choosing two defining contrasts. To obtain
four blocks, ABCD is not a good choice for a defining contrast because if we choose
the second contrast as a three-factor effect, we also confound a main effect, e.g.,

ABCD×ABC = A2B2C2D = D.

Similarly, if we choose the second contrast as a two-factor effect, we lose another
two-factor effect, e.g.,
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ABCD×AB = A2B2CD =CD

However, if we choose two three-factor effects as defining contrasts, we lose only
one two-factor effect, e.g.,

ABC×BCD = AB2C2D = AD.

The four blocks for the confounding scheme based on ABC and BCD are given
below.

ABC(1) ABC(−1)
BCD(1) BCD(−1) BCD(1) BCD(−1)
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1

The treatment groups can be checked against the contrasts given in Table 2.2.
If we wanted blocks of size 2 we would need three defining contrasts, say ABC,

BCD, and ACD. Blocks of size 2 imply the existence of 8 blocks, so 7 degrees of
freedom must be confounded with blocks. To obtain the other confounded contrasts,
multiply each pair of defining contrasts and multiply all three defining contrasts
together. Multiplying the pairs gives ABC×BCD = AD, ABC×ACD = BD, and
BCD×ACD = AB. Multiplying all three together gives ABC×BCD×ACD = AD×
ACD =C. 2

Consider the problem of creating 16 blocks for a 2 f experiment. Since 16 =
24, we need 4 defining contrasts. With 16 blocks there are 15 degrees of freedom
for blocks, hence 15 contrasts confounded with blocks. Four of these 15 are the
defining contrasts. Multiplying distinct pairs of defining contrasts gives 6 implicitly
confounded contrasts. There are 4 distinct triples that can be made from the defining
contrasts; multiplying the triples gives 4 more confounded contrasts. Multiplying all
four of the defining contrasts gives the fifteenth and last confounded contrast.

We now consider the analysis of data obtained from a confounded 2 f design.

EXAMPLE 2.1.3. Analysis of a 23 in blocks of four with replication
Yates (1935) presented data on a 23 agricultural experiment involving yields of peas
when various fertilizers were applied. The three factors were a nitrogen fertilizer
(N), a phosphorous fertilizer (P), and a potash fertilizer (K). Each factor consisted
of two levels, none of the fertilizer and a standard dose. It was determined that ho-
mogenous blocks of land were best obtained by creating six squares each contain-
ing four plots. Thus we have 23 = 8 treatments, blocks of size 4, and six available
blocks. By confounding one treatment contrast, we can obtain blocks of size 4. With
six blocks, we can have 3 replications of the treatments. The confounded contrast
was chosen to be the NPK interaction, so the treatments in one block are n0 p0k0,
n1 p1k0, n1 p0k1, and n0 p1k1 and the treatments in the other block are n1 p0k0, n0 p1k0,
n0 p0k1, and n1 p1k1. The data are given in Table 2.3. The table displays the original
geographical layout of the experiment with lines identifying blocks and replications.
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Each pair of rows in the table are a replication with the left and right halves identi-
fying blocks. In each replication, the set of four treatments to be applied to a block
is randomly decided and then within each block the four treatments are randomly
assigned to the four plots.

Table 2.3 Yates’s confounded pea data.

n0 p0k0(56.0) n1 p1k0(59.0) n0 p0k1(55.0) n1 p1k1(55.8)
n0 p1k1(53.2) n1 p0k1(57.2) n1 p0k0(69.5) n0 p1k0(62.8)
n0 p1k1(48.8) n0 p0k0(51.5) n0 p1k0(56.0) n1 p1k1(58.5)
n1 p0k1(49.8) n1 p1k0(52.0) n0 p0k1(55.5) n1 p0k0(59.8)
n0 p1k0(44.2) n1 p1k1(48.8) n1 p0k1(57.0) n1 p1k0(62.8)
n0 p0k1(45.5) n1 p0k0(62.0) n0 p0k0(46.8) n0 p1k1(49.5)
Three replications with NPK confounded in each.

The analysis of these data is straightforward; it follows the usual pattern. The
mean square and sum of squares for blocks is obtained from the six block means.
Each block mean is the average of 4 observations. The sum of squares for a main
effect, say, N, can be obtained from the two nitrogen means, each based on 12 ob-
servations, or equivalently, it can be obtained from the contrast

Treatment N
n0 p0k0 1
n0 p0k1 1
n0 p1k0 1
n0 p1k1 1
n1 p0k0 −1
n1 p0k1 −1
n1 p1k0 −1
n1 p1k1 −1

applied to the 8 treatment means which are obtained by averaging over the 3 repli-
cations. The contrast for NPK was confounded with blocks, so it should not appear
in the analysis; the one degree of freedom for NPK is part of the five degrees of
freedom for blocks.

The complete analysis of variance is given in Table 2.4. It is the result of fitting
the model

yhi jk = µ +βh +νi +ρ j +κk +(νρ)i j +(νκ)ik +(ρκ) jk + εhi jk (1)

where βh, h = 1, . . . ,6 indicates a block effect and ν , ρ , and κ indicate effects re-
lating to N, P, and K respectively. Every effect in the analysis of variance has one
degree of freedom, so there is no need to investigate contrasts beyond what is given
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Table 2.4 Analysis of variance.

Source df SS MS F P
Blocks 5 343.30 68.66 4.45 0.016
N 1 189.28 189.28 12.26 0.004
P 1 8.40 8.40 0.54 0.475
K 1 95.20 95.20 6.17 0.029
NP 1 21.28 21.28 1.38 0.263
NK 1 33.13 33.13 2.15 0.169
PK 1 0.48 0.48 0.03 0.863
Error 12 185.29 15.44
Total 23 876.36

in the ANOVA table. The only effects that appear significant are those for N and
K. The evidence for an effect due to the nitrogen-based fertilizer is quite clear. The
means for the nitrogen treatments are

N n0 n1
52.067 57.683

so the addition of nitrogen increases yields. The evidence for an affect due to potash
is somewhat less clear. The means are

K k0 k1
56.867 52.883

Surprisingly (to a city boy like me), application of potash actually decreases pea
yields.

Fitting the analysis of variance model (2.1.1) provides residuals that can be eval-
uated in the usual way. Figures 2.1 and 2.2 contain residual plots. Except for some
slight curvature at the very ends of the normal plot, the residuals look good. Remem-
ber that these are plots of the residuals, not the standardized residuals, so residual
values greater than 3 do not necessarily contain a suggestion of outlying points. 2

Computer commands

R commands appear in the document mentioned in the preface.
Minitab 16’s ‘glm’ command gives a simple way of obtaining the analysis of

these data. The glm command does not recognize the orthogonality in the design,
so it reports two types of sums of squares for each term. However, the orthogo-
nality ensures that the values are identical for the two types. This particular analysis
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Fig. 2.2 Plot of residuals versus predicted values, pea data.
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Fig. 2.3 Normal plot of residuals, pea data, W ′ = 0.981.
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could also be run using the ‘ancova’ command, but the other analyses in this chapter
require glm.

MTB > names c1 ’y’ c2 ’Blocks’ c3 ’N’ c4 ’P’ c5 ’K’
MTB > glm c1=c2 c3|c4|c5 - c3*c4*c5;
SUBC> resid c10;
SUBC> fits c11;
SUBC> means c3 c5.

I became unhappy with how Minitab 18 dealt with unbalanced ANOVAs. I have
not yet examined Minitab 19.

2.1.1 Split plot analysis

EXAMPLE 2.1.4. Split plot analysis of a 23 in blocks of four with replication
Example 2.1.3 gives the standard analysis of confounded data with replications.
However, more information can be extracted. Yates’ design is very similar to a split
plot design. We have three replications and we can think of each block as a whole
plot. The whole plots are randomly assigned one of two treatments but the treat-
ments have a peculiar structure. One ‘treatment’ applied to a whole plot consists
of having the NPK(1) treatments assigned to the whole plot and the other ‘treat-
ment’ is having the NPK(−1) treatments assigned to a whole plot. The one degree
of freedom for whole plot treatments is due to the difference between these sets
of treatments. This difference is just the NPK interaction. The analysis in Exam-
ple 2.1.3 is the subplot analysis and remains unchanged when we consider applying
a split plot analysis to the data. Recall that in a subplot analysis each whole plot is
treated like a block; that is precisely what we did in Example 2.1.3. We need only
perform the whole plot analysis to complete the split plot analysis.

The 6 blocks in Example 2.1.3 are now considered as whole plots. The 5 degrees
of freedom for blocks are the 5 degrees of freedom total for the whole plot analysis.
These 5 degrees of freedom can be decomposed into 2 degrees of freedom for com-
paring the three replications, 1 degree of freedom for NPK interaction, i.e., whole
plot treatments, and 2 degrees of freedom for replication by whole plot treatment in-
teraction. The replication by whole plot treatment interaction is just the error term
for the whole plot analysis. Note that in this model, rather than thinking about hav-
ing 6 fixed block effects, we have 3 fixed replication effects, a fixed NPK effect, and
a random error term that distinguishes the blocks within the replications.

The necessary means for the whole plot analysis are given below.
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N = 4 NPK level
Rep. NPK(1) NPK(−1) Rep. means

1 56.350 60.775 58.5625
2 50.525 57.450 53.9875
3 54.025 50.125 52.0750

NPK means 53.633̄ 56.116̄ 54.8750

The three rep. means are averages over the 8 observations in each replication. The
mean square for replications is obtained in the usual way as 8 times the sample
variance of the rep. means. The mean square for NPK interaction is obtained from
the NPK(1) mean and the NPK(−1) mean. Each of these means is averaged over 12
observations. The mean square for NPK is 12 times the sample variance of the NPK
means. The interaction (whole plot error) sum of squares is found by subtracting
the NPK and replication sums of squares from the blocks sum of squares found in
Example 2.1.3. The whole plot analysis of variance is given in Table 2.5. There is
no evidence for an NPK interaction.

Table 2.5 Whole plot analysis of variance.

Source df SS MS F
Reps 2 177.80 88.90 1.38
NPK 1 37.00 37.00 0.58
Error 2 128.50 64.25
Total 5 343.30 68.66

In this experiment, there are not enough whole plots to provide a very powerful
test for the NPK interaction. There are only 2 degrees of freedom in the denominator
of the F test. If we had 5 replications of a 23 in blocks of size 2 rather than blocks
of size 4, i.e., if we confounded three contrasts with blocks, the whole plot analysis
would have 4 degrees of freedom for reps., three 1 degree of freedom effects for the
confounded contrasts, and 12 degrees of freedom for whole plot error. The 12 error
degrees of freedom come from pooling the rep. by effect interactions. 2

2.1.2 Partial confounding

In Example 2.1.3, we considered a 23 in blocks of 4 with three replications. The
same contrast NPK was confounded in all replications, so, within the subplot anal-
ysis, all information was lost on the NPK contrast. Something must be lost when a
treatment effect is confounded with blocks, but with multiple replications it is not
necessary to give up all the information on NPK. Consider a 23 experiment with
factors A, B, and C that is conducted in blocks of size 4 with two replications. It
would be natural to confound ABC with blocks. However, instead of confounding
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ABC with blocks in both replications, we could pick another contrast, say, BC, to
confound in the second replication. The design is given below.

Replication 1 Replication 2
ABC(1) ABC(−1) BC(1) BC(−1)
a0b0c0 a0b0c1 a0b0c0 a0b0c1
a0b1c1 a0b1c0 a0b1c1 a0b1c0
a1b0c1 a1b0c0 a1b0c0 a1b0c1
a1b1c0 a1b1c1 a1b1c1 a1b1c0

In the first replication we give up all the information on ABC but retain information
on BC. In the second replication we give up all the information on BC but retain
information on ABC. Thus we have partial information available on both ABC and
BC.

The process of confounding different contrasts in different replications is known
as partial confounding because contrasts are only partially confounded with blocks.
In some replications they are confounded but in others they are not. Thus partial
information is available on contrasts that are partially confounded.

When more than one confounded contrast is needed to define blocks of an appro-
priate size, some contrasts can be totally confounded, while others are only partially
confounded. We now consider an example using these ideas.

EXAMPLE 2.1.5. We again analyze pea yield data with the same 23 fertilizer
treatments considered in Examples 2.1.3 and 2.1.4. This analysis involves blocks of
size 2 with two replications. Both replications have NPK confounded, but the first
rep. has PK (and thus N) confounded, while the second has NK (and thus P) con-
founded. The data are given in Table 2.6 with lines used to identify blocks. Again,
pairs of rows denote replications.

Table 2.6 Pea data with partial confounding.

n1 p0k0(59.8) n0 p0k1(55.5) n1 p0k1(57.2) n0 p1k1(53.2)
n1 p1k1(58.5) n0 p1k0(56.0) n1 p1k0(59.0) n0 p0k0(56.0)
n0 p1k1(49.5) n0 p0k0(46.8) n0 p1k0(62.8) n1 p0k0(69.5)
n1 p1k0(62.8) n1 p0k1(57.0) n1 p1k1(55.8) n0 p0k1(55.0)
The first replication has NPK, PK, and N confounded.
The second replication has NPK, NK, and P confounded.

The mean square and sum of squares for blocks is obtained from the eight block
means. Each of these means is the average of 2 observations. The sums of squares
for error is obtained by subtraction. The sums of squares for treatment effects are
more complicated. We use contrasts to compute them. First, NPK is confounded
in both replications, so no information is available on it. The effects of K and NP
are not confounded in either replication, so they can be estimated from both. The
contrasts, means, and sums of squares are given below.
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Treatment K NP Means
n0 p0k0 1 1 51.40
n0 p0k1 −1 1 55.25
n0 p1k0 1 −1 59.40
n0 p1k1 −1 −1 51.35
n1 p0k0 1 −1 64.65
n1 p0k1 −1 −1 57.10
n1 p1k0 1 1 60.90
n1 p1k1 −1 1 57.15
SS 60.0625 15.210

The sum of squares for K is

SS(K) =
[−15.50]2

8/2
= 60.0625

where −15.50 is the estimated contrast, 8 is the sum of the squared contrast coeffi-
cients, and the means are averages of 2 observations, one from each replication.

The effects of N and PK are confounded in the first replication but P and NK are
not. Thus P and NK can be evaluated from the first replication.

Treatment P NK Rep. 1
n0 p0k0 1 1 56.0
n0 p0k1 1 −1 55.5
n0 p1k0 −1 1 56.0
n0 p1k1 −1 −1 53.2
n1 p0k0 1 −1 59.8
n1 p0k1 1 1 57.2
n1 p1k0 −1 −1 59.0
n1 p1k1 −1 1 58.5
SS 0.405 0.005

The sum of squares for P is

SS(P) =
[−1.8]2

8/1
= 0.405

where−1.8 is the estimated contrast and the treatment ‘means’ used in the contrasts
are just the observations from the first replication.

Note that the sums of squares for the partially confounded contrasts involve a
multiplier of 1, because they are averages of one observation, rather than the mul-
tiplier of 2 that is used for the contrasts that have full information. This is the price
paid for partial confounding. An estimated contrast with full information would
have a sum of squares that is twice as large as the same estimated contrast that is
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confounded in half of the replications. This sort of thing happens generally when
using partial confounding but the size of the multiplicative effect depends on the ex-
act experimental design. In this example the factor is 2 because the sample sizes of
the means are twice as large for full information contrasts as for partial information
contrasts.

Similarly, the effects of N and PK can be obtained from the second replication
but not the first.

Treatment N PK Rep. 2
n0 p0k0 −1 −1 46.8
n0 p0k1 −1 1 55.0
n0 p1k0 −1 1 62.8
n0 p1k1 −1 −1 49.5
n1 p0k0 1 −1 69.5
n1 p0k1 1 1 57.0
n1 p1k0 1 1 62.8
n1 p1k1 1 −1 55.8
SS 120.125 32.000

The analysis of variance table is given in Table 2.7. Too much blocking has been
built into this experiment. The F statistic for blocks is only 0.85, so the differences
between blocks are not as substantial as the error. The whole point of blocking is
that the differences between blocks should be greater than error so that by isolating
the block effects we reduce the experimental error. The excessive blocking has also
reduced the degrees of freedom for error to 2, thus ensuring a poor estimate of the
variance. A poor error estimate reduces power; it is difficult to establish that effects
are significant. For example, the F statistic for N is 4.92; this would be significant at
the 0.05 level if there were 11 degrees of freedom for error, but with only 2 degrees
of freedom the P value is just 0.157. 2

Table 2.7 Analysis of variance.

Source df SS MS F P
Blocks 7 145.12 20.73 0.85 —
N 1 120.12 120.12 4.92 0.157
P 1 0.40 0.40 0.02 0.909
K 1 60.06 60.06 2.46 0.257
NP 1 15.21 15.21 0.62 0.513
NK 1 0.01 0.01 0.00 0.990
PK 1 32.00 32.00 1.31 0.371
Error 2 48.79 24.40
Total 15 421.72

In general, effects are evaluated from all replications in which they are not con-
founded. If we had 3 replications with NPK confounded in each and PK and N
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confounded only in the first, the sums of squares for N and PK would be based on
treatment means averaged over both rep. 2 and rep. 3.

Computer commands

When blocks are listed first in the model, the sequential sum of squares is appropri-
ate for blocks. R has no problem fitting this.

Minitab 16’s glm command can again provide the analysis, however, the column
with the block indices must appear immediately after the equals sign in the statement
of the glm model. Minitab provides both sequential and adjusted sums of squares.
For all effects other than blocks, these are the same.

MTB > names c1 ’Blocks’ c2 ’N’ c3 ’P’ c4 ’K’ c5 ’y’
MTB > glm c5=c1 c2|c3|c4 - c2*c3*c4

2.2 Fractional replication

Consider a chemical process in which there are seven factors that affect the pro-
cess. These could be percentages of four chemical components, temperature of the
reaction, choice of catalyst, and choice of different machines for conducting the
process. If all of these factors are at just two levels, there are 27 = 128 treatment
combinations. If obtaining data on a treatment combination is expensive, running
128 treatment combinations may be prohibitive. If there are just three levels for
each factor, there are 37 = 2187 treatment combinations. In fractional replication,
one uses only a fraction of the treatment combinations. Of course, if we give up the
full factorial, we must lose information in the analysis of the experiment. In frac-
tional replication the treatments are chosen in a systematic fashion so that we lose
only the higher-order interactions. (I, for one, do not look forward to trying to in-
terpret 6- and 7-factor interactions anyway.) To be more precise, we do not actually
give up the high order interactions, we give up our ability to distinguish them from
the main effects and lower order interactions. Effects are aliased with other effects.
The contrasts we examine involve both a main effect or lower order interaction and
some higher-order interactions. Of course we assume the high order interactions are
of no interest and treat the contrasts as if they involve only the main effects and
low order interactions. That is the whole point of fractional replication. While frac-
tional replication is of most interest when there are large numbers of factors, we will
illustrate the techniques with smaller numbers of factors.

EXAMPLE 2.2.1. A 1/2 rep. of a 23 experiment
We now examine the construction of a 1/2 replicate of a 23 factorial. The 23 has
8 treatments, so a 1/2 replicate involves 4 treatments. Recall the table of contrast
coefficients for a 23 factorial.
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Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b0c1 1 1 −1 1 −1 −1 −1
a0b1c0 1 −1 1 −1 1 −1 −1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c0 −1 1 1 −1 −1 1 −1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1
a1b1c1 −1 −1 −1 1 1 1 −1

Every contrast divides the treatments into two groups of four. We can use any con-
trast to define the 1/2 rep. We choose to use ABC because it is the highest order
interaction. The ABC contrast defines two groups of treatments

ABC coefficients
ABC(1) ABC(−1)
a0b0c0 a0b0c1
a0b1c1 a0b1c0
a1b0c1 a1b0c0
a1b1c0 a1b1c1

These are just the two blocks obtained when confounding a 23 into two blocks of
4. Each of these groups of four treatments comprises a 1/2 replicate. It is irrelevant
which of the two groups is actually used. These 1/2 replicates are referred to as
resolution III designs because the defining contrast involves three factors.

The 1/2 rep. involves only four treatments, so there can be at most three or-
thogonal treatment contrasts. All seven effects cannot be estimated. The aliasing of
effects is determined by the modular multiplication illustrated earlier. To determine
the aliases, multiply each effect by the defining contrast ABC. For example, to find
the alias of A, multiply

A×ABC = A2BC = BC

where any even power is treated as 0, so A2 = A0 = 1. Thus A and BC are aliased;
we cannot tell them apart; they are two names for the same contrast. Similarly,

BC×ABC = AB2C2 = A.

The aliasing structure for the entire 1/2 rep. based on ABC is given below.

Effect ×ABC Alias
A = BC
B = AC
C = AB
AB = C
AC = B
BC = A
ABC —

In this experiment, we completely lose any information about the defining contrast,
ABC. In addition, we cannot tell the main effects from the two-factor interactions. If
we had no interest in two-factor interactions, this design would be fine. Generally,
if there are only three factors each at two levels, there is little reason not to perform
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the entire experiment. As mentioned earlier, fractional replication is primarily of
interest when there are many factors so that even a fractional replication involves
many observations.

Another way to examine aliasing is by looking at the table of contrast coefficients
when we use only 1/2 of the treatments. We consider the 1/2 rep. in which the treat-
ments have ABC coefficients of 1. The contrasts, when restricted to the treatments
actually used, have the following coefficients:

Treatment A B C AB AC BC ABC
a0b0c0 1 1 1 1 1 1 1
a0b1c1 1 −1 −1 −1 −1 1 1
a1b0c1 −1 1 −1 −1 1 −1 1
a1b1c0 −1 −1 1 1 −1 −1 1

All of the columns other than ABC still define contrasts in the four treatment combi-
nations; each column has two 1s and two−1s. However, the contrast defined by A is
identical to the contrast defined by its alias, BC. In fact, this is true for each contrast
and its alias.

Consider now the choice of a different contrast to define the 1/2 rep. Instead
of ABC, we might choose AB. Again, we lose all information about the defining
contrast AB and we have aliases involving the other effects. The AB contrast defines
two groups of treatments

AB coefficients
AB(1) AB(−1)
a0b0c0 a0b1c0
a0b0c1 a0b1c1
a1b1c0 a1b0c0
a1b1c1 a1b0c1

Each of these groups of four treatments comprises a 1/2 replicate. Again, it is irrel-
evant which of the two groups is actually used. Both groups determine resolution II
designs because the defining contrast involves two factors.

The aliasing is determined by modular multiplication with the defining contrast
AB. To find the alias of A multiply

A×AB = A2B = B.

The alias of BC is
BC×AB = AB2C = AC.

The aliasing structure for the entire 1/2 rep. based on AB is given below.

Effect ×AB Alias
A = B
B = A
C = ABC
AB —
AC = BC
BC = AC
ABC = C
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With this 1/2 rep., we do not even get to estimate all of the main effects because A
is aliased with B. 2

EXAMPLE 2.2.2. A 1/4 replicate of a 24 experiment
In Example 2.1.2 we considered confounding ABC and BCD in a 24 experiment.
The four blocks are given below.

ABC(1) ABC(−1)
BCD(1) BCD(−1) BCD(1) BCD(−1)
a0b0c0d0 a0b0c0d1 a0b0c1d1 a0b0c1d0
a0b1c1d0 a0b1c1d1 a0b1c0d1 a0b1c0d0
a1b0c1d1 a1b0c1d0 a1b0c0d0 a1b0c0d1
a1b1c0d1 a1b1c0d0 a1b1c1d0 a1b1c1d1

With ABC and BCD defining the blocks,

ABC×BCD = AB2C2D = AD

is also confounded with blocks. Any one of these blocks can be used as a 1/4 repli-
cate of the 24 experiment. The smallest defining contrast is the two-factor effect AD,
so this 1/4 replicate is a resolution II design.

The aliasing structure of the 1/4 rep. must account for all three of the defining
contrasts. An effect, say A, is aliased with

A×ABC = A2BC = BC,

A×BCD = ABCD,

and
A×AD = A2D = D.

Thus we cannot tell main effects A from main effects D, from BC interaction, or from
ABCD interaction. After all, what do you expect when you take four observations to
learn about 16 treatments? Similar computations show that

B = AC =CD = ABD

and
C = AB = BD = ACD.

This is the complete aliasing structure for the 1/4 rep. There are 4 observations, so
there are 3 degrees of freedom for treatment effects. We can label these effects as A,
B, and C with the understanding that we cannot tell aliases apart, so we have no idea
if an effect referred to as A is really due, entirely or in part, to D, BC, or ABCD. 2

Fractional replication is primarily of value when you have large numbers of treat-
ments, require information only on low order effects, can assume that high order
effects are negligible, and can find a design that aliases low order effects with high
order effects.
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EXAMPLE 2.2.3. Fractional replication of a 28 experiment
A 28 experiment involves eight factors, A through H, and 256 treatments. It may be
impractical to take that many observations. Consider first a 1/8 = 2−3 replication.
This involves only 28−3 = 32 treatment combinations, a much more manageable
number than 256. A 1/8= 2−3 rep. requires 3 defining contrasts, say ABCD, EFGH,
and CDEF . Multiplying pairs of the defining contrasts and multiplying all three of
the contrasts give the other contrasts that implicitly define the 1/8 rep. The other
implicit defining contrasts are ABED, CDGH, ABCDEFGH, and ABGH. Note that
the smallest defining contrast has four terms, so this is a resolution IV design.

The aliases of an effect are obtained from multiplying the effect by all 7 of the
defining contrasts; e.g., for A the aliases are

A = A(ABCD) = A(EFGH) = A(CDEF) = A(ABED)

= A(CDGH) = A(ABCDEFGH) = A(ABGH)

or simplifying

A = BCD = AEFGH = ACDEF = BED = ACDGH = BCDEFGH = BGH.

With a resolution IV design, it is easily seen that main effects are only aliased with
three-factor and higher-order effects. A two-factor effect, say AB, has aliases

AB = AB(ABCD) = AB(EFGH) = AB(CDEF) = AB(ABED)

= AB(CDGH) = AB(ABCDEFGH) = AB(ABGH)

or simplifying

AB =CD = ABEFGH = ABCDEF = ED = ABCDGH =CDEFGH = GH.

Unfortunately, at least some two-factor effects are aliased with other two-factor ef-
fects in a resolution IV design.

If we had constructed a 1/4 replicate, we could have chosen the defining contrasts
in such a way that two-factor effects were only aliased with three-factor and higher-
order effects. For example, the defining contrasts ABCDE and DEFGH determine
such a design. The additional defining contrast is ABCDE(DEFGH) = ABCFGH.
The smallest defining effect involves 5 factors, so this has resolution V. In computing
aliases, a two-factor term is multiplied by a five-factor or greater term. The result
is at least a three-factor term. Thus two-factor effects are aliased with 3 or higher-
order effects. Similarly, main effects are aliased with 4 or higher-order effects. A
1/4 replicate of a 28 experiment can provide information on all main effects and
all two-factor interactions under the assumption of no 3 or higher-order interaction
effects. 2

As mentioned, the 1/4 replicate given above is known as a resolution V design
because the smallest defining contrast involved a five-factor interaction. As should
now be clear, in general, the resolution of a 2 f fractional replication is the order
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of the smallest defining contrast. To keep main effects from being aliased with one
another, one needs a resolution III or higher design. To keep both main effects and
two-factor effects from being aliased with one another, one needs a resolution V or
higher design.

2.2.1 Fractional replication with confounding

The two concepts of fractional replication and confounding can be combined in
designing an experiment. To illustrate fractional replication with confounding we
consider a subset of the 23 data in Table 2.6. The subset is given in Table 2.8. This
is the first half of the first replication in Table 2.6. The fractional replication is
based on NPK. All of the observations have NPK contrast coefficients of −1. The
confounding is based on PK. The first block has PK contrast coefficients of 1 and
the second block has PK contrast coefficients of −1.

Table 2.8 Pea data.

n1 p0k0(59.8) n0 p0k1(55.5)
n1 p1k1(58.5) n0 p1k0(56.0)

The fractional replication is based on NPK.
Confounding is based on PK.

The aliasing structure for the 1/2 rep. based on NPK is given below.

Effect ×NPK Alias
N = PK
P = NK
K = NP
NP = K
NK = P
PK = N
NPK —

Blocks are confounded with PK and PK is aliased with N, so N is also confounded
with blocks. With only 4 observations, we can compute sums of squares for only 3
effects. Ignoring the two-factor interactions, those effects are blocks, P, and K.

Perhaps the simplest way to perform the analysis of such designs is to begin
by ignoring the blocking. If the blocking is ignored, the analysis is just that of a
fractional factorial and can be conducted as discussed in the next section. After
computing all the sums of squares ignoring blocks, go back and isolate the effects
that are confounded with blocks. In this example, the fractional factorial ignoring
blocks gives sums of squares for N = PK, P = NK, and NP = K. Then observe that
the sum of squares for N is really the sum of squares for blocks.
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2.3 Analysis of unreplicated experiments

One new problem we have in a fractional replication is that there is no natural es-
timate of error because there is no replication. We don’t even have observations
on every factor combination, much less multiple observations on treatments. We
present two ways to proceed, one is to assume that higher-order interactions do not
exist, the other is based on a graphical display of the effects that is similar in spirit
to a normal plot.

EXAMPLE 2.3.1. We consider the 1/2 rep. of a 25 that was reported by Hare
(1988) and introduced in Chapter 1. The issue is excessive variability in the taste of
a dry soup mix. The source of variability was identified as a particular component
of the mix called the ‘intermix’ containing flavorful ingredients such as salt and
vegetable oil.

From each batch of intermix, the original data are groups of 5 samples taken ev-
ery 15 minutes throughout a day of processing. Thus each batch yields data for a
balanced one-way analysis of variance with N = 5. The data actually analyzed are
derived from the ANOVAs on different batches. There are two sources of variability
in the original observations, the variability within a group of 5 samples and variabil-
ity that occurs between 15 minute intervals. From the analysis of variance data, the
within group variability is estimated with the MSE and summarized as the estimated
‘capability’ standard deviation

sc =
√

MSE.

The ‘process’ standard deviation was defined as the standard deviation of an indi-
vidual observation. The standard deviation of an observation incorporates both the
between group and the within group sources of variability. The estimated process
standard deviation is taken as

sp =

√
MSE +

MSGrps−MSE
5

,

where the 5 is the number of samples taken at each time, cf. Christensen (1996,
Subsection 12.4.2). These two statistics, sc and sp, are available from every batch
of soup mix prepared and provide the data for analyzing batches. The 1/2 rep. of a
25 involves different ways of making batches of soup mix. The factors in the design
were discussed in Example 1.0.1 and are repeated below. For now, we analyze only
the data on sp.

The two blocks obtained by confounding ABCDE in a 25 are reported in Ta-
ble 2.9. Table 2.9 also presents an alternative form of identifying the treatments. In
the alternative form, only the letters with a subscript of 1 are reported. Hare’s exper-
iment used the block consisting of treatments with ABCDE contrast coefficients of
1.

There are five factors involved in the experiment. Intermix is made in a large
mixer. Factor A is the number of ports for adding vegetable oil to the mixer. This
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Table 2.9 1/2 reps. from a 25 based on ABCDE.

ABCDE(1) Treatment ABCDE(−1) Treatment
a0b0c0d0e0 (1) a0b0c0d0e1 e
a0b0c0d1e1 de a0b0c0d1e0 d
a0b0c1d0e1 ce a0b0c1d0e0 c
a0b0c1d1e0 cd a0b0c1d1e1 cde
a0b1c0d0e1 be a0b1c0d0e0 b
a0b1c0d1e0 bd a0b1c0d1e1 bde
a0b1c1d0e0 bc a0b1c1d0e1 bce
a0b1c1d1e1 bcde a0b1c1d1e0 bcd
a1b0c0d0e1 ae a1b0c0d0e0 a
a1b0c0d1e0 ad a1b0c0d1e1 ade
a1b0c1d0e0 ac a1b0c1d0e1 ace
a1b0c1d1e1 acde a1b0c1d1e0 acd
a1b1c0d0e0 ab a1b1c0d0e1 abe
a1b1c0d1e1 abde a1b1c0d1e0 abd
a1b1c1d0e1 abce a1b1c1d0e0 abc
a1b1c1d1e0 abcd a1b1c1d1e1 abcde

was set at either 1 (a0) or 3 (a1). Factor B is the temperature of the mixer. The mixer
can be cooled by circulating water through the mixer jacket (b0) or the mixer can
be used at room temperature (b1). Factor C is the mixing time, 60 seconds (c0) or
80 seconds (c1). Factor D is the size of the intermix batch, either 1500 pounds (d0)
or 2000 pounds (d1). Factor E is the delay between making the intermix and using
it in the final soup mix. The delay is either 1 day (e0) or 7 days (e1). Table 2.10
contains the data along with the aliases for a 1/2 rep. of a 25 based on ABCDE. The
order in which the treatments were run was randomized and they are listed in that
order. Batch number 7 contains the standard operating conditions. Note that this is
a resolution V design: all main effects are confounded with four-factor interactions
and all two-factor interactions are confounded with three-factor interactions. If we
are prepared to assume that there are no three- or four-factor interactions, we have
estimates of all the main effects and two-factor interactions.

One way to perform the analysis is to compute the sums of squares for each con-
trast, however the simplest way to obtain an analysis is to let a computer program
do most of the work. The R language does this easily, see the computing commands
document. Occasionally, when using software written only for balanced analysis of
variance, one needs to trick the program into doing the fitting. If we could drop
one of the factors, we would have observed a full factorial (without replication) on
the remaining factors. For example, if we dropped factor E, and thus dropped the
e terms from all the treatment combinations in Table 2.10, we would have observa-
tions on all 16 of the treatment combinations in the 24 defined by A, B, C, and D. It is
easy to find computer programs that will analyze a full factorial. Table 2.11 gives the
results of an analysis in which we have ignored the presence of factor E. Table 2.11
contains two columns labeled ‘Source’. The one on the left gives the sources from
the full factorial on A, B, C, and D; the one on the right replaces the higher-order
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Table 2.10 Hare’s 1/2 rep. from a 25 based on ABCDE.

Batch Treatment sc sp Aliases
1 a0b0c0d1e1 de 0.43 0.78 A = BCDE
2 a1b0c1d1e1 acde 0.52 1.10 B = ACDE
3 a1b1c0d0e0 ab 0.58 1.70 C = ABDE
4 a1b0c1d0e0 ac 0.55 1.28 D = ABCE
5 a0b1c0d0e1 be 0.58 0.97 E = ABCD
6 a0b0c1d0e1 ce 0.60 1.47 AB = CDE
7 a0b1c0d1e0 bd 1.04 1.85 AC = BDE
8 a1b1c1d1e0 abcd 0.53 2.10 AD = BCE
9 a0b1c1d1e1 bcde 0.38 0.76 AE = BCD

10 a1b1c0d1e1 abde 0.41 0.62 BC = ADE
11 a0b0c1d1e0 cd 0.66 1.09 BD = ACE
12 a0b0c0d0e0 (1) 0.55 1.13 BE = ACD
13 a1b0c0d0e1 ae 0.65 1.25 CD = ABE
14 a1b1c1d0e1 abce 0.72 0.98 CE = ABD
15 a1b0c0d1e0 ad 0.48 1.36 DE = ABC
16 a0b1c1d0e0 bc 0.68 1.18

interactions from the full factorial with their lower order aliases. Table 2.11 also
contains a ranking of the sizes of the sums of squares from smallest to largest.

Table 2.11 ANOVA for sp.

Source Source df SS Rank
A A 1 0.0841 10
B B 1 0.0306 7
C C 1 0.0056 4
D D 1 0.0056 3
AB AB 1 0.0009 1
AC AC 1 0.0361 8
AD AD 1 0.0036 2
BC BC 1 0.0182 5
BD BD 1 0.1056 12
CD CD 1 0.0210 6
ABC DE 1 0.3969 13
ABD CE 1 0.0729 9
ACD BE 1 0.6561 14
BCD AE 1 0.0930 11
ABCD E 1 0.8836 15
Total Total 15 2.4140

One method of analysis is to assume that no higher-order interactions exist and
form an error term by pooling the estimable terms that involve only higher-order in-
teractions. A particular term involves only higher-order interactions if the term and
all of its aliases are high order interactions. What we mean by high order interac-



2.3 Analysis of unreplicated experiments 31

tions is intentionally left ill-defined to maintain flexibility. In this design, unless you
consider second-order interactions as higher-order, there are no terms involving only
higher-order interactions. Most often, higher-order interactions are taken to be in-
teractions that only involve three or more factors, but in designs like this, one might
be willing to consider two-factor interactions as higher-order to obtain an error term
for testing main effects. (I personally would not be willing to do it with these data.)
Often terms that involve only three and higher-order interactions are pooled into an
error, but in designs with more factors and many high order interactions, one might
wish to estimate three-factor interactions and use only terms involving four or more
factors in a pooled error.

If we assume away all two-factor and higher-order interactions for the present
data, the ANOVA table becomes that displayed in Table 2.12. With this error term,
only factor E appears to be important. As we will see later, most of the important ef-
fects in these data seem to be interactions, so the error term based on no interactions
is probably inappropriate.

Table 2.12 Analysis of variance on sp for Hare’s data.

Source df SS MS F
A 1 0.0841 0.0841 0.60
B 1 0.0306 0.0306 0.22
C 1 0.0056 0.0056 0.04
D 1 0.0056 0.0056 0.04
E 1 0.8836 0.8836 6.29
Error 10 1.4044 0.1404
Total 15 2.4140

Rather than assuming away higher-order interactions, Daniel (1959) proposed an
alternative method of analysis based on an idea similar to normal plotting. Recall
that in a normal plot, the data from a single sample are ordered from smallest to
largest and plotted against the expected order statistics from a standard normal dis-
tribution. In other words, the smallest observation in a sample of size, say, 13 is
plotted against the expected value for the smallest observation in a sample of size
13 from a N(0,1) distribution. The second smallest observation is plotted against
the expected value for the second smallest observation in a sample of size 13 from
a N(0,1) distribution, and so on. This plot should approximate a straight line if
the data are truly normal, the slope of the plot estimates the standard deviation of
the population, and the intercept estimates the population mean. One approach to a
graphical analysis of 2 f experiments is to perform a normal plot on the estimated
contrasts. Daniel (1959) used a plot of the absolute values of the estimated contrasts.
Here we discuss a graphical method of analysis for unreplicated and fractional fac-
torials that applies a similar idea to the sums of squares in Table 2.11.

Assume a standard ANOVA model with independent N(0,σ2) errors. The anal-
ysis looks for departures from the assumption that none of the factors have an effect
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on the observations. Under the assumption of no effects, every mean square gives
an estimate of σ2 and every sum of squares has the distribution

SS
σ2 ∼ χ

2(1),

where the degrees of freedom in the χ2 are 1 because each effect has 1 degree
of freedom. Moreover, the sums of squares are independent, so in the absence of
treatment effects, the sums of squares form a random sample from a σ2χ2(1) dis-
tribution. If we order the sums of squares from smallest to largest, the ordered sums
of squares should estimate the expected order statistics from a σ2χ2(1) distribution.
Plotting the ordered sums of squares against the expected order statistics, we should
get an approximate straight line through the origin with a slope of 1. In practice, we
cannot obtain expected values from a σ2χ2(1) distribution because we do not know
σ2. Instead, we plot the ordered sums of squares against the expected order statistics
of a χ2(1) distribution. This plot should be an approximate straight line through the
origin with a slope of σ2.

Table 2.13 contains the statistics necessary for the χ2 plot of the 15 effects from
Hare’s data. Figure 2.3 contains the plot. The χ2(1) scores in Table 2.13 are approx-
imate expected order statistics. They are computed by applying the inverse of the
χ2(1) cumulative distribution function to the values i/(n+ 1), where i goes from
1 to 15 and n = 15. This is easily done in R and Minitab. Table 2.13 also contains
partial sums of the ordered sums of squares; these values will be used in the next
section.

Table 2.13 χ2(1) scores, ordered sums of squares, and partial sums of the sums of squares for
Hare’s (1988) data.

χ2(1) Ordered Partial
scores SS sums

0.00615 0.0009 0.0009
0.02475 0.0036 0.0045
0.05626 0.0056 0.0101
0.10153 0.0056 0.0157
0.16181 0.0182 0.0339
0.23890 0.0210 0.0549
0.33539 0.0306 0.0855
0.45494 0.0361 0.1216
0.60283 0.0729 0.1945
0.78703 0.0841 0.2786
1.02008 0.0930 0.3716
1.32330 0.1056 0.4772
1.73715 0.3969 0.8741
2.35353 0.6561 1.5302
3.46977 0.8836 2.4138
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Fig. 2.3 χ2(1) plot of sums of squares.

The key to the graphical analysis is that nonnegligible treatment effects cause the
mean square to estimate something larger than σ2. The sums of squares for nonneg-
ligible effects should show up in the plot as inappropriately large values. The lower
12 observations in Figure 2.3 seem to fit roughly on a line, but the three largest
observations seem to be inconsistent with the others. These three observations cor-
respond to the most important effects in the data. From the rankings in Table 2.11,
we see that the important effects are E, BE, and DE.

We need to evaluate the meaning of the important effects. There is no question
of breaking things down into contrasts because all of the effects already have only
one degree of freedom. We need only interpret the meanings of the specific effects.
The largest effect is due to E, the delay in using the intermix. However, this effect
is complicated by interactions involving the delay.

The means for the four combinations of B and E are given below.

N = 4 B
E b0 b1
e0 1.215 1.7075
e1 1.150 0.8325

The BE interaction is due to the fact that running the mixer at room temperature, b1,
increases variability if the intermix is used after one day, e0, but decreases variabil-
ity if the intermix is used a week later, e1. However, the variability under delay is
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smaller for both B levels than the variability for immediate use with either B level.
This suggests delaying use of the intermix.

The means for the four combinations of D and E are given below.

N = 4 D
E d0 d1
e0 1.3225 1.6000
e1 1.1675 0.8150

A large batch weight, d1, causes increased variability when the intermix is used im-
mediately but decreased variability with use delayed to 7 days. Again, it is uniformly
better to delay.

Figure 2.4 contains a plot of the remaining sums of squares after deleting the
three largest effects. The plot indicates that the four largest values are somewhat
larger than the remaining effects. The fourth through seventh largest effects are BD,
AE, A, and CE. These may be important but the results are less clear. Figure 2.5
is an alternative to Figure 2.4. Figure 2.4 simply dropped the three largest cases in
Figure 2.3 to give a better view of the remainder of the plot. In Figure 2.5 the three
largest sums of squares from Figure 2.3 are dropped but the expected order statistics
are recomputed for a sample of size 15−3 = 12.
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Fig. 2.4 χ2(1) plot of sums of squares, largest 3 cases deleted.

The suggestions of treatment effects in these plots are not sufficiently clear to
justify their use in the analysis. Recalling that the current process is batch 7 with
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Fig. 2.5 χ2(1) plot of sums of squares, largest 3 cases deleted, expected order statistics recom-
puted.

one vegetable oil port, room temperature mixing, 60 seconds mixing time, 2000
pound batches, and a 1 day delay, we would recommend changing to a 7 day delay.

2

Computing commands

R commands are given in the separate document.
When I originally wrote this, I could not get Minitab to give me the output di-

rectly. Below are Minitab commands for obtaining the analysis. The data file had
eight columns, the first six were indicators for batch and factors A, B, C, D and E,
respectively. Columns 7 and 8 contained the data on sc and sp.

MTB > names c8 ’y’ c2 ’a’ c3 ’b’ c4 ’c’ c5 ’d’ c6 ’e’
MTB > anova c8=c2|c3|c4|c5 - c2*c3*c4*c5
MTB > note AFTER SEEING THE ANOVA, ENTER THE SUMS
MTB > note OF SQUARES INTO c10.
MTB > set c10
DATA> 841 306 56 56 9 361 36 182
DATA> 1056 210 3969 729 6561 930 8836
DATA> end
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MTB > let c10=c10/10000
MTB > note CONSTRUCT CHI-SQUARED SCORES AND PLOT.
MTB > rank c10 c11
MTB > let c11=c11/16
MTB > invcd f c11 c12;
SUBC> chisquare 1.
MTB > plot c10 c12

Note that c6 was not used in the anova command. Factor E was dropped to deal
with the fractional nature of the factorial. Minitab’s ANOVA command requires an
error term to exist in the model. The command given above specifies a full factorial
model (c2|c3|c4|c5) but subtracts out the ABCD interaction (c2∗c3∗c4∗c5) and sets
it equal to the error. Thus, Minitab’s error term is actually the ABCD interaction. The
command ‘set c10’ is used to create a data column that contains the sums of squares
for the various effects. The commands involving c11 and c12 are used to get the
approximate expected order statistics from a χ2(1) and to plot the ordered sums of
squares against the expected order statistics. After identifying the important effects,
the ANOVA command can be repeated with various factors deleted to obtain the
necessary means tables.

2.3.1 Balanced ANOVA computing techniques

When using software written only for balanced analysis of variance, the technique
of computing the sums of squares in a fractional factorial by dropping factors and
performing a full factorial analysis on the remaining factors is quite general, but
when choosing factors to be dropped every defining contrast must involve at least
one dropped factor. For example, if we used ABCD as a defining contrast in a 1/2
rep. of a 25, we must drop A, B, C, or D to compute a full factorial. Dropping any of
these will give all 16 treatment combinations in a 24 based on E and the other three
factors. On the other hand, dropping E does not give all 16 treatments combinations
that are present in a 24 based on factors A, B, C, and D, nor does dropping E give the
appropriate sums of squares. In particular, a factorial analysis with factors A, B, C,
and D normally has terms for both A and BCD, but these are aliased in the 1/2 rep.
based on ABCD. Thus the full factorial cannot be computed. (If you are confused,
do Exercise 2.6.7.)

In a 1/4 rep, two defining contrasts are used with another contrast also lost. In
the analysis of a 1/4 rep, two factors are dropped and a full factorial is computed
on the remaining factors. Again, at least one of the dropped factors must be in each
of the three defining contrasts. For example, in a 25 with defining contrasts BCD,
CDE and implicitly BE, we could not drop the two factors C and D because the
defining contrast BE contains neither of these. In particular, dropping C and D leads
to a factorial on A, B, and E, but the main effects for B and E are aliased. Similarly,
the factor A cannot be one of those dropped to obtain a full factorial. Since A is not
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contained in any of the defining contrasts, the other dropped factor would have to
be in all three. This is impossible because if a factor is in two defining contrasts,
when they are multiplied to obtain the third defining contrast that factor will not be
present.

Generally, in a 1/2s replication of a 2 f factorial there are 2 f−s−1 distinct groups
of effects that are aliased. We need to find the sum of squares for each group. To do
this we drop s appropriately chosen factors and compute a full factorial analysis on
the remaining factors. The effects in this analysis of a 2 f−s factorial represent all
of the alias groups in the 1/2s replication. We merely have to identify the lowest
order, and thus most interesting, effects in each group of aliases. Having at least one
dropped factor in every defining contrast ensures that the effects arising in the 2 f−s

factorial are all aliased only with effects that involve a dropped factor and thus are
not aliased with any other effect in the 2 f−s factorial. Therefore all the effects in
the 2 f−s factorial are in distinct alias groups and we have sums of squares for every
alias group.

2.4 More on graphical analysis

Normal and χ2 graphs of effects give valuable information on the relative sizes of
effects but it is difficult to judge which effects are truly important and which could be
the result of random variation. Many such plots give the false impression that there
are a number of important effects. The problem is that we tend to see what we look
for. In a normal plot of, say, regression residuals, we look for a straight line and are
concerned if the residuals obviously contradict the assumption of normality. When
analyzing a saturated linear model, we expect to see important effects, so instead of
looking for an overall line, we focus on the extreme order statistics. Doing so can
easily lead us astray.

In this section we consider two methods for evaluating significant effects in a χ2

plot. The first method was originally suggested by Holms and Berrettoni (1969). It
uses Cochran’s (1941) test for homogeneity (equality) of variances. The second is
similar in spirit to the simulation envelopes suggested by Atkinson (1981) for eval-
uating normal plots of regression residuals. The methods are introduced in relation
to Hare’s data but they apply quite generally. Both methods provide envelopes for
the χ2 plots. A χ2 plot that goes outside the envelope suggests the existence of sig-
nificant effects. Box and Meyer (1986), Lenth (1989), and Berk and Picard (1991)
proposed alternative methods for the analysis of contrasts in unreplicated factorials
and Lenth (2015) argues against methods based on plotting effects.
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2.4.1 Multiple maximum tests

Cochran’s test for homogeneity of variances applies when there are, say, n ≥ 2 in-
dependent χ2(r) estimates of a variance. In a balanced one-way ANOVA with a
treatments, N observations per group, and independent N(0,σ2) errors, Cochran’s
test applies to the individual group variances s2

i . Cochran’s n equals a and his r is
N−1. In this case, Cochran’s test statistic is the maximum of the variance estimates
divided by the sum of the variance estimates. The test is rejected for large values
of the statistic. In analyzing Hare’s unreplicated factorial, if there are no significant
effects, the 15 sums of squares in Hare’s data are independent χ2(1) estimates of
σ2. Thus Cochran’s procedure can be applied with n = 15 and r = 1 to test the
hypothesis that all the sums of squares are estimating the same variance.

Cochran’s test is best suited for detecting a single variance that is larger than
the others. (Under the alternative, large terms other than the maximum get included
in the total, making it more difficult to detect unusual behavior in the maximum.)
In analyzing unreplicated linear models we often expect more than one significant
effect. In the spirit of the multiple range tests used for comparing pairs of means
in analysis of variance (e.g. Christensen, 1996, Chapter 6), we use Cochran’s test
repeatedly to evaluate the ordered sums of squares. Thus we define C j as the jth
smallest of the sums of squares divided by the sum of the j smallest sums of squares.
From Table 2.13, the values of C j are obtained by taking the ordered sums of squares
and dividing by the partial sums of the ordered sums of squares. Each value of C j
is then compared to an appropriate percentile of Cochran’s distribution based on
having j estimates of the variance. Note that such a procedure does not provide
any control of the experimentwise error rate for the multiple comparisons. Weak
control can be achieved by first performing an overall test for equality of variances
and then evaluating individual C js only if this overall test is significant. One such
choice could be Cochran’s test for the entire collection of sums of squares, but that
seems like a poor selection. As mentioned, Cochran’s test is best at detecting a single
unusual variance; having more than one large variance (as we often expect to have)
reduces the power of Cochran’s test. To control the experimentwise error rate, it is
probably better to use alternative tests for equality of variances such as Bartlett’s
(1937) or Hartley’s (1938) tests, see Snedecor and Cochran (1980). Currently the
most popular tests seem to be the Breusch-Pagan/Cook-Weisberg test and Levene’s
test.

Table 2.14 gives the values of the C j statistics and various percentiles of Cochran’s
distribution. Note that the 13th largest effect exceeds the 0.15 percentage point and
is almost significant at the 0.10 level. While a significance level of 0.15 is not com-
monly thought to be very impressive, in an unreplicated experiment one would not
expect to have a great deal of power, so the use of larger α levels may be appro-
priate. Having concluded that the 13th effect is significant, it is logical to conclude
that all larger effects are also significant. Once we have a single significant effect,
testing the larger effects makes little sense. For larger effects, the sum of squares
in the denominator of Cochran’s statistic is biased by the inclusion of the sum of
squares for the 13th effect. Moreover, if the 13th effect is so large as to be identified
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as significant, effects that are even larger should also be significant. Note that for
Hare’s data the test of the 14th effect is also significant at the 0.15 level. This simply
compounds the evidence for the significance of the 14th effect.

Table 2.14 Percentiles for Cochran’s statistic with r = 1 and Cochran’s statistics for Hare’s data.

j 0.01 0.05 0.10 0.15 C j
2 0.9999 0.9985 0.9938 0.9862 0.80000
3 0.9933 0.9670 0.9344 0.9025 0.55446
4 0.9677 0.9065 0.8533 0.8096 0.35669
5 0.9279 0.8413 0.7783 0.7311 0.53687
6 0.8826 0.7808 0.7141 0.6668 0.38251
7 0.8377 0.7270 0.6598 0.6139 0.35789
8 0.7945 0.6798 0.6138 0.5696 0.29688
9 0.7549 0.6385 0.5742 0.5320 0.37481

10 0.7176 0.6020 0.5399 0.4997 0.30187
11 0.6837 0.5697 0.5100 0.4716 0.25027
12 0.6528 0.5411 0.4834 0.4469 0.22129
13 0.6248 0.5152 0.4598 0.4249 0.45407
14 0.5987 0.4921 0.4386 0.4053 0.42877
15 0.5749 0.4711 0.4196 0.3876 0.36606

The commonly available tables for Cochran’s distribution are inadequate for the
analysis just given. The α level percentage points in Table 2.14 were obtained by
evaluating the inverse of the cumulative distribution function of a Beta(r/2,r( j−
1)) distribution at the point 1−α/ j. These are easily obtained in R and Minitab.
Cochran (1941) notes that these values are generally a good approximation to the
true percentage points and that they are exact whenever the true percentage point is
greater than 0.5. Moreover, the true significance level corresponding to a nominal
significance level of α in Table 2.14 is at most α and at least α−α2/2, so the true
significance level associated with the 0.15 values listed in Table 2.14 is between
0.13875 and 0.15 for j = 10, . . . ,15 and is exactly 0.15 for j = 2, . . . ,9.

Most tests for equality of variances, including Cochran’s test, are notoriously sen-
sitive to nonnormality — so much so that they are rarely used in practice. However
the analysis of variance F test is not noted for extreme sensitivity to nonnormality,
even though it is a test for the equality of two variances. This is probably because
the numerator mean square is computed from sample means and sample means tend
to be reasonably normal. The current application of Cochran’s test should benefit in
the same way. The sums of squares in this example are essentially computed from
the difference between two sample means each based on 8 observations. Thus the
sensitivity to nonnormality should be mitigated. Of course for nonnormal data the
sums of squares are unlikely to be independent, but the estimated effects are still
uncorrelated.

The multiple maximum procedure is easily incorporated into χ2 plots. Figure 2.6
contains the χ2(1) plot for Hare’s data along with an upper envelope. The upper
envelope is the product of the Cochran 15% points and the partial sums from Ta-
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ble 2.13. The 13th and 14th largest sums of squares exceed the upper envelope,
indicating that the corresponding maximum tests are rejected.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0
0.2

0.4
0.6

0.8

Chi−square(1) Scores

Or
de

re
d S

um
s o

f S
qu

ar
es

Fig. 2.6 χ2(1) plot for Hare’s data with 15% Cochran upper envelope.

2.4.2 Simulation envelopes

Figure 2.7 contains the χ2(1) plot for Hare’s data with a simulation envelope. Actu-
ally, the plot uses the standardized sums of squares, i.e., the sums of squares divided
by the total sum of squares. Obviously, dividing each sum of squares by the same
number has no effect on the visual interpretation of the plot. The simulation en-
velope is based on 99 analyses of randomly generated standard normal data. The
upper envelope is the maximum for each order statistic from the 99 replications and
the lower envelope is the minimum of the replications. Performing 99 analyses of
a 24 experiment is time consuming; it is computationally more efficient just to take
99 random samples from a χ2(1) distribution, standardize them, and order them.
Unlike Atkinson’s (1981) residual envelopes for regression, having divided all the
sums of squares by the total, the same envelopes can be used for any subsequent
analysis of 15 sums of squares each having one degree of freedom.

There are two prominent features in Figure 2.7. The 12th effect is barely below
the lower envelope and the 14th effect is barely above the upper envelope. All of the
sums of squares have been divided by the total, so the low value for the 12th effect
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Fig. 2.7 χ2(1) plot for Hare’s data with simulated envelope.

indicates that the sum of squares for the 12th effect has been divided by a number
that is too large. In other words, the sum of squares total is too large to be consistent
with the 12 smallest sums of squares. This indicates that there must be significant
effects among the 3 largest terms. The simulation envelope does not indicate which
of the 3 larger terms are real effects; violation of the envelope only suggests that the
envelope is inappropriate, i.e., that there are real effects. Visual interpretation of the
graph must be used to identify the important effects.

2.4.3 Outliers

It is frequently suggested that outliers can be spotted from patterns in the plots.
Consider a single outlier. Every effect contrast is the sum of 8 observations minus
the sum of the other 8, thus if the outlier is not on the treatment a0b0c0d0e0, the
outlier is added into either 7 or 8 effect contrasts and is subtracted in the others. In
a normal plot, such an outlier should cause a jump in the level of the line involving
about half of the effects. In a χ2 plot, a single outlier should cause all of the effects
to look large, i.e., the intercept of the plot should not be zero. If two outliers exist
in the data, they should cancel each other in about half of the effect contrasts and
compound each other in the other effects. Thus, half of the effects should appear to
be important in the plot. In my experience the natural variation in the plots is large
enough that it is difficult to identify even very large outliers based on these facts.
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2.5 Lenth’s method

2.6 Augmenting designs for factors at two levels

When running a sequence of experiments, one may find that a particular 2 f experi-
ment or fractional replication is inadequate to answer the relevant questions. In such
cases it is often possible to add more points to the design to gain the necessary infor-
mation. After running an initial fractional replication, a particular factor, say A, may
be identified as being of primary importance. It is then of interest to estimate the
main effect A and all two-factor interactions involving A without their being aliased
with other two-factor interactions.

Box and Draper (1987, p. 156) suggest a method for adding points to the original
design to achieve this end. Christensen and Huzurbazar (1996) also treat this method
and provide a proof. Consider the resolution III, 1/16th replication of a 27 exper-
iment defined by ABD(1), ACE(1), BCF(1), ABCG(1). Box and Draper suggest
augmenting the design with the 1/16th replication ABD(−1), ACE(−1), BCF(1),
ABCG(−1). The idea is that 1s have been changed to −1s in all defining contrasts
that include A.

Together, the two 1/16th replications define a 1/8th replication. The nature of
this 1/8th replication can be explored by adding an imaginary factor H to the exper-
iment. As H is imaginary, obviously it can have no effect on the responses. Any
effects that involve H are simply error. For example, the DH interaction exam-
ines whether the effect for D changes from the low to high level of H. As there
are no low and high levels of H, any observed change must be due to random
error. The treatments included in the augmented 1/8th rep. of the 27 given pre-
viously are identical to those obtained from the 1/16th rep. of the 28 defined by
ABDH(1),ACEH(1),BCF(1),ABCGH(1). Here H has been added to any defining
effect that includes A. In fact, if we want to consider the augmented 1/8th rep. as oc-
curring in two blocks, the imaginary factor H is the effect confounded with blocks.

Now consider the aliasing structure of this 28 design. In constructing any 2 f

design in 16 blocks, there are 16− 1 effects confounded with the blocks, i.e., with
the possible fractional replications. All of these effects are involved in determining
the aliases of the 1/16th rep. To get the complete set of 15 defining effects we must
multiply the nominal defining effects together and multiply products of the nominal
defining effects with other nominal defining effects. Using an asterisk (∗) to identify
the nominal defining effects and performing the multiplications systematically, the
complete set of defining effects is

ABDH∗,ACEH∗,BCDE,BCF∗,ACDFH,ABEFH,DEF,ABCGH∗,

CDG,BEG,AFGH,ADEGH,BDFG,CEFG,ABCDEFGH.

This is still a resolution III design but now every defining effect that includes A has
at least three other factors, one of which is the imaginary H. Thus multiplying A
times the defining effects we see that A is not aliased with any two-factor or main
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effects. Moreover, a two-factor effect involving A, say AB, is only aliased with other
two-factor effects that involve H. In the case of AB, the only two-factor effect that it
is aliased with is DH. But H is imaginary, so two-factor effects involving A are not
aliased with any real two-factor effects.

Box and Draper (1987) and Christensen and Huzurbazar (1996) provide
a similar solution to the problem of augmenting a design to allow es-
timation of all main effects unaliased with two-factor effects. Again con-
sider the resolution III, 1/16th replication of a 27 experiment defined by
ABD(1),ACE(1),BCF(1),ABCG(1). For this problem they suggest adding the
1/16th fraction defined by ABD(−1),ACE(−1),BCF(−1),ABCG(1). Here 1s
have been changed to −1s in the defining effects that involve an odd num-
ber of factors. This augmented 1/8th rep. design is equivalent to adding an
imaginary factor H and using the 1/16th rep. of the 28 experiment defined by
ABDH(1),ACEH(1),BCFH(1),ABCG(1). In this approach, any defining effect
with an odd number of terms has H added to it. As before, any effects that involve
H are error. Adding H in this manner has changed the resolution III design into a
resolution IV design. Thus all main effects are aliased with three-factor or higher
terms. As before, if we view the augmented 1/8th rep. as occurring in two blocks,
H is the effect confounded with blocks.

2.7 Exercises

EXERCISE 2.7.1. Analyze Hare’s sc data that was given in Table 2.10.

EXERCISE 2.7.2. To consider the effect of a possible outlier, reanalyze Hare’s
sp data, changing the largest value, the 2.10 in Table 2.10, into the second largest
value, 1.85.

EXERCISE 2.7.3. Reanalyze Hare’s sc data after identifying and deleting the pos-
sible outlier. Does having an outlier in that particular batch suggest anything?

EXERCISE 2.7.4. Consider a 26 factorial. Give a good design for performing this
in blocks of sixteen. Try to avoid confounding main effects and two-factor interac-
tions with blocks.

EXERCISE 2.7.5. Consider a 26 factorial. Give a good design for performing a
1/4 replication. Try to avoid aliasing main effects with each other and with two-
factor interactions. Also try to avoid aliasing two-factor interactions with other two-
factor interactions.

EXERCISE 2.7.6. Consider a 26 factorial. Give a good design for performing a
1/2 replication in blocks of 16. Do not confound main effects or two-factor inter-
actions with blocks. Try to avoid aliasing main effects with each other and with
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two-factor interactions. Also try to avoid aliasing two-factor interactions with other
two-factor interactions.

EXERCISE 2.7.7. Consider a 1/2 rep. of a 25 with factors A, B, C, D, E and
ABCD defining the 1/2 rep. Write down the treatment combinations in the 1/2 rep.
Now drop factor D from the analysis. In particular, write down all the treatment
combinations in the 1/2 rep. but delete all the d terms from the treatments. Does
this list contain all the treatments in a 24 on factors A, B, C, E? Now return to the
original 1/2 rep., drop factor E, and list the treatment combinations. Does this list
contain all the treatments in a 24 on factors A, B, C, D?



Chapter 3
p f Factorial Treatment Structures

Except for the Taguchi material, I originally wrote this in the ’90s but it appears for
the first time.

In this chapter we examine extensions of the ideas used with 2 f factorials to
situations where we have f factors each at p levels where p is a prime number. The
general approach will obviously apply to 2 f factorials, but beyond that, the most
important special case will be 3 f factorials. We also look briefly at 5 f factorials and
some cross factorials such as a 2×2×3×3 involving two different prime numbers
(2 and 3) and a 3×4 which involves a nonprime number of factor levels (4).

A key tool in this discussion is the use of modular arithmetic, e.g., 5 mod 3 = 2
where 2 is the remainder when 5 is divided by 3. Similarly, 13 mod 5 = 3, because
3 is the remainder when 5 is divided into 13. Modular arithmetic is applied to the
subscripts defining the treatments. For a 32 experiment involving factor A with levels
a0, a1, a2 and factor B with levels b0, b1, b2, the treatments are denoted a0b0, a0b1,
a0b2, a1b0, . . . ,a2b2. In a 3 f , each effect is based on using modular arithmetic to
divide the treatments into 3 groups. The analysis involves performing a one-way
ANOVA on the three groups, thus every effect has 2 degrees of freedom. These two
degree of freedom effects are then related to the usual main effects and interactions
that are used in a two factor experiment. Similarly, in a 5 f we use modular arithmetic
to create 5 groups.

Section 1 introduces the use of modular arithmetic in 3 f factorials to define 2
degree of freedom effects and relates them to the usual effects. Section 2 illustrates
how the modular arithmetic determines a linear model that has the nice properties
that we exploit in the analysis. In other words, it illustrates how it is that we can per-
form a valid analysis by simply looking at the one-way ANOVAs that are performed
on each group defined by the modular arithmetic. Section 3 introduces the concepts
of confounding and fractional replication for 3 f factorials. Section 4 introduces the
work of Genichi Taguchi. Section 5 gives an example of the analysis of a 33 experi-
ment that involves confounding. Section 6 illustrates how the concepts extend to 5 f

factorials. Chapter 4 looks at mixtures of prime powers, e.g., a 2×2×3×3 factorial
and powers of primes, e.g., an example that involves a factor with 4 = 22 levels.

45
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3.1 3 f Factorials

In a 2 f factorial, life is simple because every effect has only one degree of freedom.
The situation is more complicated in 3 f s, 5 f s, and p f s. We begin by considering the
breakdown of the treatment sum of squares in a 3 f .

EXAMPLE 3.1.1. A 34 experiment
Consider a 34 experiment with factors A, B, C, D at levels a0, a1, a2, b0, b1, b2, c0, c1,
c2, and d0, d1, d2, respectively. There are 34 = 81 treatment combinations so there
are 80 degrees of freedom for treatments. The usual breakdown of the treatments
line in the ANOVA is given on the left of Table 3.1.

Table 3.1 Analysis of Variance Tables for 34

Traditional Extended
Source df Source df Source df Source df
A 2 A 2 ABC 2 ABCD 2
B 2 B 2 ABC2 2 ABCD2 2
C 2 C 2 AB2C 2 ABC2D 2
D 2 D 2 AB2C2 2 ABC2D2 2
A∗B 4 AB 2 ABD 2 AB2CD 2
A∗C 4 AB2 2 ABD2 2 AB2CD2 2
A∗D 4 AC 2 AB2D 2 AB2C2D 2
B∗C 4 AC2 2 AB2D2 2 AB2C2D2 2
B∗D 4 AD 2 ACD 2
C ∗D 4 AD2 2 ACD2 2
A∗B∗C 8 BC 2 AC2D 2
A∗B∗D 8 BC2 2 AC2D2 2
A∗C ∗D 8 BD 2 BCD 2
B∗C ∗D 8 BD2 2 BCD2 2
A∗B∗C ∗D 16 CD 2 BC2D 2

CD2 2 BC2D2 2

With 2 f factorials, it is convenient to break everything into effects with 2−1 = 1
degree of freedom. Each degree of freedom corresponds to a contrast or, equiva-
lently, a one-way ANOVA between 2 groups. In 3 f factorials, it is convenient to
break everything into 3− 1 = 2 degree of freedom effects. Such a breakdown is
given on the right of Table 3.1. Every set of 2 degrees of freedom corresponds to
performing a one-way analysis of variance among three groups. Later, we will use
modular arithmetic to identify the three groups. In general, a p f factorial is broken
up into sets of p−1 degrees of freedom. Each set of p−1 degrees of freedom corre-
sponds to a one-way ANOVA between p groups. Again, modular arithmetic is used
to identify the p groups. The technique will be demonstrated on a 33.

EXAMPLE 3.1.2. 33 Factorial
Let the factors be A, B, and C with levels a0, a1, a2, b0, b1, b2, and c0, c1, c2, respec-
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tively. The usual breakdown of the treatment degrees of freedom is given on the left
of Table 3.2. The sums of squares are found in the usual way. The extended break-
down is given on the right of Table 3.2. It is this breakdown that we will describe
in detail. Each sum of squares is computed from a one-way analysis of variance on
three groups. We focus on identifying the appropriate groups.

Table 3.2 Analysis of Variance Table for 33

Source df Source df
A 2 A 2
B 2 B 2
C 2 C 2
A∗B 4 AB 2

AB2 2
A∗C 4 AC 2

AC2 2
B∗C 4 BC 2

BC2 2
A∗B∗C 8 ABC 2

ABC2 2
AB2C 2
AB2C2 2

As usual, the sum of squares for A is found by doing a one-way analysis of
variance on three sample means, the mean of all observations that got treatment a0,
the mean of all observations that got treatment a1, and the mean of all observations
that got treatment a2. There are three treatments so A has 2 degrees of freedom. The
main effects for B and C work similarly.

The standard way of getting the sum of squares for the A∗B interaction involves
doing a one-way analysis of variance on nine sample means, the means of all obser-
vations that got treatments a0b0, a0b1, a0b2, a1b0, a1b1, a1b2, a2b0, a2b1, and a2b2.
This has 8 degrees of freedom. From this one-way ANOVA, the sum of squares for
A and the sum of squares for B are subtracted, leaving the A ∗B interaction sum of
squares with 8−2−2 = 4 degrees of freedom.

In the new analysis, the A ∗ B interaction term is broken into two interaction
terms, one is called AB while the other is called AB2. The AB term defines a group
of three sample means. These three means have a one-way ANOVA performed on
them yielding 2 degrees of freedom and a sum of squares. Similarly, the AB2 term
defines another group of three sample means for which a one-way is performed
yielding 2 degrees of freedom and a sum of squares. By pooling together the degrees
of freedom and sums of squares from the new AB and AB2 terms, we can reconstruct
the old A∗B term with 4 degrees of freedom.

The analysis of the new AB and AB2 terms is straightforward, just two one-way
ANOVAs. The trick is in specifying the observations that go into forming the three
sample means. The specification involves the use of modular arithmetic applied to
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the subscripts that identify the treatments. Specifically, in a 3 f factorial, the arith-
metic is performed mod 3. In other words, arithmetic is performed in the usual way
to get a number but the final answer is reported as the remainder when this number
is divided by 3. For the AB interaction, the a and b subscripts are added together.
After adjusting the numbers mod 3, we have three groups based on the sum of the
subscripts. In other words, if we let x1, x2, and x3 denote the subscripts of a treat-
ment, the process involves finding (1)x1 +(1)x2 +(0)x3 mod 3; the result is always
either 0, 1 or 2. The three groups are determined by this value. The 0 group consists
of all treatments that yield a 0. The 1 group has all treatments that yield a 1. The 2
group has all treatments that yield a 2. The process is illustrated in Table 3.3. The
groups are also reported in Table 3.4. Without replication, each treatment yields one
y value. The 9 y values for group 0 are averaged to find a sample mean for group
0. Similarly, sample means are computed for groups 1 and 2. The mean square for
AB, say MS(AB), is the sample variance of the three means times 9, the number of
observations in each mean. The mean squared multiplied by (3−1) gives SS(AB),
the sum of squares for AB.

Table 3.3 AB Interaction Groups

subscripts AB = A1B1C0 Group
Treatment (x1,x2,x3) (1)x1 +(1)x2 +(0)x3 (mod 3)

a0b0c0 (0,0,0) 0 0
a0b0c1 (0,0,1) 0 0
a0b0c2 (0,0,2) 0 0
a0b1c0 (0,1,0) 1 1
a0b1c1 (0,1,1) 1 1
a0b1c2 (0,1,2) 1 1
a0b2c0 (0,2,0) 2 2
a0b2c1 (0,2,1) 2 2
a0b2c2 (0,2,2) 2 2
a1b0c0 (1,0,0) 1 1
a1b0c1 (1,0,1) 1 1
a1b0c2 (1,0,2) 1 1
a1b1c0 (1,1,0) 2 2
a1b1c1 (1,1,1) 2 2
a1b1c2 (1,1,2) 2 2
a1b2c0 (1,2,0) 3 0
a1b2c1 (1,2,1) 3 0
a1b2c2 (1,2,2) 3 0
a2b0c0 (2,0,0) 2 2
a2b0c1 (2,0,1) 2 2
a2b0c2 (2,0,2) 2 2
a2b1c0 (2,1,0) 3 0
a2b1c1 (2,1,1) 3 0
a2b1c2 (2,1,2) 3 0
a2b2c0 (2,2,0) 4 1
a2b2c1 (2,2,1) 4 1
a2b2c2 (2,2,2) 4 1
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Table 3.4 AB Groups

(1)x1 +(1)x2 +(0)x3 mod 3 Groups
0 1 2

a0b0c0 a0b1c0 a0b2c0
a0b0c1 a0b1c1 a0b2c1
a0b0c2 a0b1c2 a0b2c2
a1b2c0 a1b0c0 a1b1c0
a1b2c1 a1b0c1 a1b1c1
a1b2c2 a1b0c2 a1b1c2
a2b1c0 a2b2c0 a2b0c0
a2b1c1 a2b2c1 a2b0c1
a2b1c2 a2b2c2 a2b0c2

The AB2 groups are found by adding the a subscript to twice the b subscript.
Computation of the groups for AB2 is illustrated in Table 3.5. The groups are also
given in Table 3.6. The computations for MS(AB2) and SS(AB2) are similar to the
computations for MS(AB) and SS(AB). Recall that SS(AB) and SS(AB2), each with
2 degrees of freedom, can be added to get SS(A∗B).

Confounding and fractional replication are based on the 2 degree of freedom ef-
fects. The analysis of data from experiments designed using these concepts requires
the ability to compute the sums of squares for certain 2 degree of freedom effects.

Each effect determines the coefficients of the formula to be evaluated. The for-
mula is then applied to the subscripts identifying each treatment to identify treatment
groups. In general, the exponents of the effect determine the formula. The effect AB
has AB = A1B1C0 so the formula is (1)x1 + (1)x2 + (0)x3 mod 3. The effect AB2

has AB2 = A1B2C0 so the formula is (1)x1 +(2)x2 +(0)x3 mod 3. The effect B has
B = A0B1C0 and thus the formula is (0)x1 +(1)x2 +(0)x3 mod 3. The effect AB2C
has AB2C = A1B2C1 and formula (1)x1+(2)x2+(1)x3 mod 3. All of the groups for
the effects A, AB, AB2, ABC, ABC2, AB2C, and AB2C2 are given in Table 3.7. Notice
that the effects always have a first superscript of 1, e.g., AB2C but never A2B2C.
This has to do with redundancy in the formulas and will be discussed further in the
subsection on Fractional Replication.
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Table 3.5 AB2 Interaction Groups

subscripts AB2 = A1B2C0 Group
Treatment (x1,x2,x3) (1)x1 +(2)x2 +(0)x3 (mod 3)

a0b0c0 (0,0,0) 0 0
a0b0c1 (0,0,1) 0 0
a0b0c2 (0,0,2) 0 0
a0b1c0 (0,1,0) 2 2
a0b1c1 (0,1,1) 2 2
a0b1c2 (0,1,2) 2 2
a0b2c0 (0,2,0) 4 1
a0b2c1 (0,2,1) 4 1
a0b2c2 (0,2,2) 4 1
a1b0c0 (1,0,0) 1 1
a1b0c1 (1,0,1) 1 1
a1b0c2 (1,0,2) 1 1
a1b1c0 (1,1,0) 3 0
a1b1c1 (1,1,1) 3 0
a1b1c2 (1,1,2) 3 0
a1b2c0 (1,2,0) 5 2
a1b2c1 (1,2,1) 5 2
a1b2c2 (1,2,2) 5 2
a2b0c0 (2,0,0) 2 2
a2b0c1 (2,0,1) 2 2
a2b0c2 (2,0,2) 2 2
a2b1c0 (2,1,0) 4 1
a2b1c1 (2,1,1) 4 1
a2b1c2 (2,1,2) 4 1
a2b2c0 (2,2,0) 6 0
a2b2c1 (2,2,1) 6 0
a2b2c2 (2,2,2) 6 0

Table 3.6 AB2 Groups

(1)x1 +(2)x2 +(0)x3 mod 3 Groups
0 1 2

a0b0c0 a0b2c0 a0b1c0
a0b0c1 a0b2c1 a0b1c1
a0b0c2 a0b2c2 a0b1c2
a1b1c0 a1b0c0 a1b2c0
a1b1c1 a1b0c1 a1b2c1
a1b1c2 a1b0c2 a1b2c2
a2b2c0 a2b1c0 a2b0c0
a2b2c1 a2b1c1 a2b0c1
a2b2c2 a2b1c2 a2b0c2
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Table 3.7 Some Effect Groups for a 33 Factorial

Treatment A AB AB2 ABC ABC2 AB2C AB2C2

a0b0c0 0 0 0 0 0 0 0
a0b0c1 0 0 0 1 2 1 2
a0b0c2 0 0 0 2 1 2 1
a0b1c0 0 1 2 1 1 2 2
a0b1c1 0 1 2 2 0 0 1
a0b1c2 0 1 2 0 2 1 0
a0b2c0 0 2 1 2 2 1 1
a0b2c1 0 2 1 0 1 2 0
a0b2c2 0 2 1 1 0 0 2
a1b0c0 1 1 1 1 1 1 1
a1b0c1 1 1 1 2 0 2 0
a1b0c2 1 1 1 0 2 0 2
a1b1c0 1 2 0 2 2 0 0
a1b1c1 1 2 0 0 1 1 2
a1b1c2 1 2 0 1 0 2 1
a1b2c0 1 0 2 0 0 2 2
a1b2c1 1 0 2 1 2 0 1
a1b2c2 1 0 2 2 1 1 0
a2b0c0 2 2 2 2 2 2 2
a2b0c1 2 2 2 0 1 0 1
a2b0c2 2 2 2 1 0 1 0
a2b1c0 2 0 1 0 0 1 1
a2b1c1 2 0 1 1 2 2 0
a2b1c2 2 0 1 2 1 0 2
a2b2c0 2 1 0 1 1 0 0
a2b2c1 2 1 0 2 0 1 2
a2b2c2 2 1 0 0 2 2 1
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3.2 Column Space Considerations

Consider a 32 factorial. The ANOVA table can be broken up in two ways. The usual
method with 4 degrees of freedom for interaction and the new method in which the
interaction is divided into two 2 degree of freedom parts.

Source df Source df
A 2 A 2
B 2 B 2

A∗B 4 AB 2
AB2 2

Table 3.8 gives the treatment groups that are determined by the AB and AB2 interac-
tion groups. The groups from Table 3.8 can be rearranged into the form

B
0 1 2

0 AB(0)AB2(0) AB(1)AB2(2) AB(2)AB2(1)
A 1 AB(1)AB2(1) AB(2)AB2(0) AB(0)AB2(2)

2 AB(2)AB2(2) AB(0)AB2(1) AB(1)AB2(0).

Note that this arrangement is really a Graeco-Latin square. Each of AB(0), AB(1),
and AB(2) appears in every row and in every column, the same is true for AB2(0),
AB2(1), and AB2(2), moreover each of AB(0), AB(1), and AB(2) appears exactly
once with every AB2 group.

Table 3.8 AB and AB2 Interaction Groups

subscripts AB = A1B1 Group AB2 = A1B2 Group
Treatment (x1,x2) (1)x1 +(1)x2 (mod 3) (1)x1 +(2)x2 (mod 3)

a0b0 (0,0) 0 0 0 0
a0b1 (0,1) 1 1 2 2
a0b2 (0,2) 2 2 4 1
a1b0 (1,0) 1 1 1 1
a1b1 (1,1) 2 2 3 0
a1b2 (1,2) 3 0 5 2
a2b0 (2,0) 2 2 2 2
a2b1 (2,1) 3 0 4 1
a2b2 (2,2) 4 1 6 0

The usual linear model for a 3×3 factorial with interaction but no replication is
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y00
y01
y02
y10
y11
y12
y20
y21
y22


= X



µ

α0
α1
α2
β0
β1
β2

(α ∗β )00
(α ∗β )01
(α ∗β )02
(α ∗β )10
(α ∗β )11
(α ∗β )12
(α ∗β )20
(α ∗β )21
(α ∗β )22



+ e

where

X =



1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1


.

Building a model based on a grand mean and effects for each of the A, B, AB,
and AB2 groupings gives



y00
y01
y02
y10
y11
y12
y20
y21
y22


=



1 1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 0 1 0 0 1 0 0 0 1
1 1 0 0 0 0 1 0 0 1 0 1 0
1 0 1 0 1 0 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 0 1 1 0 0
1 0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0 1 0 1 0 0





µ

α0
α1
α2
β0
β1
β2

(αβ )0
(αβ )1
(αβ )2
(αβ 2)0
(αβ 2)1
(αβ 2)2



+ e
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Note that the column space of the model matrix is the same in each model, i.e.,
R9. Since the columns corresponding to µ , the αs, and the β s are the same in each
model, the interaction space — which is the space orthogonal to that spanned by µ ,
the αs, and β s — must be the same for each model. However, after adjusting for the
grand mean, i.e. using Gram-Schmidt to orthogonalize with respect to the column of
1s, the columns corresponding to the (αβ ) terms are orthogonal to the columns for
the α terms, the β terms, and also the (αβ 2) terms. Similarly, the columns for the
(αβ 2) terms are orthogonal to all of the other sets of columns. To see this, observe
that after adjusting everything for a column of 1s, the X matrix becomes

1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1
1 2 −1 −1 −1 2 −1 −1 2 −1 −1 −1 2
1 2 −1 −1 −1 −1 2 −1 −1 2 −1 2 −1
1 −1 2 −1 2 −1 −1 −1 2 −1 −1 2 −1
1 −1 2 −1 −1 2 −1 −1 −1 2 2 −1 −1
1 −1 2 −1 −1 −1 2 2 −1 −1 −1 −1 2
1 −1 −1 2 2 −1 −1 −1 −1 2 −1 −1 2
1 −1 −1 2 −1 2 −1 2 −1 −1 −1 2 −1
1 −1 −1 2 −1 −1 2 −1 2 −1 2 −1 −1


.

The last three columns corresponding to the (αβ 2) terms are orthogonal to every-
thing else, and columns 8, 9, 10 corresponding to the (αβ ) terms are orthogonal to
everything else. Each of these sets of 3 columns must be in the interaction space be-
cause they are orthogonal to the columns for µ , the αs, and β s. Since they are also
orthogonal to each other, they are breaking the interaction into 2 orthogonal pieces.
Finally, the interaction columns were originally just group indicators, so the sums
of squares for the one-way ANOVA on these groups will give the sum of squares
appropriate for these sets of orthogonal columns.

3.3 Confounding and Fractional Replication

Having identified the groups associated with each 2 degree of freedom effect, we
can now consider the issues of confounding and fractional replication. Confounding
is a process for determining incomplete blocks, i.e., blocks that do not contain all
of the treatments, but confounding retains a relatively simple analysis for the data.
Fractional replication is a process for constructing experiments that do not contain
all of the factorial treatments but retains an analysis of the data that allows one to
identify important effects.
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3.3.1 Confounding

We begin with a discussion of confounding. We can pick an effect, say, ABC to
define blocks of size 9 in a 33 experiment. The effect ABC divides the treatments
into three groups, the three groups define three blocks of 9 treatments. The groups
were identified in Table 3.7 and the blocks are given in Table 3.9. Alternatively, we
could use AB2C2 to define three different blocks of 9. These are given in Table 3.10.

Table 3.9 ABC Defining Three Blocks of Nine

Block Block Block
0 1 2

a0b0c0 a0b0c1 a0b0c2
a0b1c2 a0b1c0 a0b1c1
a0b2c1 a0b2c2 a0b2c0
a1b0c2 a1b0c0 a1b0c1
a1b1c1 a1b1c2 a1b1c0
a1b2c0 a1b2c1 a1b2c2
a2b0c1 a2b0c2 a2b0c0
a2b1c0 a2b1c1 a2b1c2
a2b2c2 a2b2c0 a2b2c1

With ABC defining blocks, two degrees of freedom are confounded with the three
blocks but the other 6 degrees of freedom involving A∗B∗C interactions are avail-
able in ABC2, AB2C, and AB2C2. It is at this point, and not before, that the anal-
ysis requires computation of sums of squares for individual 2 degree of freedom
interaction effects. (Although a good linear model program that fits blocks before
interactions should give the correct 6 degree of freedom interaction term.)

Table 3.10 AB2C2 Defining Three Blocks of Nine

Block Block Block
AB2C2(0) AB2C2(1) AB2C2(2)

a0b0c0 a0b0c2 a0b0c1
a0b1c2 a0b1c1 a0b1c0
a0b2c1 a0b2c0 a0b2c2
a1b0c1 a1b0c0 a1b0c2
a1b1c0 a1b1c2 a1b1c1
a1b2c2 a1b2c1 a1b2c0
a2b0c2 a2b0c1 a2b0c0
a2b1c1 a2b1c0 a2b1c2
a2b2c0 a2b2c2 a2b2c1

We can also use two effects to create 9 blocks of size three. If we use ABC and
AB2C2 to define blocks, one group consists of the three treatments in the ABC(0)
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group that are also in the AB2C2(0) group. Another group of three has both ABC(0)
and AB2C2(1). The 9 blocks of three run through ABC(i) and AB2C2( j) for i, j =
0,1,2. Table 3.11 gives the 9 blocks defined by ABC and AB2C2.

Table 3.11 ABC, AB2C2 Defining Nine Blocks of Three

ABC(0) ABC(1) ABC(2)
a0b0c0 a2b0c2 a1b0c1

AB2C2(0) a0b1c2 a2b1c1 a1b1c0
a0b2c1 a2b2c0 a1b2c2
a2b0c1 a1b0c0 a0b0c2

AB2C2(1) a2b1c0 a1b1c2 a0b1c1
a2b2c2 a1b2c1 a0b2c0
a1b0c2 a0b0c1 a2b0c0

AB2C2(2) a1b1c1 a0b1c0 a2b1c2
a1b2c0 a0b2c2 a2b2c1

As in 2 f factorials, when more than one effect is used to define groups (blocks),
other effects also determine the same groups (are confounded with blocks). With
9 blocks, there are 8 degrees of freedom for blocks. The defining effects, ABC and
AB2C2, are confounded with blocks but these account for only 4 degrees of freedom.
There are 4 additional degrees of freedom for blocks and since each effect has 2
degrees of freedom, two additional effects are implicitly confounded with blocks.
Again as in 2 f factorials, the implicitly confounded effects can be identified using
modular multiplication, however, the multiplication works differently. Exponents
are now evaluated modulo 3. Multiplying the two defining effects gives

ABC×AB2C2 = A2B3C3 = A2B0C0 = A2.

We never allow the first superscript in an effect to be 2. To eliminate such terms in
a 3 f experiment, raise the term to the 3−1 power,

A2 = (A2)2 = A4 = A.

(More on this issue of the first superscript later.) Thus when confounding both ABC
and AB2C2, the main effect A is also confounded. We can see this directly from
Table 3.11, where the level of A is constant in every block, i.e., the a subscript is the
same in every block. One more effect is implicitly confounded with blocks; it can
be identified by multiplying one defining effect times the square of the other effect,
i.e.,

ABC× (AB2C2)2 = A3B5C5 = B2C2 = (B2C2)2 = B4C4 = BC.

It is irrelevant which effect is squared, the result is the same either way.
Performing a 3 f experiment in 27 blocks of size 3 f−3 requires the use of three

defining effects. These are effects such as ABCD, ABC2D, and AB2CD2, but we will
refer to them generically as α , β , and γ . With 27 blocks there are 26 degrees of
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freedom for blocks. Each effect has 2 degrees of freedom, so there are 13 effects
confounded with blocks. Three of the effects are the defining effects α , β , and γ .
The other ten effects can be obtained through multiplying pairs of factors,

α(β ), α(β )2, α(γ), α(γ)2, β (γ), β (γ)2

and multiplying all three factors,

αβγ, αβγ
2, αβ

2
γ, αβ

2
γ

2.

Just to illustrate the method of finding the effects that are confounded, suppose AB,
CD and EF are the defining effects. The effects that are implicitly confounded are
ABCD, AB(CD)2, ABEF , AB(EF)2, CDEF , CD(EF)2, ABCDEF , ABCD(EF)2,
AB(CD)2EF , AB(CDEF)2.

3.3.2 Fractional Replication

Any one of the three blocks in Table 3.9 defines a 1/3 rep. of the 33 factorial based
on ABC. Similarly, any one of the three blocks in Table 3.10 defines a 1/3 rep. of
the 33 factorial based on AB2C2. Similarly, any one of the nine blocks in Table 3.11
defines a 1/9 rep. of the 33 factorial based on ABC and AB2C2.

In fractional replication, many effects will be lost. In a 1/2 rep. of a 2 f factorial,
about 1/2 of the effects are lost to aliasing. In a 1/3 rep. of a 3 f factorial, about
2/3s of the effects are lost to aliasing. It is vital to identify the aliasing structure
in fractional replications. To do this, we need to delve a bit deeper into modular
arithmetic.

Recall that the first term in all of our effects always has a power of 1, e.g., AB2C2

but never A2B2C2, also BC2 but never B2C. The first term always has a power of 1
because having any larger power is redundant. The groups defined by an effect, say,
AB2C2 are determined by the value of

z = [(1)x1 +(2)x2 +(2)x3] mod 3

where (x1,x2,x3) are the subscripts of the treatments (a,b,c). If we double the co-
efficients in the equation we get

z = [(2)x1 +(4)x2 +(4)x3] mod 3
= [(2)x1 +(1)x2 +(1)x3] mod 3.

Here we have also adjusted the coefficients using modular arithmetic. For example,
it is easy to see that with an integer x, 4x mod 3 = x mod 3. The groups defined by
this second equation correspond to

A2B4C4 = A2B1C1 = A2BC,
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where we are again using modular multiplication. The point is that the two sets
of equations for AB2C2 and A2BC give identical groups. Every treatment that is in
group 0 for AB2C2 is also in group 0 for A2BC. Every treatment that is in group 1
for AB2C2 is in group 2 for A2BC and every treatment that is in group 2 for AB2C2

is in group 1 for A2BC. Thus,

AB2C2 ≡ A2BC.

Generally, if we take any power of an effect where the power is a positive integer
less than p = 3, we still have the same effect because the new modular equation
gives the same groups. To have a unique way of writing each effect, we never allow
the first superscript in an effect to be greater than 1. When given an effect with a
lead term having an exponent of 2, squaring the term reduces the exponent without
changing the effect, e.g.,

A2BC =
(
A2BC

)2
= A4B2C2 = AB2C2.

Modular multiplication and the equivalences between effects are crucial to iden-
tifying aliases. In a 1/3 rep. based on ABC, the aliases of an effect are determined
from multiplying the effect by ABC and (ABC)2. For example, the main effect A is
aliased with two other effects

A×ABC = A2BC =
(
A2BC

)2
= A4B2C2 = AB2C2

and
A× (ABC)2 = A3B2C2 = B2C2 =

(
B2C2)2

= B4C4 = BC.

The interaction effect BC2 is aliased with two effects

BC2×ABC = AB2C3 = AB2

and
BC2× (ABC)2 = A2B3C4 = A2C =

(
A2C

)2
= A4C2 = AC2.

Tables 3.12 and 3.13 give all the multiplications for determining the aliasing struc-
ture for the 1/3 rep. based on ABC. The aliasing structure of this example can be
determined from either Table 3.12 or 3.13 by simply listing all of the equalities. The
aliasing structure reduces to

A = AB2C2 = BC,

B = AB2C = AC,

C = ABC2 = AB,

and
AB2 = AC2 = BC2

with the defining effect ABC lost (confounded with the grand mean).
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Table 3.12 First Aliasing Table for a 1/3 Rep. of a 33 Based on ABC

Source ×ABC
A = A2BC = AB2C2

B = AB2C = AB2C
C = ABC2 = ABC2

AB = A2B2C = ABC2

AB2 = A2B3C = AC2

AC = A2BC2 = AB2C
AC2 = A2BC3 = AB2

BC = AB2C2 = AB2C2

BC2 = AB2C3 = AB2

ABC = A2B2C2 = ABC*
ABC2 = A2B2C3 = AB
AB2C = A2B3C2 = AC
AB2C2 = A2B3C3 = A

Table 3.13 Second Aliasing Table for a 1/3 Rep. of a 33 Based on ABC

Source ×A2B2C2

A = A3B2C2 = BC
B = A2B3C2 = AC
C = A2B2C3 = AB
AB = A3B3C2 = C
AB2 = A3B4C2 = BC2

AC = A3B2C3 = B
AC2 = A3B2C4 = BC2

BC = A2B3C3 = A
BC2 = A2B3C4 = AC2

ABC = A3B3C3 = —
ABC2 = A3B3C4 = C
AB2C = A3B4C3 = B
AB2C2 = A3B4C4 = BC

A 1/9 rep. of a 33 can be obtained by using just one of the 9 blocks given in
Table 3.11. Typically one would not perform a 1/9th rep. of something as small as
a 33, but we will discuss the issues involved to illustrate the principles. They extend
easily to general 3 f systems. Table 3.11 uses the defining effects ABC and AB2C2.
As with 2 f systems, there are additional effects lost when more than one defining
effect is used. The effects

ABC×AB2C2 = A2B3C3 = A2 = A

and
ABC×

(
AB2C2)2

= A3B5C5 = B2C2 = BC.
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are also (implicit) defining effects. Note that squaring both terms in the multiplica-
tions just leads to redundancies, e.g.,

(ABC)2×AB2C2 = BC.

To find the aliases for an effect, say B, we need to multiply the effect by all four
of the defining effects and by the squares of all the defining effects. Thus B has the
following aliases,

B×ABC = AB2C

B× (ABC)2 = AC

B×AB2C2 = AC2

B×
(
AB2C2)2

= ABC2

B×A = AB

B×A2 = AB2

B×BC = BC2

B×B2C2 = C

or
B =C = AB = AB2 = AC = AC2 = BC2 = ABC2 = AB2C.

In this example, all of the effects that are not used in defining the 1/9th rep. are
aliased with each other. In a 1/9th rep. of a 33, only three treatments are used so
there are only 2 degrees of freedom for treatments. Every effect has two degrees of
freedom so there is only one effect available; it can be called anything except one of
the effects that define the fractional rep.

EXAMPLE 3.3.1. A 35 Factorial
With only 27 treatments in a 33, it would not be of much value to consider a 1/9th
rep. However a 35 has 243 treatments, so a 1/9th rep. reduces the problem to a more
manageable 27 treatments. With factors A, B, C, D, E, we might use ABC2D and
BC2DE2 as defining effects. The groups are defined using the ABC2D equation

z1 = [x1 + x2 +2x3 + x4 +0x5] mod 3

and the BC2DE2 equation

z2 = [0x1 + x2 +2x3 + x4 +2x5] mod 3

where (x1,x2,x3,x4,x5) denotes the subscripts of a treatment combination and the
coefficients in the equations are determined by the superscripts in the defining ef-
fects. The treatments that have, say, z1 = 1 are referred to as the ABC2D(1) group
with similar definitions for z1 = 0,2 and groups ABC2D(0) and ABC2D(2). BC2DE2

groups are denoted in the same way based on the values of z2. Thus a0b0c0d0e0 is in
the group defined by ABC2D(0) and BC2DE2(0), while a0b1c2d1e1 is in the group
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defined by ABC2D(0) and BC2DE2(2), and a1b1c1d1e1 is in the group defined by
ABC2D(2) and BC2DE2(0).

The two defining effects ABC2D and BC2DE2 determine 9 blocks of 27 treat-
ments. Any one of the blocks can be used as a 1/9 rep. In a 1/9 rep., other effects
are implicit defining effects, namely

BC2DE2×ABC2D = AB2C2D2E

and
BC2DE2×

(
ABC2D

)2
= A2B3C6D3E2 = A2E2 = AE.

An effect, say B, has the following aliases,

B×ABC2D = AB2C2D

B×
(
ABC2D

)2
= AC2D

B×BC2DE2 = BCD2E

B×
(
BC2DE2)2

= CD2E

B×AB2C2D2E = AC2D2E

B×
(
AB2C2D2E

)2
= ABC2D2E

B×AE = ABE

B×A2E2 = AB2E

or

B = ABE = AB2E = AC2D =CD2E =

AB2C2D = AC2D2E = BCD2E = ABC2D2E.

3.4 Taguchi’s Orthogonal Arrays

Byrne and Taguchi (1989) and Lucas (1994) considered an experiment on the force
y, measured in pounds, needed to pull tubing from a connector. Large values of y are
good. The controllable factors in the experiment are as follows: A — Interference
(Low, Medium, High), B — Wall Thickness (Thin, Medium, Thick), C — Ins. Depth
(Shallow, Medium, Deep), D — Percent Adhesive (Low, Medium, High). The stated
factor levels are all ordered but not numerical. The data are given in Table 3.14.

The design is a standard one proposed by Genichi Taguchi that he called L9.
The 9 is because it involves 9 treatment combinations. The design is a fractional
factorial involving four factors each at three levels. Specifically, it is a 1/9th rep of a
3×3×3×3 design. With 34 = 81 treatment combinations and only 9 observations,
it must be a 1/9th rep. A p−r fractional replication of a p f factorial structure is
sometimes referred to as a p f−r design, so this is a 34−2. We will see that the design
allows one to estimate all of the main effects. It also only allows estimation of the
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Table 3.14 Taguchi 3×3×3×3 Fractional Design

Run a b c d Observations
1 0 0 0 0 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1
4 0 1 1 1 15.0 16.2 19.4 19.6 19.7 19.8 24.2 21.9
7 0 2 2 2 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4
3 1 0 1 2 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7
2 1 1 2 0 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3
5 1 2 0 1 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7
8 2 0 2 1 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6
6 2 1 0 2 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.4
9 2 2 1 0 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6

main effects and assumes the absence of any interactions. This is characteristic of
the designs that Taguchi typically suggested for controllable factors.

We begin by identifying the defining effects. In general a p f−r design requires
r (unaliased) explicit defining effects to divide the original p f factor combinations
into pr groups each containing p f−r factor combinations. The treatments in this
design satisfy the two subscript constraints,

x2 + x3 + x4 mod 3 = 0

and
x1 + x2 +2x3 mod 3 = 0.

In other words, the defining effects can be taken as BCD and ABC2. Implicit
defining effects are then BCD×ABC2 = AB2C3D = AB2D and BCD× (ABC2)2 =
A2B3C5D = A2C2D = (A2C2D)2 = A4C4D2 = ACD2. To double check this, the cor-
responding modular subscript equations are

x1 +2x2 + x4 mod 3 = 0

and
x1 + x3 +2x4 mod 3 = 0.

These are both satisfied by the treatments employed. Having identified all of the
defining effects, we see that this is a resolution III design, so no main effects are
aliased with each other. The main effects account for 8 degrees of freedom, so with
9 observations, no other treatment effects can be examined.

To check the aliasing more specifically,

A(ABC2) = A2BC2 = AB2C,

A(ABC2)2 = B2C = BC2,

A(BCD) = ABCD,
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A(BCD)2 = AB2C2D2,

A(AB2D) = A2B2D = ABD2,

A(AB2D)2 = B4D2 = BD2,

A(ACD2) = A2CD2 = AC2D,

A(ACD2)2 =C2D =CD2,

so A is not confounded with other main effects. Similar patterns hold for for B, C,
and D.

3.4.1 Listed Designs

Taguchi apparently liked this particular 1/9th rep, but I don’t see how it could be
better than a huge number of other choices that are resolution III designs. In partic-
ular, it cannot be better than the other eight 1/9th replications that are determined
by the same defining effects.

Taguchi provided Lq designs for q = 4,8,12,16,18,25,27,32,36,50,54,64,81.
In other words, for q= 22,23,22×3,24,2×32,52,33,25,22×32,2×52,2×33,26,34.
Our current theory handles all of these except for those involving products of pow-
ers of different prime numbers, which are examined in Chapter 4. (5 f structures are
illustrated in Section 6 but the theory is the same as for 3 f .)

Taguchi discusses how, for example, his L18 and L27 structures provide resolu-
tion III designs for 2×37−5 and 313−10 treatment structures. These require 5 and 10
explicit defining effects, respectively. When using a large number of explicit defin-
ing effects, there are even more implicit defining effects. With so many defining
effects, it can be difficult to achieve a resolution III design. Construction of L18 is
considered in the next chapter. We now address finding competitors to L27.

For a 313−10, the factors are A through M. In general, to get a 313−10, we need
10 defining effects. With 10 =

(5
2

)
, one way to proceed is by partitioning the fac-

tors into 5 sets, say, ABC, DEF , GHI, JK, LM. In an effort to get a resolution
III design, we want these all to involve 3 factors, so change the sets to ABC,
DEF , GHI, AJK, DLM. We create defining effects by combining pairs of these,
i.e., ABCDEF , ABCGHI, A2BCJK, ABCDLM, DEFGHI, ADEFJK, D2EFLM,
AGHIJK, DGHILM, ADJKLM. Because the defining effects all contain at least
5 distinct factors and every pair of defining effects has at least 3 distinct entries, the
implicit defining effects should all include at least three factors, which means that
no main effects are aliased with other main effects.

Think of this process as involving AB̃≡ ABC, DẼ ≡DEF , G̃≡GHI, AJ̃ ≡ AJK,
DL̃ ≡ DLM and defining effects AB̃DẼ, AB̃G̃, A2B̃J̃, AB̃DL̃, DẼG̃, ADẼJ̃, D2ẼL̃,
AG̃J̃, ADG̃J̃, DG̃L̃, ADJ̃DL̃. I think you can see that products will always give at
least a three factor interaction.
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3.4.2 Inner and Outer Arrays

The four factors associated with Table 3.4.14 are what Taguchi called control factors
because they are (should be) relatively easy for the experimenter to control. It turns
out that the 8 observations presented for every treatment combination are not true
replications. They are the result of a 23 design on three noise factors that can be
controlled only with exceptional effort. In reality this is a 1/9th rep of a 23× 34

experiment. The traditional analysis of such designs is examined in the next chapter
however Taguchi’s proposed data analysis ignores the 23 structure and treats the 8
observations on the noise factors as a random sample to be summarized before being
analyzed. Taguchi called the design for the control factors the inner array and the
design for the noise factors the outer array. In our example, the inner array is the L9
and the outer array is L8.

The summarization of the outer array data has been one source of criticism for
Taguchi’s methods. Since the noise factors are beyond practical control, the data
generated for them are treated as replications rather than as observations on factors.
(In essence, Taguchi treats them as a stratified random sample with one observation
per strata and equal weights on each strata — ignoring within stratum variability).
My opinion is that this is a sensible approach if the levels of the noise factors are well
chosen to represent the full spectrum of noise levels encountered in practice. The
sample variance computed over the noise factors should supply a valuable measure
of how bad the variability could be during standard operations and, similarly, the
mean is a not inappropriate summary measure of central tendency.

3.4.2.1 Split Plot Designs

While it is possible to run an inner-outer array experiment in any sort of design, the
very nature of inner and outer arrays suggests that they would most often be run as
split plot experiments!

If the outer array noise factors are the most difficult to control, it seems likely
that one would (randomly pick a set of noise factors from the outer array and) do
what is necessary to control them and, while controlled at that level, run all of the
inner array treatment combinations (in random order). That makes the outer array
into whole plot treatments and the inner array into subplot treatments. The analysis
of such a data collection scheme will be illustrated in the next chapter because in
the Byrne-Taguchi example, the inner array is a 34−2 but the outer array is a 23, so
the design involves a mixture of prime powers as discussed in the next chapter.

The other possibility is to take the inner array as the whole plot treatments and
the outer array as subplot treatments. That involves fixing an inner-array factor com-
bination and manipulating the noise factors so that all of the outer array is observed
before moving on to the next inner array combination. Treating the inner array as
whole plot treatments leads to the traditional Taguchi analysis that is illustrated
in this section. As discussed by Christensen (1996, 2015), in split plot models the
whole plot treatments (here the inner array) can be analyzed by averaging over the
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subplots (outer array). This implicitly ignores any interactions between the inner
array factors and the outer array factors, which may be reasonable to do when the
outer array contains only noise factors.

Another advantage to making the inner array the whole plot treatments is that
variability associated with changing the inner array factor combinations is not par-
ticularly relevant to the eventual application of the data. The ultimate idea is to settle
on a particular inner array combination and to use that in the future. The relevant
variability for future use is the variability associated with the uncontrollability of
noise factors, i.e., the variance within each whole plot.

We will see in the next subsection that if the observations are yio, where i indi-
cates an inner array factor combination and o indicates an outer array factor com-
bination, the Taguchi analysis is performed by averaging (over o) one or more of
the dependent variable values yio, y2

io, 1/y2
io, (yio− ȳi·)

2, or more often transforming
these averages. Note that the mean of (yio− ȳi·)

2 is the method of moments estimator
for the variance within whole plots.

Our description of the Byrne-Taguchi data does not specify how the data were
collected, so we will illustrate both split plot analyses on these data. (The inclusion
of the variable “Run” actually hints that the inner array may constitute the whole plot
treatments making the analysis given in this section the correct one.) The analysis
for treating the outer array as whole plot treatments is reserved for the next chapter
because of the specific form of this outer array.

3.4.3 Signal-to-Noise Ratios

Taguchi’s primary emphasis was that processes should be designed to minimize
variability while staying on target. He operationalized this idea through the analysis
of signal-to-noise ratios.

Although the eight observations for each (inner array) factor combination in Ta-
ble 3.14 were obtained in a systematic fashion, in the Taguchi analysis those outer
array observations are treated as a random sample, even though they clearly are not.
In the analysis, the multiple observations on each inner array factor combination are
summarized in some way prior to analysis. The obvious summarization is the sam-
ple mean. Additional obvious summary measures are the sample variance, sample
standard deviation, or the logarithms of those values.

One of Taguchi’s most controversial ideas was to summarize the outer array data
using “signal-to-noise ratios.” The idea is to maximize the appropriate signal-to-
noise ratio. Again let the observations be yio with i — inner array and o — outer
array, o = 1, . . . ,N. For minimizing a response y his signal-to-noise ratio is defined
as

SNmin,i ≡− log

(
N

∑
o=1

y2
io/N

)
=− log

(
ȳ2

i·+
N−1

N
s2

i

)
.
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Because of the minus sign, to make this large you need both ȳi· and s2
i to be small

but of course there are many other functions of ȳi· and s2
i that could accomplish the

same thing. For maximizing a response his signal-to-noise ratio is

SNmax,i ≡− log

(
N

∑
o=1

1/y2
ioN

)
,

apparently because maximizing y is the same as minimizing 1/y (for positive y). For
minimizing variability around a target his signal-to-noise ratio is

SNtar,i ≡ log
(

ȳ2
i·

s2
i

)
= log(ȳ2

i·)− log(s2
i ).

The apparent rationale is that if ȳi· always remains close to the target, you just want
to minimize s2

i . An apparently common approach is to divide the control factors into
two groups. First identify control factors that affect the signal-to-noise ratio and use
them to maximize it. Then use the control factors that do not have much affect on
the SN ratio to try to put the process on target.

3.4.4 Taguchi Analysis

Table 3.15 contains three summary statistics to be used in a Taguchi analysis of the
Byrne-Taguchi data. We fit a main-effects model to each of ȳi·, log(si), and SNmax,i.
For each dependent variable we constructed two χ2 plots. The first is a χ2(2) plot for
the main-effect sums of squares. The second plot is a χ2(1) plot based on treating the
factor subscripts (associated with ordered levels) as regression variables and fitting
quadratic polynomials in the main effects. (Quadratic effects really just measure
nonlinearity.) This gives sums of squares for a linear (e.g. a) and quadratic (e.g. aa)
contrast in each main effect. Figures 3.1, 3.2, and 3.3 contain the χ2 plots for the
different dependent variables.

I don’t see any clear evidence for the existence of main effects in either the mean
or the log-standard-deviation plot. But I can imagine someone else arguing that all
or nearly all of the effects are important. For the signal-to-noise ratio I again see
no clear evidence of effects but some evidence for one or possibly two contrasts
having effects. The two largest sums of squares are for the linear effect in C and the
quadratic effect in A.

To make sense of any important effects we would look at means plots. These
are given in Figures 3.4, 3.5, and 3.6. We will not discuss the means plots for the
means or log standard deviations of the outer array data because they displayed no
obvious main effects. For the signal-to-noise ratio the two largest χ2(1) values were
for the curvature in A and the linear effect in C. Since interest is in maximizing the
signal-to-noise ratio, the recommendation would be to pick the middle level of A
and, despite the importance of the linear effect in C (which really only looks at the
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Table 3.15 Bryne-Taguchi 34−2 Design

Run Outer Array Summaries
i a b c d ȳi· s2

i SNmax,i
1 0 0 0 0 17.5250 13.050714 5.532040
4 0 1 1 1 19.4750 8.447857 5.876575
7 0 2 2 2 19.0250 8.313571 5.833544
3 1 0 1 2 20.1250 6.747857 5.964675
2 1 1 2 0 22.8250 11.747857 6.195688
5 1 2 0 1 19.2250 11.422143 5.831468
8 2 0 2 1 19.8500 8.908571 5.920132
6 2 1 0 2 18.3375 14.248393 5.717851
9 2 2 1 0 21.2000 15.585714 6.021715
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Fig. 3.1 χ2 plots for main effects: Means of outer array.

difference between the low and high levels), it looks like either the high or middle
level of C should work reasonably well.

In practice you have to play off the experimental results against the production
costs of various techniques. For example, if two levels have roughly the same effects,
obviously you would choose the more inexpensive level. If two levels have radically
different costs, it is harder to decide whether improved performance is worth the
cost.
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Fig. 3.2 χ2 plots for main effects: Log standard deviations of outer array.
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Fig. 3.3 χ2 plots for main effects: SNmax of outer array.
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Fig. 3.4 Means plots for main effects: Means of Taguchi outer array.
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Fig. 3.5 Means plots for main effects: Log standard deviations of Taguchi outer array.

3.5 Analysis of a Partially Confounded 33

The data in Table 3.16 are adapted from Kempthorne (1952) to illustrate appropri-
ate methods of analysis. The experiment concerns the effects of three factors on the
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Fig. 3.6 Means plots for main effects: SNmax of Taguchi outer array.

sugar content in sugar beets. The dependent variable is (%sugar−16)100. The three
factors are D – the sowing date, S – the spacings of the rows, and N – the amount
of fertilizer (sulphate of ammonia) applied. In Table 3.16 the treatments are iden-
tified by their subscripts alone. The experiment was performed in 2 replications.
Each replication has 9 blocks of size 3. In the first replication DS2N and SN are
confounded with blocks. In the second replication DS2N2 and DN are confounded.
Thus we introduce partial confounding for 3 f s in this analysis.

The defining effects for the blocks in Rep. 1 are DS2N and SN. It follows that

DS2N×SN = DN2

and
DS2N× (SN)2 = DS

are also confounded with blocks in Rep. 1. Similarly, the defining effects for the
blocks in Rep. 2 are DS2N2 and DN, so DS and SN2 are also confounded with
blocks in Rep. 2. Note that DS is confounded with blocks in both replications, so
there is no information available on DS.

One version of the analysis of variance table is given as Table 3.17. In this version
the interactions are not broken into 2 degree of freedom effects. The model involves
Blocks and a full factorial analysis on the three factors. The blocks are just listed
from 1 to 18. To get the correct analysis from good software, the blocks must be
fitted before the treatment factors.
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Table 3.16 Sugar Beet Data

Rep. 1 Rep. 2
dsn y dsn y dsn y dsn y dsn y dsn y
000 79 110 62 102 79 000 47 202 42 012 10
121 44 022 −2 011 105 211 43 021 36 220 108
212 59 201 53 220 56 122 30 110 44 101 33
100 85 001 100 111 105 112 39 100 88 121 79
221 36 210 105 020 50 020 21 011 53 002 18
012 70 122 79 202 50 201 39 222 39 210 88
200 59 222 21 211 96 102 44 212 42 200 27
112 13 101 47 120 65 010 33 120 105 111 4
021 70 010 30 002 85 221 68 001 27 022 56
In Rep. 1 the defining effects for blocks are DS2N and SN
with DN2 and DS also confounded. In Rep. 2 the defining effects for blocks
are DS2N2 and DN with SN2 and DS also confounded.

In Minitab 16, the output from the “glm” command provided two sets of degrees
of freedom: model degrees of freedom, i.e., what one would normally expect to
have for degrees of freedom, and reduced degrees of freedom. The reduced degrees
of freedom are appropriate. When the model and reduced degrees of freedom differ,
the reduced number had a + after it to emphasize the difference. For example, under
normal conditions the D ∗ S interaction would have 4 degrees of freedom, however
D ∗ S has been decomposed into DS, which is completely confounded with blocks,
and DS2. The 2 degrees of freedom in the table for D ∗ S are just the two degrees
of freedom for DS2. In Minitab 18, my experience with similar problems makes me
suspect that the output will look pretty, but be useless. I haven’t actually checked it
yet. Minitab 19 will be released soon. Hope springs eternal.

Table 3.17 Analysis of Variance for Confounded Sugar Beet Experiment

Analysis of Variance
Source df SS MS F
Blks 17 17416.00 1024.47 0.81
D 2 838.78 419.39 0.33
S 2 60.78 30.39 0.02
N 2 4177.33 2088.67 1.65
D∗S 2 238.78 119.39 0.09
D∗N 4 1692.22 423.06 0.33
S∗N 4 898.89 224.72 0.18
D∗S∗N 8 2724.22 340.53 0.27
Error 12 15178.33 1264.86
Total 53 43225.33

The most remarkable thing about Table 3.17 is the fact that the F statistics are so
uniformly small. If I were getting paid to analyze these data, I would have a serious
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talk with the people who conducted the experiment to see whether some explanation
of this could be found. In the present context, our primary concern is not the data
but the process of analyzing the data.

3.5.1 The Expanded ANOVA Table

We now consider the expanded ANOVA table in which the interactions are broken
into 2 degree of freedom effects. The expanded table is presented as Table 3.18.
In Table 3.18, the first line of Table 3.17 has been broken into Reps and Blocks
within Reps. The mean square for Blocks in Table 3.17 is computed from the 18
block means. Each block mean is the average of 3 observations. The mean square
for Reps in Table 3.18 is computed from the two replication means. Each Rep. mean
is averaged over 27 observations. To compute the sum of squares for Blocks within
Reps, subtract the sum of squares for Reps from the sum of squares for Blocks in
Table 3.17. The lines for D, S, and N are identical in the two ANOVA tables; they are
computed in the usual way. The three means for any main effect are each averages
over 18 observations.

Table 3.18 Analysis of Variance for Confounded Sugar Beet Experiment

Analysis of Variance
Source df SS MS F
Reps 1 3552.67 3552.67 2.81
Blks(Reps) 16 13863.33 866.46 0.69
D 2 838.78 419.39 0.34
S 2 60.78 30.39 0.02
N 2 4177.33 2088.66 1.65
DS2 2 238.78 119.39 0.09
DN/Rep 1 2 578.67 289.33 0.23
DN2/Rep 2 2 1113.56 556.78 0.44
SN/Rep 2 2 170.89 85.44 0.07
SN2/Rep 1 2 728.00 364.00 0.29
DSN 2 552.33 276.17 0.22
DSN2 2 446.33 223.17 0.18
DS2N/Rep 2 2 1381.56 690.78 0.55
DS2N2/Rep 1 2 344.00 172.00 0.14
Error 12 15178.33 1264.86
Total 53 43225.33

The analysis begins to get more complicated when we consider the interactions.
The effects DN2, SN, and DS2N are confounded in Rep. 1 but not in Rep. 2, so we
can obtain mean squares and sums of squares for these effects from Rep. 2. Each
of these effects defines three groups of treatments. The sugar content observations
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from Rep. 2 are listed below for each group along with their means. The means are
averages over 9 observations.

Groups and Means from Rep. 2
DN2 SN DS2N

0 1 2 0 1 2 0 1 2
47 43 30 47 30 43 47 30 43
42 44 36 36 44 42 44 42 36
33 10 108 10 33 108 108 10 33
21 39 39 39 39 21 39 21 39
39 88 53 88 39 53 53 88 39
79 18 88 79 88 18 79 88 18
33 68 44 68 33 44 44 68 33
42 105 27 42 27 105 42 27 105

4 56 27 27 56 4 56 4 27
37.7̄ 52.3̄ 50.2̄ 48.4̄ 43.2̄ 48.6̄ 56.8̄ 42.0 41.4̄

The mean square for DN2 is 9 times the sample variance of 37.7̄, 52.3̄, and 50.2̄.
The mean squares for SN and DS2N are found similarly.

The effects DS2N2, DN, and SN2 are confounded in Rep. 2 but not in Rep. 1
so we can obtain mean squares and sums of squares for these effects from Rep.
1. Again, each of the effects defines three groups of treatments. The sugar content
observations from Rep. 1 are listed below for each group along with their means.
The means are again averages over 9 observations and the mean square for each
effect is 9 times the sample variance of the three group means.

Groups and Means from Rep. 1
DN SN2 DS2N2

0 1 2 0 1 2 0 1 2
79 59 44 79 59 44 79 44 59
53 62 −2 −2 53 62 62 53 −2
79 105 56 105 56 79 56 105 79
36 85 70 85 70 36 70 85 36
79 100 105 79 100 105 79 105 100
50 50 105 105 50 50 50 50 105
13 70 59 59 13 70 70 13 59
30 21 47 21 47 30 47 21 30
96 65 85 96 65 85 96 85 65

57.2̄ 68.5̄ 63.2̄ 69.6̄ 57.0 62.3̄ 67.6̄ 62.3̄ 59.0

There are three interaction effects remaining: DS2, DSN, and DSN2. None of
these effects are confounded in either replication so their mean squares are com-
puted from the complete data. The observations in the three groups for DS2 are
given below with their means.
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DS2 Groups and Means from Complete Data
DS2(0) DS2(1) DS2(2)

79 12 39 59 70 21 44 59 39
62 21 39 −2 47 88 53 30 53
56 85 18 79 96 88 105 65 79
36 47 68 85 43 44 70 30 33

100 44 27 105 36 42 79 42 105
105 108 4 50 33 56 50 10 27

52.83̄ 57.77̄ 54.05̄

The mean square for DS2 is 18 times the sample variance of the three means. The
observations in the three groups for DSN are given below with their means.

DSN Groups and Means from Complete Data
DSN(0) DSN(1) DSN(2)

79 70 39 44 13 39 59 59 21
53 21 39 −2 30 88 62 47 53
79 65 88 56 96 79 105 85 18
70 47 44 85 43 33 36 30 68

105 36 105 100 42 27 79 44 42
105 10 4 50 108 56 50 33 27

58.83̄ 54.83̄ 51.00

Finally, the observations in the three groups for DSN2 are given below with their
means.

DSN2 Groups and Means from Complete Data
DSN2(0) DSN2(1) DSN2(2)

79 13 39 59 70 39 44 59 21
−2 47 53 53 30 88 62 21 39
105 65 88 56 85 18 79 96 79

36 47 68 85 30 33 70 43 44
105 42 105 79 36 42 100 44 27

50 33 56 105 108 4 50 10 27
57.16̄ 56.66̄ 50.83̄

In general, an effect is estimated from all replications in which it is not confounded.
This particular experiment has dfE = 12, but if it had not involved replications

we would need an alternative form of analysis such as χ2 plots.

3.5.2 Interaction Contrasts

Typically, when an interaction effect is of even marginal significance, we investigate
it further by looking at interaction contrasts. Christensen (2011, Sec. 7.2.1) and
Christensen (1996, Chapters 11, 12) discuss interaction contrasts in detail. To define
a contrast in, say, the D ∗N interaction we typically choose a contrast in D and a
contrast in N and combine them to form an interaction contrast. For example, if
we use the main effect contrasts 2n0−n1−n2 and d0−d1, the interaction contrast
coefficients are the 9 numbers in the body of of the table
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N
n0 n1 n2

D contrasts 2 −1 −1
d0 1 2 −1 −1
d1 −1 −2 1 1
d2 0 0 0 0

The 9 interaction contrast coefficients are obtained by multiplying the D contrast
coefficients by the N contrast coefficients. The 9 contrast coefficients in the body
of this table correspond to the 9 D ∗N combinations d0n0,d0n1, . . . ,d2n2, so the
estimated contrast is the linear combination of the D-N mean values (averaged over
Reps. and S) determined by the contrast coefficients.

In general, an interaction contrast is defined by contrast coefficients

N
D n0 n1 n2
d0 q00 q01 q02
d1 q10 q11 q12
d2 q20 q21 q22

where the sum of the qi js over each row and over each column equals 0. We now
examine how this approach to interaction contrasts relates to the analysis just given
for a confounded 3 f .

Consider again the D ∗N interaction. It has been decomposed into two parts,
DN and DN2. At one level, it is very easy to find interaction contrasts in DN and
DN2. For example, DN defines three groups DN(0), DN(1), and DN(2) with sample
means from Rep. 1 of 57.2̄, 68.5̄, and 63.2̄, respectively. To obtain the DN sum
of squares, we simply performed a one-way ANOVA on the three group means.
Continuing our analogy with one-way ANOVA, DN has two degrees of freedom so
we can find two orthogonal contrasts in DN. In particular, we can define orthogonal
contrasts in the DN groups, say

DN1 ≡ (3)[DN(0)]+(−3)[DN(1)]+(0)[DN(2)], (1)

which compares 3 times the DN(0) group mean with 3 times the DN(1) group mean,
and

DN2 ≡ (3)[DN(0)]+(3)[DN(1)]+(−6)[DN(2)],

which is equivalent to comparing the average of groups DN(0) and DN(1) with the
DN(2) group mean. The reason for including the factors of 3 in the contrasts will
become clear later. Estimates and sums of squares for these contrasts are computed
in the usual way based on the sample means for the three groups. The computations
will be illustrated later.

We can also define orthogonal contrasts in DN2, say

DN2
1 ≡ (3)[DN2(0)]+(−3)[DN2(1)]+(0)[DN2(2)]

and
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DN2
2 ≡ (3)[DN2(0)]+(3)[DN2(1)]+(−6)[DN2(2)].

The appropriate means for estimating the DN2 contrasts are obtained from Rep. 2.
At issue is the correspondence between these contrasts in DN and DN2 and con-

trasts in the four degree of freedom interaction D∗N that we usually consider. The
key to the correspondence is in identifying the treatment groups for DN and DN2

relative to the 9 combinations of a level of D with a level of N. These correspon-
dences are given below.

DN Groups DN2 Groups
N N

D n0 n1 n2 D n0 n1 n2
d0 0 1 2 d0 0 2 1
d1 1 2 0 d1 1 0 2
d2 2 0 1 d2 2 1 0

For example, any treatment with d1n2 corresponds to DN group [1+ 2] mod 3 = 0
and DN2 group [1+(2)2] mod 3 = 2.

The contrast DN1 in equation (1) compares 3 times group DN(0) to 3 times
DN(1), we can rewrite the contrast as

DN1 Contrast
N

D n0 n1 n2
d0 1 −1 0
d1 −1 0 1
d2 0 1 −1

Here the three treatments in group DN(0) have been assigned 1s, the three treat-
ments in group DN(1) have been assigned −1s, and the three treatments in group
DN(2) have been assigned 0s. This contrast compares the sum of the 3 treatments
in the DN(0) group with the sum of the 3 treatments in the DN(1) group. We will
call this the D∗N version of the DN1 contrast. Note that the contrast given is indeed
an interaction contrast in D ∗N, because the contrast coefficients in each row and
column sum to 0.

The D ∗N version of DN2 can be constructed similarly by assigning 1s to the
treatments in DN(0) and DN(1) and −2s to the treatments in DN(2).

DN2 Contrast
N

D n0 n1 n2
d0 1 1 −2
d1 1 −2 1
d2 −2 1 1

The DN2 contrasts, DN2
1 and DN2

2 can also be written in their D∗N versions.
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DN2
1 Contrast DN2

2 Contrast
N N

D n0 n1 n2 D n0 n1 n2
d0 1 0 −1 d0 1 −2 1
d1 −1 1 0 d1 1 1 −2
d2 0 −1 1 d2 −2 1 1

It is a simple matter to check that these four contrasts in the D∗N interaction are
orthogonal. Incidentally, this confirms that the DN and DN2 effects are orthogonal.
Orthogonality of all the 2 degree of freedom effects was assumed throughout our
analysis.

Just as the DN contrasts can be written in two ways, we can also obtain the
estimates in two ways. Using the group means obtained from Rep. 1, the estimate
of DN1 ≡ (3)[DN(0)]+(−3)[DN(1)]+(0)[DN(2)] is

D̂N1 ≡ (3)57.2̄+(−3)68.5̄+(0)63.2̄ =−34.

The estimate of DN2 ≡ (3)[DN(0)]+ (3)[DN(1)]+ (−6)[DN(2)] is obtained simi-
larly. Estimates of DN2

1 and DN2
2 use the group means obtained from Rep. 2. The

variance of D̂N1 is

Var(D̂N1) = σ
2[32 +(−3)2 +02]/9 = 2σ

2

where the 9 in the denominator of the second term is the number of observations
that the DN group means are averaged over. The standard error for the estimate of
DN1 is

SE(D̂N1) =
√

MSE[32 +(−3)2 +02]/9

The sum of squares for DN1 is

−342

[32 +(−3)2 +02]/9
= 578.

Similar computations apply to DN2, DN2
1 , and DN2

2 .
Alternatively, we could apply the D∗N version of DN1 to the means table

D-N Means from Rep. 1
N = 3 N

D n0 n1 n2
d0 53.0 91.6̄ 51.0
d1 70.6̄ 65.3̄ 57.0
d2 73.3̄ 61.6̄ 43.3̄

The estimated DN1 contrast in D∗N form is

D̂N1 = 53.0−91.6̄−70.6̄+57.0+61.6̄−43.3̄ =−34.

This is exactly the estimate obtained from the other method. The variance of D̂N1 in
D∗N form is
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Var(D̂N1) = σ
2[12 +(−1)2 +(−1)2 +12 +12 +(−1)2]/3 = 2σ

2

where the 3 in the denominator of the middle term is the number of observations in
each mean. The sum of squares is

−342

[12 +(−1)2 +(−1)2 +12 +12 +(−1)2]/3
= 578

Of course the variance and the sums of squares from the two methods are identical.
We can construct other D ∗N interaction contrasts from the D ∗N forms of the

DN and DN2 contrasts. If we add the DN1 and DN2
1 contrast coefficients we get

N
D n0 n1 n2
d0 2 −1 −1
d1 −2 1 1
d2 0 0 0

This is not only a contrast in D ∗N but it even corresponds to our usual way of
constructing interaction contrasts from main effect contrasts. It combines 2n0−n1−
n2 and d0−d1.

The new contrast is DN1+DN2
1 , so the estimate of the new contrast is just D̂N1+

D̂N2
1 . Recall that D̂N1 is estimated from Rep. 1 and D̂N2

1 is estimated from Rep. 2.

Because DN1 and DN2
1 are orthogonal contrasts, D̂N1 and D̂N2

1 are independent, the
variance of the new estimate is

Var(D̂N1 + D̂N2
1 ) = Var(D̂N1)+Var(D̂N2

1 ) = 2σ
2 +2σ

2,

and the standard error is
√

4MSE.

3.6 5 f Factorials

We now briefly consider f factors each at 5 levels, i.e., 5 f ’s. In this case, as in all
p f structures with p a prime number, the methods for 3 f factorials extend easily.

A 5 f can be broken down into groups of 5−1 = 4 degrees of freedom. Consider
two factors A and B at 5 levels, say, a0, a1, a2, a3, a4, and b0, b1, b2, b3, b4. There
are 52 = 25 treatment combinations aib j for i, j = 0,1,2,3,4. The breakdown into 4
degree of freedom effects is illustrated in Table 3.19.

In a simple extension of our discussion for 3 f factorials, the groups of treatments
determined by, say, AB4 correspond to the five values of

z = x1 +4x2 mod 5

where x1 and x2 are the subscripts for the treatment combinations. Table 3.20 gives
the groups for all six of the 4 degree of freedom effects. Table 3.21 rewrites the
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Table 3.19 Analysis of Variance for a 52

Source df Source df
A 4 A 4
B 4 B 4
A∗B 16 AB 4

AB2 4
AB3 4
AB4 4

treatment groups determined by AB4. Table 3.21 provides a scheme for assigning
the 25 treatments to blocks of size five with AB4 confounded.

Table 3.20 Effect Groups for a 52 Factorial

treatment A B AB AB2 AB3 AB4

a0b0 0 0 0 0 0 0
a0b1 0 1 1 2 3 4
a0b2 0 2 2 4 1 3
a0b3 0 3 3 1 4 2
a0b4 0 4 4 3 2 1
a1b0 1 0 1 1 1 1
a1b1 1 1 2 3 4 0
a1b2 1 2 3 0 2 4
a1b3 1 3 4 2 0 3
a1b4 1 4 0 4 3 2
a2b0 2 0 2 2 2 2
a2b1 2 1 3 4 0 1
a2b2 2 2 4 1 3 0
a2b3 2 3 0 3 1 4
a2b4 2 4 1 0 4 3
a3b0 3 0 3 3 3 3
a3b1 3 1 4 0 1 2
a3b2 3 2 0 2 4 1
a3b3 3 3 1 4 2 0
a3b4 3 4 2 1 0 4
a4b0 4 0 4 4 4 4
a4b1 4 1 0 1 2 3
a4b2 4 2 1 3 0 2
a4b3 4 3 2 0 3 1
a4b4 4 4 3 2 1 0

Any one of the blocks in Table 3.21 provides a 1/5 replicate of the 52 experiment
based on AB4. An effect such as A is aliased with

A×AB4 = A2B4 = (A2B4)3 = A6B12 = AB2

A× (AB4)2 = A3B8 = (A3B8)2 = A6B16 = AB
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Table 3.21 AB4 Groups for a 52 Factorial

AB4(0) AB4(1) AB4(2) AB4(3) AB4(4)
a0b0 a0b4 a0b3 a0b2 a0b1
a1b1 a1b0 a1b4 a1b3 a1b2
a2b2 a2b1 a2b0 a2b4 a2b3
a3b3 a3b2 a3b1 a3b0 a3b4
a4b4 a4b3 a4b2 a4b1 a4b0

A× (AB4)3 = A4B12 = (A4B12)4 = A16B48 = AB3

A× (AB4)4 = A5B16 = B.

The alias group is
A = B = AB = AB2 = AB3.

All effects other than AB4 are aliased together. AB4 is lost because it defines the
1/5 rep. Of course a 1/5 rep. of a 52 contains only 5 treatments, so it has only 4
degrees of freedom for treatment effects. Each effect has 4 degrees of freedom, so
there could not be more than one treatment effect available in the 1/5 rep.

A 53 in blocks of 5 requires two defining effects, say AB4 and BC2, to be con-
founded with blocks. There are 125 treatments in a 53, so with blocks of size 5, there
are 25 blocks and 24 degrees of freedom for blocks. Since each effect has 4 degrees
of freedom, there must be 6 effects confounded with blocks. These are AB4, BC2,
and

AB4×BC2 = AB5C2 = AC2,

AB4× (BC2)2 = AB6C4 = ABC4,

AB4× (BC2)3 = AB7C6 = AB2C,

AB4× (BC2)4 = AB8C8 = AB3C3.

The key idea is that one effect is multiplied by all powers of the other effect, up to
the 5−1 power.

If we had done the multiplications reversing the orders of the defining effects,
the computations would be more complicated but we would get the same set of
confounded effects. For example,

BC2× (AB4)2 = A2B9C2 = A2B4C2 = (A2B4C2)3 = A6B12C6 = AB2C.

Note that to change A2B4C2 into something with a leading exponent of 1, we cubed
it, i.e., A2B4C2 = (A2B4C2)3. Any effect raised to a positive integer power less
than p = 5 remains the same effect, because the modular equation defining groups
continues to give the same groups. We cubed A2B4C2 because we recognized that
(A2)3 = A6 = A.

Finally, consider a 1/25 rep. of a 54. For simplicity take AB4 and BC2 as defining
effects. We have already multiplied AB4 by the appropriate powers of BC2 so the
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complete set of effects defining the fractional replication is AB4, BC2, AC2, ABC4,
AB2C, and AB3C3. An effect, say A, is aliased with

A×AB4, A× (AB4)2, A× (AB4)3, A× (AB4)4,

A×BC2, A× (BC2)2, A× (BC2)3, A× (BC2)4,

A×AC2, A× (AC2)2, A× (AC2)3, A× (AC2)4,

A×ABC4, A× (ABC4)2, A× (ABC4)3, A× (ABC4)4,

A×AB2C, A× (AB2C)2, A× (AB2C)3, A× (AB2C)4,

and
A×AB3C3, A× (AB3C3)2, A× (AB3C3)3, A× (AB3C3)4.

When using an unreplicated or fractionally replicated 5 f , an analysis can be
based on χ2(4) plots of the effects.





Chapter 4
Mixed Factor Levels

We briefly mention some extensions of the methods presented in Chapter 3. These
involve treatment structures that are not simply powers of prime numbers. We begin
by constructing Taguchi’s L18 which is a 2×37−5 design. In the second section we
look at a 22×32 in six blocks. Next we reexamine Byrne and Taguchi’s 23×34−2.
The final section examines a 3×4 design.

For additional information on mixed factor levels, see Kempthorne (1952) or
possibly Hinkleman and Kempthorne (2005).

4.1 Fractionated Partial Confounding

Consider a group of seven factors each at three levels, say B, C, D, E, F , G, H. (We
have omitted factor A for now so that we can incorporate it later.)

In this discussion we refer to the effect group, say, CDEFGH(z), as all factor
combinations that satisfy the subscript equation

z = 0x2 + x3 + x4 + x5 + x6 + x7 + x8 mod 3.

Similarly, EF2GH2(z) denotes all factor combinations that satisfy

z = 0x2 +0x3 +0x4 + x5 +2x6 + x7 +2x8 mod 3.

Consider a 37−5 design, i.e. a 3−5 fractional replication of the 37 factorial struc-
ture. In particular, consider the 37−5 defined by the intersection of the five defining
effect groups CDEFGH(0), BDE2(0), DEH(0), BFG2(0), and EF2GH2(0). Using
the modular subscript equations associated with these five effect groups, it is not
hard to see that the nine treatments involved are

83
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T1 =



b c d e f g h
0 0 0 0 0 0 0
0 1 1 1 1 1 1
0 2 2 2 2 2 2
1 0 0 1 1 2 2
1 1 1 2 2 0 0
1 2 2 0 0 1 1
2 0 1 0 2 1 2
2 1 2 1 0 2 0
2 2 0 2 1 0 1


.

Now consider an alternative 37−5 design that uses three of the same defining ef-
fects and two of the same effect groups CDEFGH(0) and BDE2(0) but this time for
the DEH effect we use DEH(1). The other two defining effect groups are BF2G(0)
and EFG2H2(2). Again, it is not hard to check that the following treatments

T2 =



b c d e f g h
0 0 2 2 1 1 0
0 1 0 0 2 2 1
0 2 1 1 0 0 2
1 0 1 2 0 2 1
1 1 2 0 1 0 2
1 2 0 1 2 1 0
2 0 2 1 2 0 1
2 1 0 2 0 1 2
2 2 1 0 1 2 0


satisfy the associated subscript equations.

The idea is to run both of these 37−5 fractional replications. Obviously, all infor-
mation is lost on CDEFGH, BDE2, and DEH because they are confounded with the
grand mean in both fractional replications. From the first 37−5 one could potentially
learn about BF2G and EFG2H2 whereas these are lost in the second fractional repli-
cation. Likewise, from the second fractional replication one could potentially learn
about BFG2 and EF2GH2. But in a design this small (this highly fractionated), with
the extensive aliasing involved, what one typically cares about is that both fractions
be resolution III designs so that all of the main effects can be estimated. Actually
checking that these are resolution III designs, by finding all of the implicit defining
effects, is quite tedious.

If both fractional replications are resolution III designs, why use both of them?
So that we can incorporate a two-level factor A into the design. We will look at one
level of A in the first fractional rep. and the other level of A in the second fractional
rep. Using the subscripts 0, 2 to denote the levels of A, the treatment subscripts for
this new 2×37−5 design are
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T =



a b c d e f g h
0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 2 2 2 2 2 2
0 1 0 0 1 1 2 2
0 1 1 1 2 2 0 0
0 1 2 2 0 0 1 1
0 2 0 1 0 2 1 2
0 2 1 2 1 0 2 0
0 2 2 0 2 1 0 1
2 0 0 2 2 1 1 0
2 0 1 0 0 2 2 1
2 0 2 1 1 0 0 2
2 1 0 1 2 0 2 1
2 1 1 2 0 1 0 2
2 1 2 0 1 2 1 0
2 2 0 2 1 2 0 1
2 2 1 0 2 0 1 2
2 2 2 1 0 1 2 0



.

This turns out to be Taguchi’s famous L18 design. More frequently Taguchi’s design
is presented using the subscripts −1, 0, 1 rather than 0, 1, 2, thus

T =



−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 0 0 0 0 0 0
−1 −1 1 1 1 1 1 1
−1 0 −1 −1 0 0 1 1
−1 0 0 0 1 1 −1 −1
−1 0 1 1 −1 −1 0 0
−1 1 −1 0 −1 1 0 1
−1 1 0 1 0 −1 1 −1
−1 1 1 −1 1 0 −1 0

1 −1 −1 1 1 0 0 −1
1 −1 0 −1 −1 1 1 0
1 −1 1 0 0 −1 −1 1
1 0 −1 0 1 −1 1 0
1 0 0 1 −1 0 −1 1
1 0 1 −1 0 1 0 −1
1 1 −1 1 0 1 −1 0
1 1 0 −1 1 −1 0 1
1 1 1 0 −1 0 1 −1



.

Again, I do not see any advantage to using L18 rather than using any other two
resolution III 37−5 designs, at least no advantage other than that L18 is well known
and easy to find.
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4.2 More Mixtures of Prime Powers

Suppose we have a 2× 2× 3× 3 factorial treatment structure that needs to be put
in blocks of six units. There are 36 treatments, so there would be six blocks of six
units each. Any one of these blocks could be used as a 1/6 replication. Think of
the 2×2×3×3 factorial as combining two sets of treatments: a 2×2 factorial and
a 3× 3 factorial. One simple way to get a 1/6 replication is to take a 1/2 rep. of
the 2× 2 and a 1/3 rep. of the 3× 3. If the factors are A, B, C, and D, we can use
the AB interaction to define the two blocks a0b0, a1b1 and a0b1, a1b0 and the CD2

interaction to define the three blocks c0d0, c1d1, c2d2 and c0d2, c1d0, c2d1 and c0d1,
c1d2, c2d0. Combining each AB block with each CD2 block gives a collection of
six blocks. Note that the blocking structure also gives six different 1/6th fractional
replications for the 2×2×3×3 factorial. The blocks are given in Table 4.1.

Table 4.1 2×2×3×3 with AB and CD2 Confounded

Confounded CD2

CD2(0) CD2(1) CD2(2)
Blk. 1 Blk. 2 Blk. 3

a0b0c0d0 a0b0c0d2 a0b0c0d1
a0b0c1d1 a0b0c1d0 a0b0c1d2

AB(0) a0b0c2d2 a0b0c2d1 a0b0c2d0
a1b1c0d0 a1b1c0d2 a1b1c0d1
a1b1c1d1 a1b1c1d0 a1b1c1d2
a1b1c2d2 a1b1c2d1 a1b1c2d0

AB
Blk. 4 Blk. 5 Blk. 6

a0b1c0d0 a0b1c0d2 a0b1c0d1
a0b1c1d1 a0b1c1d0 a0b1c1d2

AB(1) a0b1c2d2 a0b1c2d1 a0b1c2d0
a1b0c0d0 a1b0c0d2 a1b0c0d1
a1b0c1d1 a1b0c1d0 a1b0c1d2
a1b0c2d2 a1b0c2d1 a1b0c2d0

In addition to AB and CD2, the design in Table 4.1 has AB×CD2 = ABCD2

confounded with blocks, i.e., ABCD2 is implicitly a defining effect for each 1/6
rep. The effects defining blocks, AB, CD2 and ABCD2, have 1, 2, and 2 degrees of
freedom respectively. These account for the 5 degrees of freedom for blocks.

Aliasing for any of the 1/6 rep.s goes as

A×AB = B,

A×CD2 = ACD2,

A×ABCD2 = BCD2.

Somewhat similarly,
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C = (AB)C =C(CD2) =C(CD2)2 =C(ABCD2) =C(AB)(CD2)2

which simplifies to

C = ABC =CD = D = ABCD = ABD.

Note that, for example, CD=(CD)2 so in simplifying we use the fact that ABC2D2 =
ABCD. Finally,

AC = AC(AB) = AC(CD2) = AC(CD2)2 = AC(ABCD2) = AC(AB)(CD2)2,

which simplifies to

AC = BC = ACD = AD = BCD = BD.

Now considering something larger, say, a 24× 33 in 36 blocks with ABC, ABD,
EFG, and EF2G confounded. Implicitly, we get the defining effects

ABC×ABD =CD

EFG×EF2G = E2G2 = EG

EFG× (EF2G)2 = E3F5G3 = F2 = F

ABC×EFG = ABCEFG, ABC×EG = ABCEG

ABC×EF2G = ABCEF2G, ABC×F = ABCF

ABD×EFG = ABDEFG, ABD×EG = ABDEG

ABD×EF2G = ABDEF2G, ABD×F = ABDF

CD×EFG =CDEFG, CD×EG =CDEG

CD×EF2G =CDEF2G, CD×F =CDF

These account for all 35 degrees of freedom between blocks. Each of ABC, ABD,
and CD have one degree of freedom. The other 16 effects have two degrees of free-
dom.

4.3 Taguchi’s L9 with an Outer Array

In Section 3.4 we examined Byrne and Taguchi’s data which has a 34−2 inner array
and a 23 outer array so overall the design is a 23×34−2, a mixture of prime powers.
The earlier discussion was not explicit about the outer array. The complete set of
factors and levels are given below.
A: Interference (Low, Medium, High)
B: Wall Thickness (Thin, Medium, Thick)
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C: Ins. Depth (Shallow, Medium, Deep)
D: Percent Adhesive (Low, Medium, High)
E: Condition Time (24hr, 120hr)
F: Condition Temp. (72◦F, 150◦F)
G: Condition R. H. (25%, 75%)
The data are given in Table 4.2.

Table 4.2 Taguchi 23×34−2 design

Control
Factors Noise Factors

Run a b c d e0 f0g0 e0 f0g1 e0 f1g0 e0 f1g1 e1 f0g0 e1 f0g1 e1 f1g0 e1 f1g1
1 0 0 0 0 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1
4 0 1 1 1 15.0 16.2 19.4 19.6 19.7 19.8 24.2 21.9
7 0 2 2 2 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4
3 1 0 1 2 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7
2 1 1 2 0 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3
5 1 2 0 1 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7
8 2 0 2 1 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6
6 2 1 0 2 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.4
9 2 2 1 0 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6

Our earlier discussion emphasized that inner-outer array experiments are natu-
rally conducted as split plot experiments and we illustrated the traditional Taguchi
analysis that treats the inner array as the whole plot treatments in split plot design.
Here we focus on treating the outer array as whole plot treatments. As mentioned
earlier, this seems a more natural procedure because with the outer array noise fac-
tors being more difficult to control, it seems natural to (randomly pick a set of noise
factors from the outer array and) control them and, while controlled at some level,
to run all of the inner array treatment combinations (in random order).

As discussed in Christensen (1996, 2015) in a split plot model the subplot treat-
ments (here the inner array) can be analyzed as a randomized complete block ex-
periment in which each whole plot is treated as a block for the subplot treatments.
In the current situation, that means that every level of the outer array would merely
define a block for the purpose of examining the inner array. Since Taguchi’s interest
is exclusively in the inner array, for Taguci’s purposes the analysis should simply be
a randomized complete block analysis with each level of the outer array defining a
block.

Table 4.3 gives the appropriate ANOVA table for this interpretation of the Byrne-
Taguchi data. Similar to the signal-to-noise ratio analysis in Section 3.4, factors A
and C look to be important. Evaluating the main effects involves looking at the
means plots in Figure 3.4.

Also as discussed in Christensen (1996, 2015), one of the subtleties of split
plot designs is that the whole plot treatment by subplot treatment interaction can
be teased out of the randomized-complete-block-on-subplot-treatments error term.
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Table 4.3 Analysis of Variance for Byrne-Taguchi Data

Analysis of Variance
Source d f SS MS F P
Blks 7 447.02 63.860 14.7602 0.000
A 2 50.58 25.288 5.8450 0.005
B 2 13.38 6.692 1.5467 0.222
C 2 68.59 34.297 7.9271 0.001
D 2 23.67 11.837 2.7359 0.074
Error 56 242.29 4.327
Total 71 845.54

When there are no replications on the whole plot treatments, the entire subplot er-
ror will be eaten up by the whole plot treatment by subplot treatment interaction.
But the point of a randomized block experiment is that the treatment effects have
to be prominent enough that they are distinguishable above any block by treatment
interaction, so in this case, we want the inner array effects to be prominent enough
that they are distinguishable above the outer array by inner array interaction. Ideally
the blocks would be a representative (random) sample of possible blocks, just as
the outer array is chosen to be a representative (but not random) sample of possible
noise factors.

We have presented two distinct analyses of these data. As always with designed
experiments, the appropriate analysis is determined by how the experiment was
physically performed!

If we had a 23× 34−2 design without the inner-outer array structure, we would
have to fit the model with all the E, F , G main effects and interactions, A, B, C,
D main effects, and the interactions between the E, F , G terms and the A, B, C, D
main effects. This involves 39 = (8×5)−1 terms involving either 1 or 2 degrees of
freedom and no error term.

4.4 Factor Levels that are Powers of Primes

To this point we have dealt with factor levels that are prime numbers. If the number
of levels for one of the factors is a power of a prime number, we can maintain a
simple analysis. Consider a 3× 4 factorial treatment structure. Let factor A have
levels a0,a1,a2 and let factor B have levels b0,b1,b2,b3. The number of levels for
B is 4, which is a power of a prime number, i.e., 4 = 22. We can artificially replace
factor B with two factors C and D each with two levels. We identify the treatment
combinations as follows:

B b0 b1 b2 b3
CD c0d0 c0d1 c1d0 c1d1
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The analysis can now be conducted as either a 3×4 in A and B or as a 3×2×2
in A, C, and D. The analysis of variance tables are given in Table 4.4 Note that the
three degrees of freedom for B correspond to the C, D, and CD terms in the 3×2×2
analysis and that the six degrees of freedom for AB correspond to the AC, AD, and
ACD terms in the 3×2×2 analysis.

Table 4.4 Analysis of Variance Table for 3×4

Source d f Source d f
A 2 A 2
B 3 C 1

A∗B 6 D 1
AC 2
AD 2
CD 1
ACD 2

The C, D, and CD contrasts are given in Table 4.5. One of these can be used
to confound the design into blocks of size 6; two confounding contrasts will give
blocks of size 3. One of these contrasts along with the A effect can be used to define
blocks of size 2. Similarly, 1/2, 1/4, and 1/6 fractional replications can be defined.
Note that the C main effect contrast, c0− c1 is equivalent to (b0 + b1)− (b2 + b3).
Similarly, d0−d1 is equivalent to (b0+b2)−(b1+b3) while the interaction contrast
c0d0− c0d1− c1d0 + c0d0 is equivalent to (b0 +b3)− (b1 +b2).

Table 4.5 Contrasts for 3×4

A,C,D A,B
treatment C D CD treatment

a0c0d0 1 1 1 a0b0
a0c0d1 1 −1 −1 a0b1
a0c1d0 −1 1 −1 a0b2
a0c1d1 −1 −1 1 a0b3
a1c0d0 1 1 1 a1b0
a1c0d1 1 −1 −1 a1b1
a1c1d0 −1 1 −1 a1b2
a1c1d1 −1 −1 1 a1b3
a2c0d0 1 1 1 a2b0
a2c0d1 1 −1 −1 a2b1
a2c1d0 −1 1 −1 a2b2
a2c1d1 −1 −1 1 a2b3
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Table 4.6 Contrasts for 3×4

A,C,D A,B
treatment AC AD ACD treatment

a0c0d0 1 1 1 a0b0
a0c0d1 1 −1 −1 a0b1
a0c1d0 −1 1 −1 a0b2
a0c1d1 −1 −1 1 a0b3
a1c0d0 1 1 1 a1b0
a1c0d1 1 −1 −1 a1b1
a1c1d0 −1 1 −1 a1b2
a1c1d1 −1 −1 1 a1b3
a2c0d0 1 1 1 a2b0
a2c0d1 1 −1 −1 a2b1
a2c1d0 −1 1 −1 a2b2
a2c1d1 −1 −1 1 a2b3





Chapter 5
Screening Designs

This chapter is new.
In this chapter we examine general designs for efficiently screening through

many factors. For factorial treatment structures, screening designs can be set up to
examine all of the factors’ main effects efficiently but without the cost and trouble
of examining all of the factorial treatments. Often, especially in industrial experi-
ments, there are so many factors that using a complete factorial structure becomes
prohibitive because there are just too many treatments to consider. We will see that
blocking can be accomplished by treating blocks as additional factors in the experi-
ment.

Replication tends to get short shrift in screening designs. It largely consists of
pretending that interaction does not exist and using estimates of the nonexistent
interaction to estimate variability. Alternatively, we have looked at some graphical
methods for analyzing data without replications.

5.1 Designs at Two Levels

Suppose we have 8 factors each at two levels. The number of factor combinations
(treatments) is 28 = 256. That is a lot of treatments, especially if you plan to perform
replications in order to estimate error. If you only want to estimate the 8 factorial
main effects, in theory you can do that with as few as 9 observations. Nine observa-
tions means 9 degrees of freedom, which can be allocated as one for each factor’s
main effect and one for fitting the grand mean (intercept).

With only 5 factors each at two levels, in theory we could get estimates of all
the treatment main effects from as little as 6 observations. Hare’s experiment from
Chapter 2 used 16 observations to estimate the

(5
1

)
= 5 main effects and

(5
2

)
= 10 two

factor interactions. In practice, the smallest number of observations for examining
5 factors each at two levels that has nice properties is 8. We will return to this issue
later.

93
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There are many schemes in common use for identifying the treatments in facto-
rial structures. For Hare’s experiment with 5 factors each at two levels we denoted
the treatments using lower case letters and subscripts. The lower case letters really
just provide an ordering for the factor subscripts so we know that, say, the third sub-
script corresponds to the third factor, C. Given the ordering, the subscripts contain
all the information about treatments. In other words, a 16× 5 matrix of 0s and 1s
identifies the treatments. Another convenient scheme of subscripting is to replace
the 0s with −1s, and that is sometimes reduced to reporting just plus and minus
signs. Yet another way of identifying treatments is to write down only the treatment
letters that have a subscript of 1 (and not write down the subscripts). All of these
schemes are illustrated in Table 5.1 and the last scheme also appeared in Table 2.10.

Table 5.1 Alternative treatment identifications for Hare’s intermix variability data.

1 a0b0c0d1e1 00011 −1 −1 −1 1 1 −−−++ de
2 a1b0c1d1e1 10111 1 −1 1 1 1 +−+++ acde
3 a1b1c0d0e0 11000 1 1 −1 −1 −1 ++−−− ab
4 a1b0c1d0e0 10100 1 −1 1 −1 −1 +−+−− ac
5 a0b1c0d0e1 01001 −1 1 −1 −1 1 −+−−+ be
6 a0b0c1d0e1 00101 −1 −1 1 −1 1 −−+−+ ce
7 a0b1c0d1e0 01010 −1 1 −1 1 −1 −+−+− bd
8 a1b1c1d1e0 11110 1 1 1 1 −1 ++++− abcd
9 a0b1c1d1e1 01111 −1 1 1 1 1 −++++ bcde

10 a1b1c0d1e1 11011 1 1 −1 1 1 ++−++ abde
11 a0b0c1d1e0 00110 −1 −1 1 1 −1 −−++− cd
12 a0b0c0d0e0 00000 −1 −1 −1 −1 −1 −−−−− (1)
13 a1b0c0d0e1 10001 1 −1 −1 −1 1 +−−−+ ae
14 a1b1c1d0e1 11101 1 1 1 −1 1 +++−+ abce
15 a1b0c0d1e0 10010 1 −1 −1 1 −1 +−−+− ad
16 a0b1c1d0e0 01100 −1 1 1 −1 −1 −++−− bc

A screening design focuses on main effects. We can get the main effect informa-
tion out of the data by fitting the model Y = Xβ +e where X is a matrix of numerical
subscript values together with an initial column of 1s.

EXAMPLE 5.1.1. For Hare’s experiment from Example 2.3.1, Y is one of the last
two columns of Table 2.10 and the main effects only model X has a first column
of 1s and then the rest of X consists of the treatment subscripts from Table 2.10
(Table 5.1), i.e.,
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X =



1 0 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 1 1 1 1 0
1 0 1 1 1 1
1 1 1 0 1 1
1 0 0 1 1 0
1 0 0 0 0 0
1 1 0 0 0 1
1 1 1 1 0 1
1 1 0 0 1 0
1 0 1 1 0 0



.

An equivalent but alternative method of writing the model matrix replaces the
subscript 0 with the subscript −1,

X̃ =



+1 −1 −1 −1 +1 +1
+1 +1 −1 +1 +1 +1
+1 +1 +1 −1 −1 −1
+1 +1 −1 +1 −1 −1
+1 −1 +1 −1 −1 +1
+1 −1 −1 +1 −1 +1
+1 −1 +1 −1 +1 −1
+1 +1 +1 +1 +1 −1
+1 −1 +1 +1 +1 +1
+1 +1 +1 −1 +1 +1
+1 −1 −1 +1 +1 −1
+1 −1 −1 −1 −1 −1
+1 +1 −1 −1 −1 +1
+1 +1 +1 +1 −1 +1
+1 +1 −1 −1 +1 −1
+1 −1 +1 +1 −1 −1



, (1)

in a model Y = X̃γ + e. The matrix X̃ has the useful mathematical property that
X̃ ′X̃ = 16I6, which makes the linear model easy to analyze. In particular, the esti-
mate of γ is γ̂ = (1/16)X̃ ′Y .

For analyzing the sp data, fitting either the X or X̃ model gives.

Analysis of Variance for Hare’s sp
Source df SS MS F P
Regression 5 1.0096 0.2019 1.44 0.292
Residual Error 10 1.4044 0.1404
Total 15 2.4140
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Fitting the X̃ model gives

Table of Coefficients for Hare’s sp
Predictor γ̂k SE(γ̂k) t P
Constant 1.22625 0.09369 13.09 0.000
A 0.07250 0.09369 0.77 0.457
B 0.04375 0.09369 0.47 0.651
C 0.01875 0.09369 0.20 0.845
D −0.01875 0.09369 −0.20 0.845
E −0.23500 0.09369 −2.51 0.031

Fitting the X model gives estimates and standard errors, other than the intercept,
that are twice as large but gives the same t statistics and P values. Specifically, for
k = 1, . . . ,5, β̂k = 2γ̂k and SE(β̂k)= 2SE(γ̂k). For, say, factor E, the estimated change
in going from the low treatment level e0 to the high treatment level is 2(−0.235) =
−0.470 with a standard error of 2(0.09369) = 0.18738.

Again regardless of the model, we can divide the SSReg into one degree of free-
dom for each main effect.

Source df SS
A 1 0.0841
B 1 0.0306
C 1 0.0056
D 1 0.0056
E 1 0.8836

These sums of squares, divided by the MSE, are equal to the square of the t statistics
from the Table of Coefficients. Because of the special structure (orthogonality) of X̃ ,
unlike standard regression problems, neither the sums of squares nor the t statistics
change if you drop any other main effects out of the model.

From this analysis, factor E, the time waited before using the intermix, has a
much larger sum of squares and a much larger t statistic than any of the other factors,
so it would seem to be the most important factor. As we saw in Chapter 2, the
design Hare used allows examination of all the two-factor interactions and we found
that two-factor interactions are important in these data but our current focus is on
screening designs for looking at just main effects. 2

We mentioned earlier that, in theory, estimating all the main effects in a 25 facto-
rial treatment structure requires only 6 observations and that a good practical design
can be obtained using only 8. The last 5 columns of the following model matrix
determines one good design for evaluating just the five main effects.
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X̃∗ =



+1 +1 +1 +1 +1 +1
+1 +1 +1 −1 −1 −1
+1 +1 −1 +1 +1 −1
+1 +1 −1 −1 −1 +1
+1 −1 +1 +1 −1 −1
+1 −1 +1 −1 +1 +1
+1 −1 −1 +1 −1 +1
+1 −1 −1 −1 +1 −1


. (2)

The treatments corresponding to X̃∗ are

a1b1c1d1e1
a1b1c−1d−1e−1
a1b−1c1d1e−1

a1b−1c−1d−1e1
a−1b1c1d−1e−1
a−1b1c−1d1e1

a−1b−1c1d−1e1
a−1b−1c−1d1e−1


or



a1b1c1d1e1
a1b1c0d0e0
a1b0c1d1e0
a1b0c0d0e1
a0b1c1d0e0
a0b1c0d1e1
a0b0c1d0e1
a0b0c0d1e0


.

In the next section we examine where such designs originate.

5.2 Theory for Designs at Two Levels

For experiments having all factors at two levels, Plackett and Burman (1946) pro-
posed using normalized Hadamard matrices to define screening designs, i.e., groups
of factorial treatments that provide nice estimates of the main effects for all factors.
A Hadamard matrix H is an n× n square matrix that consists of the numbers ±1
for which 1√

n H is an orthonormal (more often called orthogonal) matrix. In other
words,

H ′H = HH ′ = nI.

Recall that permuting either the rows or columns of an orthonormal matrix gives
another orthonormal matrix.

The number of rows n in a Hadamard matrix needs to be 1, 2, or a multiple of 4
and even then it is not clear that Hadamard matrices always exist. One Hadamard
matrix of order 8 is
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H =



+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 −1 −1 −1 −1 +1
+1 +1 −1 +1 +1 −1 −1 −1
+1 +1 −1 −1 −1 +1 +1 −1
+1 −1 +1 +1 −1 −1 +1 −1
+1 −1 +1 −1 +1 +1 −1 −1
+1 −1 −1 +1 −1 +1 −1 +1
+1 −1 −1 −1 +1 −1 +1 +1


. (1)

One Hadamard matrix of order 12 is

H =



+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1
+1 −1 −1 +1 −1 +1 +1 +1 −1 −1 −1 +1
+1 +1 −1 −1 +1 −1 +1 +1 +1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1 +1 +1 −1 −1
+1 −1 −1 +1 −1 −1 +1 −1 +1 +1 +1 −1
+1 −1 −1 −1 +1 −1 −1 +1 −1 +1 +1 +1
+1 +1 −1 −1 −1 +1 −1 −1 +1 −1 +1 +1
+1 +1 +1 −1 −1 −1 +1 −1 −1 +1 −1 +1
+1 +1 +1 +1 −1 −1 −1 +1 −1 −1 +1 −1
+1 −1 +1 +1 +1 −1 −1 −1 +1 −1 −1 +1
+1 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1 −1



.

A normalized Hadamard matrix has the form

H = [J,T ],

where J is a column of 1s. The submatrix T , or any subset of its columns, can be
used to define treatments (treatment subscripts) for analysis of variance problems
involving many factors each at two levels in which our interest lies only in main
effects.

For example, if we have f factors each at two levels, an n ≡ f + 1 dimensional
normalized Hadamard matrix H, if it exists, determines a set of treatments whose
observation allows us to estimate all f of the main effects. Randomly associate
each of the f factors with one of the f columns in T . T provides the subscripts
associated with each treatment to be observed. Indeed, the normalized Hadamard
matrix becomes X̃ in the linear model for main effects, Y = X̃γ+e. This is a smallest
design that allows us to estimate the grand mean and all f of the factor main effects.
But remember, Hadamard matrices do not exist for all values f +1. Except for the
trivial case of f = 1, normalized Hadamard matrixes only exist when f + 1 is a
multiple of 4.

More often we have f factors and choose n > f +1 as the size of the normalized
Hadamard matrix H. Again, excluding the initial column of 1s, randomly associate
each factor with one of the remaining n− 1 columns of H. From the Hadamard
matrix, extract the matrix X̃ = [J,T ] that consists of the column of 1s followed by
(in any convenient order) the columns associated with the factors. Because H ′H =
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nIn, we have X̃ ′X̃ = nI f+1 and the perpendicular projection operator onto C(X̃) is
M̃ = 1

n X̃ X̃ ′. T provides the subscripts associated with the treatments to be observed.
Assuming no interactions, the model Y = X̃γ + e involves n observations, provides
n− r(X̃) = n− ( f + 1) = n− f − 1 degrees of freedom for estimating the error, as
well as provides estimates of the f main effects and the intercept.

If we take n >> f +1, we should be able to do much more than merely examine
main effects, e.g., examine at least some interactions. But in general, it is difficult
to know what more we can do, i.e., what interactions we can look at. In Chapter 2
we examined in detail the special case of 2−s replications of 2 f factorial structures
These involve n = 2 f−s dimensional Hadamard matrices. For screening main ef-
fects, we would want to choose s to get 2 f−s as close as possible to f + 1. But as
demonstrated in Chapter 2, this special case with n = 2 f−s is extremely useful if we
want to keep careful track of which interactions can be estimated and which cannot.

EXAMPLE 5.2.1. In Hare’s example, the matrix X̃ in equation (5.1.1) defined
the model matrix for the main-effects linear model and its last five columns defined
the treatments used. X̃ consists of the first 6 columns of the following normalized
Hadamard matrix:

H̃ =



+1 −1 −1 −1 +1 +1 +1 +1 −1 −1 +1 −1 −1 −1 −1 +1
+1 +1 −1 +1 +1 +1 −1 +1 +1 +1 −1 −1 −1 +1 +1 +1
+1 +1 +1 −1 −1 −1 +1 −1 −1 −1 −1 −1 −1 +1 +1 +1
+1 +1 −1 +1 −1 −1 −1 +1 −1 −1 −1 +1 +1 −1 −1 +1
+1 −1 +1 −1 −1 +1 −1 +1 +1 −1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 −1 +1 +1 −1 +1 −1 −1 +1 −1 −1 +1 −1
+1 −1 +1 −1 +1 −1 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1
+1 +1 +1 +1 +1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1
+1 −1 +1 +1 +1 +1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1
+1 +1 +1 −1 +1 +1 +1 −1 +1 +1 −1 +1 +1 −1 −1 +1
+1 −1 −1 +1 +1 −1 +1 −1 −1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 −1 −1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1 −1
+1 +1 +1 +1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 −1 −1 −1 +1 −1 +1 −1 +1 −1 +1 −1
+1 −1 +1 +1 −1 −1 −1 −1 +1 +1 +1 −1 −1 −1 −1 +1



.

2

If examining main effects was the only goal, Hare could have gotten by with
examining only the 8 factor combinations defined by the last five columns of X̃∗ in
equation (5.1.2). The matrix X̃∗ consists of the first six columns of the Hadamard
matrix in equation (5.2.1).

If Hare had 7 factors each at two levels, a smallest (orthogonal) design for ob-
taining all main effects takes X̃ equal to the Hadamard matrix in (5.2.1) [or some
other normalized Hadamard matrix of the same size]. Alternatively, Hare could have
stuck with 16 treatments and used, say, columns 2 through 8 of H̃ to define the fac-
tor combinations. That would be a perfectly good design for looking only at main
effects. But Hare was also interested in two-factor interactions and the 7th and 8th
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columns of H̃ happen to be associated with the AB and AC interactions. (More on
this later.) Using the 7th and 8th columns to help define treatments for 7 factors
would mean loosing the ability to estimate the AB and AC interactions: estimating
these interactions is something that Hare could do with only 5 factors but something
that typically is not a priority in a screening design.

Permuting the rows of a Hadamard matrix gives another Hadamard matrix which
is, for our purposes, equivalent to the first. The rows define the treatments we want,
and permuting the rows does not change the collection of treatments. Also, permut-
ing the rows does not change that X̃ ′X̃ = nI f+1. We just have to make sure that we
apply the same permutation to the rows of Y . We could also permute the columns of
either H or X̃ , as long as we remember what factor is associated with each column.

5.2.1 Blocking

Returning to Hare’s experiment with 5 factors and 16 observations (factor combina-
tions), suppose Hare had wanted to run the experiment in four blocks of size 4. The
first 6 columns of H̃ define the intercept and treatments, any other two columns of
H̃ could be used to define the four blocks of size 4. Let’s use the last two columns to
define blocks. The last two columns define pairs of numbers (1,1), (1,−1), (−1,1),
(−1,−1) that will define the blocks.

Deleting the columns that we are not using and rearranging the rows of H̃ so that
the pairs of numbers from the last two columns are grouped, and introducing some
extra space to focus on the five columns that define the treatments, gives

+1 +1 −1 +1 +1 +1 +1 +1
+1 +1 +1 −1 −1 −1 +1 +1
+1 −1 −1 −1 −1 −1 +1 +1
+1 −1 +1 +1 +1 +1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 +1 +1 −1 +1 +1 −1
+1 +1 −1 −1 +1 −1 +1 −1
+1 −1 +1 +1 −1 −1 −1 +1
+1 −1 −1 −1 +1 +1 −1 +1
+1 +1 −1 +1 −1 −1 −1 +1
+1 +1 +1 −1 +1 +1 −1 +1
+1 −1 +1 −1 −1 +1 −1 −1
+1 +1 −1 −1 −1 +1 −1 −1
+1 +1 +1 +1 +1 −1 −1 −1
+1 −1 −1 +1 +1 −1 −1 −1



. (2)

We can read off the blocking structure from this matrix. Block one consists of the
the treatments (using ±1 subscripts) corresponding to rows of H̃ in which the last
two columns are (1,1). The subscripts come from the first four rows of the previous
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matrix, 
+1 −1 +1 +1 +1
+1 +1 −1 −1 −1
−1 −1 −1 −1 −1
−1 +1 +1 +1 +1

 ,
so changing the −1 subscripts back to 0s, the treatments are

a1b0c1d1e1
a1b1c0d0e0
a0b0c0d0e0
a0b1c1d1e1

 .
In the second block the treatment subscripts correspond to rows of H̃ where the last
two columns are (1,−1): 

−1 −1 +1 −1 +1
−1 +1 −1 +1 −1
+1 +1 +1 −1 +1
+1 −1 −1 +1 −1

 .
The third block has (−1,1) in the last two columns,

−1 +1 +1 −1 −1
−1 −1 −1 +1 +1
+1 −1 +1 −1 −1
+1 +1 −1 +1 +1

 .
And the last block has (−1,−1),

−1 +1 −1 −1 +1
+1 −1 −1 −1 +1
+1 +1 +1 +1 −1
−1 −1 +1 +1 −1

 .
Thus the other three blocks are

a0b0c1d0e1
a0b1c0d1e0
a1b1c1d0e1
a1b0c0d1e0

 ,


a0b1c1d0e0
a0b0c0d1e1
a1b0c1d0e0
a1b1c0d1e1

 ,


a0b1c0d0e1
a1b0c0d0e1
a1b1c1d1e0
a0b0c1d1e0

 .

Exercise 5.1 Show that these blocks have CE and DE confounded with them.
What else is confounded with them? (There is another defining effect and a number
of aliases.)

The model matrix for the main effects with blocking model can be taken as
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X̃ =



+1 1 0 0 +1 −1 +1 +1 +1
+1 1 0 0 +1 +1 −1 −1 −1
+1 1 0 0 −1 −1 −1 −1 −1
+1 1 0 0 −1 +1 +1 +1 +1
+1 0 1 0 −1 −1 +1 −1 +1
+1 0 1 0 −1 +1 −1 +1 −1
+1 0 1 0 +1 +1 +1 −1 +1
+1 0 1 0 +1 −1 −1 +1 −1
+1 0 0 1 −1 +1 +1 −1 −1
+1 0 0 1 −1 −1 −1 +1 +1
+1 0 0 1 +1 −1 +1 −1 −1
+1 0 0 1 +1 +1 −1 +1 +1
+1 0 0 0 −1 +1 −1 −1 +1
+1 0 0 0 +1 −1 −1 −1 +1
+1 0 0 0 +1 +1 +1 +1 −1
+1 0 0 0 −1 −1 +1 +1 −1


Here the second through fourth columns account for blocks and the last five columns
account for factors A, B, C, D, E. The order of listing the treatments has changed
from Table 5.1, so the row order of listing the variability measures sc and sp would
also need to change. The physical act of blocking would almost certainly change
the data from that observed in Table 5.1, but if the data from the blocked experi-
ment were the same as those reported, the estimates and sums of squares for the
main effects would also remain the same. Blocking should change the estimate of
error. The whole point of blocking is to isolate substantial effects due to blocks and
remove them from the error that would have occurred without blocking. In Hare’s
experiment, it takes a day to run one treatment, so blocks might be run in different
weeks or even different months.

If we wanted two blocks of size 8, we would have used only one column (not
previously used for treatments or the intercept) of the Hadamard matrix H̃ to define
blocks. If we wanted 8 blocks of size 2, we would have used three (not previously
used) columns to define blocks.

Now let’s examine blocking with f = 5 factors and n = 8 factor combinations. In
this example, the last two columns of the Hadamard matrix in equation (5.2.1) are
used to define 4 blocks of size 2. Rearranging the rows of (5.2.1) gives

+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 −1 −1 +1 −1 +1 +1
+1 +1 −1 −1 −1 +1 +1 −1
+1 −1 +1 +1 −1 −1 +1 −1
+1 −1 −1 +1 −1 +1 −1 +1
+1 +1 +1 −1 −1 −1 −1 +1
+1 +1 −1 +1 +1 −1 −1 −1
+1 −1 +1 −1 +1 +1 −1 −1


from which we gets the blocks
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+1 +1 +1 +1 +1
−1 −1 −1 +1 −1

]
,

[
+1 −1 −1 −1 +1
−1 +1 +1 −1 −1

]
,[

−1 −1 +1 −1 +1
+1 +1 −1 −1 −1

]
,[

+1 −1 +1 +1 −1
−1 +1 −1 +1 +1

]
.

Unfortunately, using these blocks will lose us the ability to look at the main effect
for factor D because D is at the same level in every block. There are 8 observations,
so 8 degrees of freedom. There are 4 degrees of freedom for the blocks and the
intercept, which leaves only 4 degrees of freedom for estimating effects, but we
have 5 main effects to estimate, so we must lose something.

Using a Hadamard matrix to determine blocks can be done without worrying
about which (interaction) effects are being confounded with blocks (if you think
that is a good thing). A major virtue of the approach in Chapter 2 is that it allows
us to keep track of such things. The major virtue of arbitrary Hadamard matrices is
that you are not restricted to taking n as a power of 2.

5.2.2 Hare’s Full model

The Hadamard matrix H̃ was (implicitly) used by Hare to determine a group of 16
treatments to examine from a 25 factorial structure; treatments that provide a clean
analysis of main effects. From our discussion in this chapter, H̃ could have been
used to define a design and a main-effects model for up to 15 factors.

The normalized Hadamard matrix H̃ was actually constructed using the methods
of Chapter 2 for a 25. This allows us to identify each of the 10 columns of the matrix
not used in the main-effects model with a particular two-factor interaction. Fitting
the linear model Y = H̃δ +e fits the data perfectly, leaving 0 degrees of freedom for
error, and leading to the analysis of Chapter 2.

The trick, in using this model, is identifying what effect each column represents.
The first 6 columns correspond to the intercept and the factor main effects, the other
10 columns are two-factor interactions and are obtained by multiplying two main-
effects columns elementwise. In other words, column 7 is the AB interaction column
because it is obtained from multiplying column 2 (factor A) times column 3 (factor
B) elementwise. In the first row, columns 2 and 3 take the values −1 and −1, so
column 7 is −1×−1 = 1. In the second row, columns 2 and 3 take the values 1 and
−1, so column 7 is 1×−1 = −1. In the last row, columns 2 and 3 are −1 and 1,
so column 7 is −1× 1 = −1. There are 10 distinct pairs of main effects, hence 10
two-factor intereactions. Many ANOVA and regression programs have this method,
or an equivalent process, automated. Incidentally, in Chapter 2 we saw that the AB
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interaction effect is indistinguishable from the CDE interaction effect. Note that
column 7 (AB) is −1 times the elementwise product of columns 4, 5, and 6; the
columns associated with C, D, and E.

Many computer programs (not R’s lm) disallow fitting models with 0 dfE, so we
deleted the last column of H̃ before fitting the model. The last column corresponds
to the DE interaction.

Analysis of Variance for sp
Source df SS MS F P
Regression 14 2.0171 0.1441 0.36 0.881
Residual Error 1 0.3969 0.3969
Total 15 2.4140

The sums of squares can be broken down into 15 individual terms associated with
main effects and two-factor interactions. These numbers are just the elements of the
last 15 terms of the vector H̃ ′Y , squared, and divided by n = 16. (We have ignored
the contribution from the intercept.) Again, the Error term is labeled as DE.

Source df SS Source df SS Source df SS
A 1 0.0841 AB 1 0.0009 BD 1 0.1056
B 1 0.0306 AC 1 0.0361 BE 1 0.6561
C 1 0.0056 AD 1 0.0036 CD 1 0.0210
D 1 0.0056 AE 1 0.0930 CE 1 0.0729
E 1 0.8836 BC 1 0.0182 DE 1 0.3969

In Chapter 2 we saw that all of these terms are indistinguishable from higher-order
interaction terms. In the main-effects only analysis of Section 1, we noted that E
looked to be the most important effect. While that remains true in this more expan-
sive model, the sum of squares for BE is of a similar size to that of E and the sum
of squares for DE is not inconsiderable.

5.2.3 Construction of Hadamard Matrices

Hadmard matrices have very nice design properties but you have to be able to find
them. In practice, you just look them up. But there are a variety of ways to construct
Hadamards. For an n×n Hadamard to exist, n has to be 1, 2, or a multiple of 4.

For n = 1, H =±1. For n = 2, some Hadamards are[
1 1
1 −1

]
,

[
1 1
−1 1

]
,

[
−1 −1
1 −1

]
,

[
−1 −1
−1 1

]
.

Given any two Hadamard matrices, it is easy to see that their kronecker product
is Hadamard:

[H1⊗H2][H1⊗H2]
′ = [H1⊗H2][H ′1⊗H ′2]

= [H1H ′1⊗H1H ′2] = [n1In1 ⊗n2In2 ] = n1n2In1n2 .
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Paley’s method of constructing Hadamards uses Jacobsthal matrices. A q× q
Jacobsthal matrix Q has 0s on the diagonal, ±1s elsewhere, and has the properties:
(a) QQ′ = qIq−Jq

q and (b) QJq = J′qQ = 0. From (a) 1
q QQ′ is the ppo (perpendicular

projection operator) onto C(Jq)
⊥, so the property J′qQ = 0 must be true. Clearly, if

Q is Jacobsthal, −Q is also.
If q mod 4= 3, Q will be skew symmetric, i.e.−Q=Q′. In that case, an n= q+1

dimensional Hadamard matrix can be obtained from

H =

[
1 J′q
Jq Q− Iq

]
or H =

[
1 J′q
−Jq −Q+ Iq

]
or

H = In +

[
0 J′q
−Jq Q

]
=

[
1 J′q
−Jq Q+ Iq

]
.

If q mod 4 = 1, Q will be symmetric and Hadamards of dimension n = 2(q+1)
can be constructed by replacing elements of[

0 J′q
Jq Q

]
by certain 2 dimensional Hadamards.

Finally, you can construct Hadamards from conference matrices. (In the next sec-
tion we will find a different use for conference matrices.) A q×q conference matrix
has 0 on the diagonal, ±1 elsewhere, and C′C = (q− 1)I. Examples of conference
matrices are

C1 =


0 1 1 1
1 0 1 −1
1 −1 0 1
1 1 −1 0

 , C2 =


0 −1 −1 −1
1 0 −1 1
1 1 0 −1
1 −1 1 0

 , (3)

and

C3 =


0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0

 . (4)

C2 is skew symmetric and C3 is symmetric.
If you think about what it takes for the columns of a conference matrix to be

orthogonal, it is pretty easy to see that the dimension q of a conference matrix has
to be an even number. Skew symmetric conference matrices have q a multiple of 4,
with the other even numbers giving symmetric conference matrices if they exist. For
example, conference matrices are not known to exist for q = 22,34.

If C is skew symmetric, a Hadamard matrix is H = I +C. If C symmetric,
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H =

[
C+ I C− I
C− I −C− I

]
is Hadamard.

We are not going to consider how one goes about constructing either Jacobsthal
and conference matrices.

5.3 Designs for Three Levels

Screening designs are used as a first step in identifying important factors. They rely
on the hope that any interactions that exist will not mask the important main effects.

Suppose we have f factors each at 3 levels. As before, we use capital letters
to denote factors and small letters to denote levels. With three levels, we have two
useful subscripting options for identifying levels. We can identify the levels of factor
A as a0, a1, a2 or as a−1, a0, a1. The first subscripting option was used in Chapters 3
and 4 (because it facilitates modular arithmetic). The second option is used here.

Screening designs focus on main effects but now a main effect has 2 degrees of
freedom. In this section, we will assume that the three levels are quantitative lev-
els, which means that we can associate the 2 main effect degrees of freedom with
one linear term and one quadratic term. Moreover, we assume that the levels are
equally spaced, so that the actual levels might just as well be the subscripts −1,0,1.
Looking at the linear effect involves comparing the treatments with the 1 subscript
to treatments with the −1 subscript. Often the linear effect is considered more im-
portant than the quadratic effect. In a comparable two-factor screening design, the
linear effects are the main effects. We will consider designs that focus on the linear
effect but also retain the ability to estimate the quadratic effect.

In Chapter 3 we discussed fractional replications of 3 f factorial structures. It
is often possible to create designs that allow independent estimation of all main
effects that involve observing 32 = 9, or 33 = 27, or 34 = 81 factor combinations.
The designs in the next subsection offer more flexibility in terms of numbers of
observations but lose the independence of quadratic effects.

5.3.1 Definitive Screening Designs

As discussed in the previous section, a q× q conference matrix C has 0 on the
diagonal, ±1 elsewhere, and C′C = (q− 1)I. As such, every row of a conference
matrix can be identified with a factor combination.

Jones and Nachtsheim (2011) introduced definitive screening designs (DSDs)
that allow one to examine both the linear and quadratic main effects efficiently. The
treatments are defined by the matrix
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T =

 C
−C

0

 ,
where 0 indicates a 1× q row vector of 0s. Again, the rows of T consist of the
subscripts for the factor combinations to be observed. The number of observations
is obviously n = 2q+ 1. For example, using C2 from equation (5.2.3), the DSD is
defined by

T =



0 −1 −1 −1
1 0 −1 1
1 1 0 −1
1 −1 1 0
0 1 1 1
−1 0 1 −1
−1 −1 0 1
−1 1 −1 0

0 0 0 0


,

This determines the treatments

a0b−1c−1d−1
a1b0c−1d1
a1b1c0d−1
a1b−1c1d0
a0b1c1d1

a−1b0c1d−1
a−1b−1c0d1
a−1b1c−1d0

a0b0c0d0


or



a1b0c0d0
a2b1c0d2
a2b2c1d0
a2b0c2d1
a1b2c2d2
a0b1c2d0
a0b0c1d2
a0b2c0d1
a1b1c1d1


.

Relating these back to Chapter 3, note that the 0,1,2 treatments happen to be solu-
tions to the subscript equations

(x2 + x3 + x4) mod = 0; and (x1 +0x2 +2x3 + x4) mod = 1,

so this happens to be a 34−2 design with BCD and AC2D as defining effects, hence
also ABD2 and AB2C. Most DSDs are not examples of the ideas in Chapter 3. Most
of them do not have n as a power of 3.

Each of the confounding effects lacks one of the 4 factors, so that determines the
structure of this design if we dropped a factor. For example, if we use this design
only on factors A, B, and C, it would be a 1/3 rep of a 33 that confounds AB2C.
Dropping C rather than D or dropping B rather than D works similarly. If we use
this design only on factors B, C, and D, it would be a 1/3 rep of a 33 that confounds
BCD.

A linear-main-effects-only model is Y = [J,T ]β + e. A model with all main ef-
fects is Y = [J,T,T (2)]γ + e wherein, if T ≡ [ti j]n×q, then T (2) ≡ [t2

i j]. The definitive
screening design for q factors has n = 2q+ 1 observations with n effects to esti-
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mate, i.e., an intercept, q linear main effects, and q quadratic main effects. So the
main-effects model is a saturated model with 0 degrees of freedom for Error. As
discussed earlier, conference matrices have to have an even numbered dimension,
so the available sizes for DSDs are n = 5,9,13,17,21,25,29,33,37,41,49, . . ., i.e.,
one more than a multiple of 4. You might expect n = 45 in this list but recall that
there is no conference matrix (known) for q = 22.

One way to avoid having a saturated main-effects model is to use a DSD based
on larger order conference matrices. For f = 5 factors, the following matrix uses the
DSD design based on C3, the 6 dimensional conference matrix given in (5.2.4), but
deleting the fourth column.

T =



0 1 1 1 1
1 0 1 −1 1
1 1 0 −1 −1
1 −1 1 1 −1
1 −1 −1 0 1
1 1 −1 1 0
0 −1 −1 −1 −1
−1 0 −1 1 −1
−1 −1 0 1 1
−1 1 −1 −1 1
−1 1 1 0 −1
−1 −1 1 −1 0

0 0 0 0 0



.

This design will provide 2 degrees of freedom for error, or for looking at interac-
tions.

EXAMPLE 5.3.1. It would be nice to have a real data example here.

5.3.2 Some Linear Model Theory

Definitive screening designs seem to be the nicest of a class of designs for three fac-
tors based on weighing matrices. A q dimensional weighing matrix W takes values
−1,0,1 and has W ′W = wI =WW ′ for some w. Hadamard and Conference matrices
are weighing with respective ws of q and q− 1. The number of 0s in each column
and row of W is q−w . The class of designs we will consider is

T =

 W
−W

0

 ,
so they are a generalization of definitive screening designs. Hadamard matrices have
estimability problems when used in three-factor designs. In any case, the number of
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observations in these designs is

n = 2q+1.

To use these designs with f < q just choose a selection submatrix of Iq, say Sq× f ,
that throws out q− f columns of Iq and replace T with T S.

Write T in terms of its columns, rows and elements as

T = [T1, . . . ,Tq] =

 t ′1
...
t ′n

= [ti j].

Also define T (2) to be the matrix consisting of the squares of the elements in T , i.e.,

T (2) ≡ [t2
i j].

The quadratic-main-effects linear model associated with this design is

Y = [J,T,T (2)]

δ0
δ1
δ2

+ e,

where δ0 is a scalar with δ1 and δ2 being q vectors. After centering T (2), we get the
equivalent linear model

Y =

[
J,T,

(
I− 1

n
JJ′
)

T (2)
]β0

β1
β2

+ e. (1)

Note that for f < q, the quadratic-main-effects model is just

Y = [J,T S,T (2)S]

δ0
δ1
δ2

+ e,

where δ1 and δ2 are now f vectors.
We will see that the basic nature of these designs makes the linear effects or-

thogonal to the quadratic effects and the intercept. The use of a weighing matrix
makes the linear effects orthogonal with each other. Typically the quadratic effects
are mildly correlated with each other. We will find the correlation structure of the
quadratic effects for a definitive screening design and discuss the difficulties of do-
ing that for general designs based on weighing matrices.

Note that, because all entries in T are −1,0,1, any column of T (2), say T (2)
k ,

has the property that J′T (2)
k = T ′k Tk and this equals n minus the number of 0s in Tk,

i.e. 2w. In particular, for these designs
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T (2) ≡

W (2)

W (2)

0


and in particular for the definitive screening design, since the only 0s in a conference
matrix are on the diagonal,

T (2) =

JqJ′q− Iq
JqJ′q− Iq

0

=

JqJ′q
JqJ′q
J′q

−
 Iq

Iq
J′q

= JnJ′q−

 Iq
Iq
J′q

 . (2)

For a general treatment matrix T consisting of −1s, 0s, and 1s, to estimate all of
the parameters in model (1) we need the columns of the model matrix to be linearly
independent. Linear independence requires n ≥ 2 f + 1 but can break down even if
that condition is satisfied. In general, to estimate all of the effects, we need T to
satisfy the following properties.

(i) There must be at least one −1, 0, and 1 in each column of T .
(ii) For every ordered pair ( j,k), j,k = 1, . . . , f , j 6= k, there exists an i such that

ti j = 0 and tik 6= 0.

If (i) fails, either the missing level in Tk is 0, in which case T (2)
k = J, or the missing

level is±1, in which case T (2)
k ∝ Tk. If (ii) fails for both ( j,k) and (k, j), T (2)

j = T (2)
k ,

so we cannot estimate both quadratic main effects.
The nice analysis properties of these designs follows from the fact that the sub-

matrices of the model matrix in (1) are all orthogonal. In particular,[
J,T,(I− 1

n
JJ′)T (2)

]′ [
J,T,(I− 1

n
JJ′)T (2)

]

=

n 0 0
0 2wI 0
0 0 T (2)

(
I− 1

n JJ′
)

T (2)

 . (3)

To have a truly orthogonal design, we need the matrix in (2) to be diagonal, not
just block diagonal. Even without W being a weighing matrix, the design structure
would make the matrix block diagonal, but with W being weighing, the matrix is
almost diagonal. In particular, the block diagonal structure facilitates finding the
matrix inverse, which is more important to the analysis than the original matrix. We
now verify equation (3).

Clearly, J′J = n. From the definition of T in terms of W , J′nT = J′qW −J′qW +0 =

01×q, and J′(I− 1
n JJ′)T (2) = 0. Also

T ′T =

 W
−W

0

′ W
−W

0

= 2W ′W = 2wIq,
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where only the last equality depends on W being weighing and, since J′nT = 0,

T ′(I− 1
n

JJ′)T (2) = T ′T (2) =

 W
−W

0

′W (2)

W (2)

0

=W ′W (2)−W ′W (2) = 0. (4)

So we have established that the matrix is diagonal except for the last block. The
more difficult task is to find

T (2)′(I− 1
n

JJ′)T (2) = T (2)′T (2)−
[

1
n

JJ′T (2)
]′ [1

n
JJ′T (2)

]
.

First [
1
n

JJ′T (2)
]
=

2w
n

JnJ′q,

because w is the number of ±1s in a column of of W . It follows that[
1
n

JnJ′nT (2)
]′ [1

n
JnJ′nT (2)

]
=

(2w)2

n
JqJ′q.

Finding T (2)′T (2) seems like it needs to be done for every different weighing matrix.
It depends on how the 0s in one column match up with the 0s in other columns.

For a definitive screening design,

T (2)′T (2) =

JnJ′q−

 Iq
Iq
J′q

′JnJ′q−

 Iq
Iq
J′q

= 2Iq +(n+1−6)JqJ′q

and, as above with w = q−1,[
1
n

JnJ′qT (2)
]′ [1

n
JnJ′qT (2)

]
=

[(2(q−1)]2

2q+1
JqJ′q,

so

T (2)′
(

I− 1
n

JJ′
)

T (2) = 2Iq +
2(q−4)
2q+1

Jq
q = 2

[
Iq +

q(q−4)
2q+1

(1/q)Jq
q

]
.

Since (1/q)Jq
q is a ppo, 2

[
I + q(q−4)

2q+1 (1/q)Jq
q

]
is easily inverted using Christensen

(2011, Proposition 12.11.1), i.e., for an idempotent matrix P,

[aI +bP]−1 =
1
a

[
I− b

a+b
P
]
.

Thus [
T (2)′

(
I− 1

n
JJ′
)

T (2)
]−1

=
1
2

[
Iq−

q−4
(q−1)2 Jq

q

]
.
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Unless q = 4 so that n = 9, the quadratic effects will not be orthogonal. This seems
to be the only (useful) case in which a DSD is also a 3 f fractional replication as
discussed in Chapter 3. Jones and Nachtsheim (2011) indicate that the common
correlation among quadratic terms is

1
3
− 1

q−1
=

q−4
3(q−1)

but I have not been able to reproduce that result.
For f < q, the covariance matrix for the quadratic coefficients is

σ
2
[

S′T (2)′
(

I− 1
n

JJ′
)

T (2)S
]−1

=
σ2

2

[
I f +

f (q−4)
2q+1

(1/ f )J f
f

]−1

=
σ2

2

[
I f −

q−4
(2q+1)+ f (q−4)

J f
f

]
.

In our example from the previous subsection with q = 6 and f = 5, the correlation
between two squared terms is

−2/(13+10)
1−2/(13+10)

=
−2
21

.

In equation (4) we showed that the linear main effects are orthogonal to their
square terms. In fact, we can show that the linear main effects are orthogonal, not
only to the square terms, but also to linear by linear interaction terms. Let (TkTj)
denote the vector that results from multiplying the vectors Tk and Tj elementwise. In
particular, (TkTk) = T (2)

k . To estimate the linear by linear interaction term between
factors k and j, one simply includes the vector (TkTj) as a column of the model
matrix. Orthogonality follows from the fact that,

T ′s (TkTj) =
n

∑
i=1

tistikti j =
2q

∑
i=1

tistikti j =
q

∑
i=1

tistikti j +
2q

∑
i=q+1

tistikti j

=
q

∑
i=1

tistikti j +
q

∑
i=1

(−tis)(−tik)(−ti j) =
q

∑
i=1

tistikti j−
q

∑
i=1

tistikti j = 0.

A similar argument shows that T ′s (T
(2)

k T (2)
j ) = 0, so the linear main effect terms are

also orthogonal to the quadratic by quadratic interaction terms. Without additional
conditions on W , the linear main effects do not appear to be orthogonal to linear by
quadratic or quadratic by linear interactions.

Choices for W other than conference matrices are less promising. If W is a
Hadamard matrix, neither of the estimability conditions (i) nor (ii) hold. In fact,
with a Hadamard matrix we would get only 1 degree of freedom for estimating all q
of the quadratic effects. In the next subsection, we also construct a weighting matrix
W , with two 0s in each row and column, which aliases pairs of quadratic effects.
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5.3.3 Weighing out of conference

Hadamard matrices are weighing but give

T (2) =

[
J f

2q
0

]
,

(
I− 1

n
JJ′
)

T (2) =

[
1
n J f

2q
−(n−1)

n J f
1

]
,

both of which are rank 1 matrices, hence our earlier comment about only 1 degree
of freedom for estimating quadratic effects, and

T (2)′
(

I− 1
n

JJ′
)

T (2) =
n−1

n
J f

f .

Next we look at a weighing matrix for which w= q−2 and T (2)′ (I− 1
n JJ′

)
T (2) is

again singular and incapable of estimating all of the quadratic main effects. Consider

W1 =



0 0 −1 −1 −1 −1 −1 −1
0 0 −1 1 −1 1 −1 1
1 1 0 0 −1 −1 1 1
1 −1 0 0 −1 1 1 −1
1 1 1 1 0 0 −1 −1
1 −1 1 −1 0 0 −1 1
1 1 −1 −1 1 1 0 0
1 −1 −1 1 1 −1 0 0


.

This skew symmetric W1 was constructed as [C2⊗H0] where C2 was the skew sym-
metric conference matrix given near the end of Section 2 and

H0 =

[
1 1
1 −1

]
is a symmetric Hadamard matrix. The problem is, if we square the elements of W1

to get W (2)
1 ≡ [w2

1i j], unlike a conference matrix, the consecutive pairs of vectors
become identical. Thus we could not be able to tell apart the quadratic terms for
factors A and B, or for factors C and D, etc. In particular, using W1 as W in our
design T , causes a violation of condition (ii) for estimating quadratic effects, with
T (2) not having full rank and T (2)′ (I− 1

n JJ′
)

T (2) being singular. We could solve
this problem by using every other column of W in W , but at that point we might just
as well save ourselves some observations and just use C2 to define the design.

The multiplier w associated with a weighing matrix needs to be q minus the
common number of 0s in each row. (The jth diagonal element of WW ′ is the num-
ber of nonzero elements in the jth row.) Mathematically, Hadamard matrices are
weighing matrices with w = q and conference matrices are weighing matrices with
w = q−1. Conference matrices C are required to have 0’s down the diagonal. Per-
muting the rows of C gives a weighting matrix with one 0 in each row and column.
For design purposes, a conference matrix and a weighing matrix with one 0 per
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row are equivalent. What is relevant to the design is the number of 0s in each row
(or column) of W . As with Hadamard and conference matrices, there are serious
mathematical questions about when weighing matrices exist, cf. Koukouvinos and
Seberry (1997). In particular, it would be interesting to know if any weighing ma-
trices exist with w < (q− 1) that satisfy property (ii) and allow estimation of all
quadratic effects. While perhaps not terribly practical, it would be of theoretical in-
terest to examine the relationship between a possible DSD with n = 81 = 2(20)+1
and the n = 81 = 320−16 fractional replication associated with Chapter 3. It would
also be nice to establish similar results for DSDs with n = 33 = 27 observations, but
unfortunately DSDs do not exist for n = 27.

5.4 Notes

I found some of the course notes on Bill Cherowitzo’s webpage (math.ucdenver.
edu/˜wcherowi) useful, especially
http://math.ucdenver.edu/˜wcherowi/courses/m6406/m6406f.
html and
http://math.ucdenver.edu/˜wcherowi/courses/m6023/m6023f.
html. A useful book is Stinson (2003).

math.ucdenver.edu/~wcherowi
math.ucdenver.edu/~wcherowi
http://math.ucdenver.edu/~wcherowi/courses/m6406/m6406f.html
http://math.ucdenver.edu/~wcherowi/courses/m6406/m6406f.html
http://math.ucdenver.edu/~wcherowi/courses/m6023/m6023f.html
http://math.ucdenver.edu/~wcherowi/courses/m6023/m6023f.html


Chapter 6
Response Surface Maximization

A version of this material appeared in the first two editions of ALM.
One purpose of response surface methodologies is to maximize or minimize a

response function. The response is a function of some input variables that are con-
trollable, call these ξ = (ξ1, . . . ,ξ f )

′. Denote the response function

µ(ξ )≡ µ(ξ1, . . . ,ξ f ).

Often, µ(ξ ) is thought of as the output of an industrial process that has ξ1, . . . ,ξ f as
inputs to the process. The response function is unknown, so we need to estimate it.
In fact, even the form of the response function is unknown, so we will approximate
µ(ξ ) with linear or quadratic functions of ξ .

To estimate the response function, we need to collect data that relate the ξ vari-
ables to the response. Information about the unknown function µ(ξ ) is obtained by
selecting values for ξ and making observations

y = µ(ξ )+ ε, (1)

where ε is an unobservable error assumed to have E(ε) = 0 and Var(ε) = σ2. Often,
ε is assumed to have a normal distribution. It may be necessary to transform y to
make these assumptions approximately true. An experimental design consists of
specifying a set of ξ values at which to take observations. The observations are
generally assumed to be independent.

Often, experimental designs are used that specify either two levels or three
equally spaced levels for each variable ξ j. These are 2 f or 3 f designs or fractional
replications of the full designs. Each ξ j variable corresponds to a factor, and we
can choose the levels for each factor. In general, we can call the levels ξ0 j < ξ1 j in
the two-level case and ξ0 j < ξ̄· j < ξ1 j in the equally spaced three-level case. Note
that with three equally spaced levels, the middle level ξ̄· j must be the average of the
low level and the high level. It is common practice in response surface methods to
transform all the predictor variables in these designs so that 0 becomes the middle
value of each transformed variable and the extreme values become±1. Specifically,

115
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define

xk j = 2
ξk j− ξ̄· j
ξ1 j−ξ0 j

k = 0,1.

In general we transform any arbitrary ξ j value into x j = 2(ξ j− ξ̄· j)/(ξ1 j−ξ0 j) and
define x = (x1, . . . ,x f )

′. We can now consider the response function in terms of the
transformed variables and write

µ(x)≡ µ(x1, . . . ,x f ).

The primary advantage of this redefinition of ξ into x is that the information col-
lected from any experiment will always be collected about the center point (0, . . . ,0)
as measured in x. This may seem like a small gain for all the trouble involved in the
transformation, but ultimately it is probably worthwhile.

If µ(x) were a known function, the standard approach to finding a maximum or
minimum involves finding a critical point by setting the partial derivatives equal to
zero and investigating properties of the matrix of second partial derivatives to deter-
mine whether the critical point is a maximum, minimum, or saddlepoint. Without
knowing µ(x), this does not work. Instead, to find a maximum, one typically per-
forms a series of experiments each of which leads one to look at values of the x
variables that increase the response. In each experiment, we approximate µ(x) over
the range of the observed data with a polynomial and use the fitted approximating
polynomial to estimate the direction in which the yield increases fastest. We then
take observations in the direction of most rapid increase until no more increase is
obtained. Another full experiment is conducted about the ξ value that currently gives
the highest yield. These ξ values in the new experiment are transformed into new x
values with 0 as the center point. The new experiment indicates a new direction of
maximum increase to follow or, if we are already near the maximum response, an
estimate of the x values, and thus the ξ values, that give maximum yield.

The process is rather like climbing a mountain on a foggy day. You cannot see
the peak, you can only see what is nearby, and from that information you try to get
to the top as quickly as possible.

In this chapter, we discuss only the problem of finding the maximum response.
Methods for finding a minimum are similar, or one could minimize µ(x) by maxi-
mizing −µ(x). Section 1 discusses approximations to the true response function.
Section 2 examines the use of linear approximating functions and the method
of steepest ascent. Section 3 discusses the fitting of quadratic polynomials. Sec-
tion 4 presents an introduction to the interpretation of quadratic response functions.
Throughout, we make extensive use of multivariable calculus. (Appendix A in ALM-
III contains many of the necessary results in the notation used here.) There are many
fine books on response surface methodologies. Box and Draper (1987) gives an ex-
cellent and comprehensive discussion.
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6.1 Approximating Response Functions

Depending on information previously obtained experimentally, one of two polyno-
mial approximations to the response function µ(x) is used. When we are far from
the conditions (x j values) that give maximum yield, we can often use a first-order
polynomial to approximate the response surface. The first-order Taylor approxima-
tion about the center vector x = 0 of the data is

µ(x) .
= µ(0)+

f

∑
j=1

[
∂ µ(x)

∂x j

∣∣∣
x j=0

]
x j

= µ(0)+ [dµ(0)]x
= µ(0)+ x′[dµ(0)]′,

where dµ(0) is the 1× f row vector of partial derivatives ∂ µ(x)/∂x j evaluated at
the vector x = 0 (i.e., x1 = 0, . . . ,x f = 0).

We do not know µ(x), so we do not know the partial derivatives; they are just
some unknown values. Identify

β0 ≡ µ(0), β1 ≡
∂ µ(x)

∂x1

∣∣∣
x=0

, . . . , β f ≡
∂ µ(x)
∂x f

∣∣∣
x=0

and write

µ(x) .
= β0 +

f

∑
j=1

β jx j

= β0 + x′β∗,

where
β∗ = (β1, . . . ,β f )

′.

Applying equation (6.0.1) to each observation i = 1, . . . ,n from some design gives

yi = µ(xi1, . . . ,xiq)+ εi

.
= β0 +

f

∑
j=1

β jxi j + εi.

The approximation is a multiple regression model that we know how to fit.
As we get closer to the maximum, the response surface must curve, so a first-

order polynomial becomes inadequate to approximate the surface. Second-order
polynomials are needed. Recall again that we are approximating µ(x) over the range
of values in a designed experiment and that x is defined so that the center of the de-
sign is 0. The second-order Taylor approximation about 0 is

µ(x) .
= µ(0)+ x′dµ(0)′+ x′[d2

µ(0)]x/2,
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where dµ(0) was defined previously and d2µ(0) is the f× f matrix of second partial
derivatives evaluated at the vector x = 0. The element of d2µ(0) in the ith row and
jth column is ∂ 2µ(x)/∂xi∂x j evaluated at x = 0.

Again, we do not know µ(x), so we do not know the derivatives and we write

µ(x) .
= β0 + x′β∗+ x′Bx,

where again
β∗ = (β1, . . . ,β f )

′ = dµ(0)′

and now we define

B≡


β11 β12/2 β13/2 · · · β1q/2

β12/2 β22 β23/2 · · · β2q/2
...

...
...

. . .
...

β1q/2 β2q/2 β3q/2 · · · βqq

≡ 1
2

d2
µ(0).

With this definition of B, the approximation becomes

µ(x) .
= β0 +

f

∑
j=1

β jx j +
f

∑
j=1

∑
k≥ j

β jkx jxk = β0 + x′β∗+ x′Bx.

This is a much more succinct quadratic approximation than the nonparametric re-
gression polynomial approximation examined in, say, ALM-III, Chapter 1 which
would use

µ(x) .
=

2

∑
j1=0
· · ·

2

∑
j f =0

β j1··· j f x j1
1 · · ·x

j f
f .

Response surface methods are designed to find you the shortest route to the top of
the mountain. Nonparameteric methods are designed to map the entire mountain.
One of those things is easier to do than the other.

Applying equation (6.0.1) to each observation from some design gives

yi = µ(xi1, . . . ,xiq)+ εi

.
= β0 +

f

∑
j=1

β jxi j +
f

∑
j=1

∑
k≥ j

β jkxi jxik + εi.

The approximation is a multiple (polynomial) regression model that we know how
to fit.

Before using approximate response surface models, they need to be checked. In
practice, this means checking on the adequacy of the corresponding multiple regres-
sion models. The assumptions of the regression model should be examined with
residual plots. In addition, it is important to check whether the order of the poly-
nomial approximation is appropriate. In checking whether the approximate model
helps to explain the data, it is not sufficient to perform the standard regression F test
(MSReg/MSE) and check for significance. Box and Draper (1987, Section 8.2), in
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discussing unpublished work by Box and Wetz, suggest that one should not attempt
to interpret a fitted response surface unless the F statistic is 10 times greater than
the F percentage point that defines an appropriate test. The approximate model also
needs to be tested for lack of fit. Perhaps a higher-order polynomial is needed to
give an adequate response surface. Frequently, we do not have enough data to test
the approximate model against a complete higher-order model, but often parts of a
higher-order model can be fitted and we test what we can. It should be remembered
that just because a higher-order effect is statistically significant, it does not follow
that the higher-order effect is of practical importance. It may be possible to ignore
statistically significant higher-order effects because they have little practical effect
on the estimated response surface.

Often, transformations of the response or predictor variables can substantially
improve the fit of approximating polynomials. The need for a transformation of y
can be examined as in any regression problem; see Christensen (1996, Section 7.10
or 2015, Section 7.3). Box and Draper (1987) provide an extensive discussion of
transformations.

6.2 First-Order Models and Steepest Ascent

With f input variables, the design used for estimating a first-order model is often a
2 f design or a fractional replication of a 2 f design. The two levels are arrived at by
specifying a middle location m j and a spread s j for each factor (input variable) ξ j;
then, the two levels of ξ j are defined by

±1 =
ξ j−m j

s j
.

The entire analysis for a given design is typically conducted on the transformed
variables

x j =
ξ j−m j

s j

that only take on the values 1 and −1.
In this section, we assume that the response function is

µ(x) = β0 +
f

∑
j=1

β jx j

= β0 + x′β∗,

where
β∗ = (β1, . . . ,β f )

′.

In fact, this is only an approximation. Moreover, we can only estimate β0 and β∗ by
fitting
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yi = β0 +
f

∑
j=1

β jxi j + εi

to data obtained experimentally.
The purpose of a first-order model is to indicate the direction in which the re-

sponse can be increased most rapidly. A direction is defined by the vector x =
(x1, . . . ,x f )

′. We need to find values for x that increase the response most rapidly. In
other words, we need to find x so that x′β∗ = ∑

f
j=1 β jx j is as large as possible.

We really only want the direction of most rapid increase (steepest ascent), so
that we can take observations to explore that direction. When looking for the best
direction, we need to have a standard length for the x vectors we consider. If the
vectors are not of standard length, the issue of best direction gets confused with the
length of the vector. Obviously, a vector x with extremely large x j components has
a tendency to produce more extreme values for x′β than a vector with moderate x j
values. We specify a standard length of 1, that is, any direction vector x that we
consider is required to have

x′x =
f

∑
j=1

x2
j = 1.

(Actually, x′x is the squared length of x, but the length is one, so the square does not
matter.)

We can now use a well-known result called the Cauchy–Schwartz inequality to
find the direction of steepest ascent. We are trying to maximize x′β∗ = ∑

f
j=1 β jx j

subject to the constraint that x′x = 1. The Cauchy–Schwartz inequality states that

(
x′β∗

)2
=

(
f

∑
j=1

β jx j

)2

≤

(
f

∑
j=1

β
2
j

)(
f

∑
j=1

x2
j

)
= (β ′∗β∗)(x

′x).

Because x′x = 1, we have (
x′β∗

)2 ≤ (β ′∗β∗).

We can attain the maximum value of the inequality by picking

x =
1√
β ′∗β∗

β∗.

This gives (
x′β∗

)2
=

(
β ′∗β∗√

β ′∗β∗

)2

=
(β ′∗β∗)

2

β ′∗β∗
= β

′
∗β∗.

Thus, the upper bound of the inequality is actually achieved. The direction of steep-
est ascent is β∗/

√
β ′∗β∗ or, ignoring the restriction to vectors of length 1, the direc-

tion of steepest ascent is β∗.
In practice, the first-order model is estimated from experimental data to give β̂0

and β̂∗. The estimated direction of steepest ascent is β̂∗. The procedure is then to
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take observations along the direction of steepest ascent, for example, at

x =
1√
β̂ ′∗β̂∗

β̂∗,
2√
β̂ ′∗β̂∗

β̂∗,
3√
β̂ ′∗β̂∗

β̂∗, . . . ,

continuing as long as the corresponding observed response y = µ(x)+ ε continues
to increase. Once the response starts to drop, run another experiment centered near
the x value that generated the largest observed response. Note that the sequence
of x values given previously must be transformed back into ξ values before the
experimenters will know where to take the new observations. It is also true that the
direction of steepest ascent depends on how one chooses to define the transformation
between ξ and x.

EXAMPLE 6.2.1. In this example we will collect initial data, fit a first-order
model, then follow the direction of steepest ascent to a new center point. At the
new center point we will collect data in stages until we reach an appropriate conclu-
sion about what to do (either again follow the direction of steepest ascent or decide
to fit a a second-order model).

The factors in the investigation are: A — nitrogen, B — phosphorous, C — potas-
sium, D — manganese. In the initial experiment, it was decided to set each factor at
two levels: 0 units and 2 units. The initial design was a 1/2 rep. of a 24 design using
ABCD to define the 1/2 rep. To obtain an estimate of error and to check the fit of the
linear polynomial model, the design was augmented with four points at the x center
(0,0,0,0), that is, four points each receiving 1 unit of every factor. It was decided
to run the experiment in two blocks of six treatments. The 1/2 rep. was confounded
into blocks of four using the AB =CD interaction and two center points were added
to each block. For example, with a0 denoting x1 = −1 and b1 denoting x2 = 1, the
basic 1/2 rep. of the 24 confounded in blocks of four follows.

ABCD(1)
AB(1) AB(−1)

a0b0c0d0 a0b1c0d1
a0b0c1d1 a0b1c1d0
a1b1c0d0 a1b0c0d1
a1b1c1d1 a1b0c1d0

Note that with ABCD as the defining effect, the main effects are aliased with three-
factor effects. We assume that three-factor effects and the four-factor effect are neg-
ligible. The two-factor effect AB = CD is confounded with blocks. The other two-
factor effects are aliased as AC =BD and AD=BC. The addition of the center points
has no effect on this aliasing. The center points make this an unbalanced ANOVA
design with each factor at three levels: 0, 1, and 2 units. To a large extent, we can
analyze the data as a 1/2 rep. of a 24, ignoring the center points. The most unusual
aspect of the design is that the blocks are confounded not only with AB and CD but
also with aspects of the center points.

The center points provide both the estimate of error and a measure of lack of
fit. They need to be handled correctly. Within each block, the six treatments should
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be performed in random order and on randomly chosen material. There may be a
temptation to run the two center points one after the other because they use the same
settings of the process. This is unacceptable. It is important that the two center points
be subject to all of the variability involved in any other two runs. If a run involves,
say, shutting off machines and readjusting them, the center points must be subjected
to all of the same procedures. If they are not, the estimate of error provided by the
center points is invalid for comparing the treatment effects.

In this example, the levels a0 and a1 correspond to nitrogen levels of ξ01 = 0 and
ξ11 = 2. These are transformed into x01 = −1 and x11 = 1 for use in the first-order
polynomial model. Similarly, factors B, C, and D correspond to variables x2, x3, and
x4, respectively. The first-order model incorporates block effects, so the model is

y = β0 + γ0Blk+β1x1 +β2x2 +β3x3 +β4x4 + ε. (1)

The parameter vector β∗ = (β1,β2,β3,β4)
′ determines the direction of steepest as-

cent. The blocking variable Blk consists of 0’s and 1’s with the 1’s indicating the
observations from the first block. The SSReg for model (1) can be divided into two
parts, one for blocks and one for the linear terms associated with β∗. Table 6.1 gives
the data and the predictor variables for the regression along with other predictor
variables to be discussed later.

Table 6.1 Data and model matrix for initial 1/2 replication.

y x1 x2 x3 x4 x1x3 x1x4 Blks Ctr
8.8117 −1 −1 −1 −1 1 1 1 0

11.7345 −1 −1 1 1 −1 −1 1 0
10.8053 −1 1 −1 1 1 −1 0 0
14.1937 −1 1 1 −1 −1 1 0 0
9.3778 1 −1 −1 1 −1 1 0 0

11.7957 1 −1 1 −1 1 −1 0 0
10.2977 1 1 −1 −1 −1 −1 1 0
13.9054 1 1 1 1 1 1 1 0
12.6100 0 0 0 0 0 0 1 1
12.0802 0 0 0 0 0 0 1 1
11.9820 0 0 0 0 0 0 0 1
11.7558 0 0 0 0 0 0 0 1

To test model (1) for lack of fit, ideally we would test it against the second-order
model

y = β0 + γ0Blk+β1x1 +β2x2 +β3x3 +β4x4

+β11x2
1 +β22x2

2 +β33x2
3 +β44x2

4

+β12x1x2 +β13x1x3 +β14x1x4

+β23x2x3 +β24x2x4 +β34x3x4 + ε.
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We do not have sufficient data in Table 6.1 to carry out such a test. We have essen-
tially two levels on each factor, so we cannot test all of the quadratic effects, the
β j j’s. The cross terms βi j correspond to interactions, so some of them can be exam-
ined. The predictors x1x3 and x1x4 correspond to the AC and AD interactions. These
interactions are aliased with BD and BC respectively, which in turn correspond to
x2x4 and x2x3. Thus, β13 is aliased with β24, and β14 is aliased with β23; these regres-
sion coefficients have no separate identities. Moreover, the predictors x1x2 and x3x4
cannot be isolated from the block effects. A regression model that we can actually
fit is

y = β0 + γ0Blk+β1x1 +β2x2 +β3x3 +β4x4 +β13x1x3 +β14x1x4 + ε.

It is merely a whim that we use x1x3 and x1x4 rather than x2x4 and x2x3. In fact,
x1x3 ≡ x1× x3, so it is easily seen that x1x3 = x2x4 and that x1x4 = x2x3.

While we have essentially two levels on each factor, the existence of the center
points gives a third level for each factor but without maintaining factorial treatment
structure. The center points can be used to test lack of fit by examining whether they
are consistent with the rest of the model. We define a center variable Ctr similar to
the block variable Blk. Ctr consists of 0’s and 1’s with ones identifying the points at
the center. The first-order model defines a plane in four dimensions, and the average
of the center points should lie near that plane if the first-order model fits well. A
significant effect due to the center points suggests curvature and thus that the plane
is an inadequate model for the response surface. Including the effect for the center
points in the model gives

y = β0 + γ0Blk+β1x1 +β2x2 +β3x3 +β4x4

+β13x1x3 +β14x1x4 + γ1Ctr+ ε. (2)

The SSReg for this model has 8 degrees of freedom and it can be divided into com-
ponents with 1 degree of freedom for blocks, 4 degrees of freedom for the linear
terms, 2 degrees of freedom for the interactions, and 1 degree of freedom for the
center effect. The blocks and linear terms are identical to those obtained from model
(1).

Including a center point effect is equivalent to including one β j jx2
j term. Note that

for any j, x2
j is 0 if the point is a center point and 1 otherwise. Thus, the variable Ctr

satisfies Ctr = 1− x2
j and in model (2) γ1 = −β j j. This argument does not depend

on j, so the β j j terms must be aliased with each other.
The fitted regression equation is

ŷ = 11.4−0.078Blk−0.021x1 +0.935x2 +1.54x3 +0.091x4

−0.036x1x3 +0.207x1x4 +0.742Ctr.

A more complete look at the parameter estimates is available from Table 6.2. The
effect of blocks seems minor, as do the effects of factors A and D (x1 and x4). Factors
B and C (x2 and x3) have substantial effects. The interactions have little effect. The
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center points contain some suggestion of lack of fit for the first-order model but the
evidence is not clear cut.

Table 6.2 Model (2) estimates for initial 1/2 replication.

Table of Coefficients
Predictor β̂ j SE(β̂ j) t P
Constant 11.4045 0.2087 54.64 0.000
Blocks −0.0785 0.2640 −0.30 0.786
x1 −0.0211 0.1617 −0.13 0.905
x2 0.9353 0.1617 5.78 0.010
x3 1.5421 0.1617 9.54 0.002
x4 0.0905 0.1617 0.56 0.615
x1x3 −0.0357 0.1617 −0.22 0.839
x1x4 0.2069 0.1617 1.28 0.291
Center 0.7418 0.2800 2.65 0.077

Table 6.3 gives a sequential analysis of variance table for the regression model.
Again, we see that blocks have little effect. The linear terms have a large effect;
as noted earlier, this is mostly due to factors B and C. The interaction is negligi-
ble, while the evidence of lack of fit from the center points is questionable. The
coefficient of determination for the model is R2 = 97.8%.

Table 6.3 Model (2) analysis of variance for initial 1/2 replication.

Analysis of Variance
Source df SS MS F P
Blocks 1 0.0185 0.0185 0.09 0.786
Linear 4 26.0919 6.5230 31.20 0.009
Interaction 2 0.3528 0.1764 0.84 0.513
Center 1 1.4672 1.4672 7.02 0.077
Error 3 0.6274 0.2091
Total 11 28.5577

Table 6.4 gives a detailed listing of the sums of squares for the regression model
and the corresponding sums of squares from an analysis of variance performed on
the same data. In the ANOVA, the error was broken into two parts. Each block
had two observations on the center of the design, so each block gives one degree
of freedom for pure error. The other degree of freedom for error comes from the
block by center points interaction. As usual in a blocking experiment, interactions
involving blocks are used as error. This table gives much the same information as
Table 6.2 about the importance of different factors.

As discussed at the end of Section 1, we need to verify that the estimated first-
order model satisfies the assumptions, that it does not display sufficient lack of fit



6.2 First-Order Models and Steepest Ascent 125

Table 6.4 Sums of squares for initial 1/2 replication.

Regression ANOVA
Source df SS Source df SS
Blocks 1 0.0185 Blocks (AB =CD) 1 0.0185
Center 1 1.4672 Center 1 1.4672
x1 1 0.0036 A 1 0.0036
x2 1 6.9982 B 1 6.9982
x3 1 19.0245 C 1 19.0245
x4 1 0.0656 D 1 0.0656
x1x3 1 0.0102 AC = BD 1 0.0102
x1x4 1 0.3426 AD = BC 1 0.3426
Error 3 0.6274 Blks∗Center 1 0.4615

Pure Error 2 0.1659
Total 11 28.5577 Total 11 28.5577

to invalidate conclusions drawn from it, and that it is sufficiently informative to
interpret. We have already seen that the interactions do not suggest lack of fit and
that the center points do not display a convincing lack of fit. Figure 6.1 contains the
residual versus predicted plot; it appears to be alright. The normal plot in Figure 6.2
is not wonderful but one needs to make allowance for the high dependency among
the residuals; there are 12 residuals but only 3 degrees of freedom for error. As for
the issue of whether the estimated first-order model is sufficiently informative, the
rule of thumb is that the F statistic for the linear effects should be 10 times the value
of the F percentile in the test. Appropriate F percentiles are

F(.90,4,3) = 5.34 and F(.95,4,3) = 9.12.

The observed F value of 31.20 from Table 6.3 does not meet the criterion. We noted
earlier that factors A and D seem to have little effect. Consider what happens when
we test only factors B and C. From Table 6.4, the F statistic becomes

F =
(6.9982+19.0245)/2

0.2091
=

13.01135
0.2091

= 62.23.

Appropriate F percentiles for this test are

F(.90,2,3) = 5.46 and F(.95,2,3) = 9.28.

We are now in the ballpark, 62.23 > 10(5.46). The two substantial factors suggest
that we can proceed with some hope of getting reasonable results. Based on this
analysis, we should perhaps drop factors A and D from further consideration. In-
stead, we retain them because of the possibility that factors A and D have an effect
in some other area of the design space (i.e., for some other values of the factor
levels). The next step in the procedure is to move away from the current area of
experimentation toward an area that provides greater yields. A and D may become
important.
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Fig. 6.1 Standardized residuals versus predicted values, initial 1/2 replication.
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Fig. 6.2 Normal plot of standardized residuals, W ′ = 0.806, initial 1/2 replication.
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Dropping the lack-of-fit terms from the model (i.e., the interactions and center
effect), the regression equation becomes

ŷ = 11.4−0.078Blk−0.021x1 +0.935x2 +1.54x3 +0.091x4.

The estimated regression coefficients do not change when the lack-of-fit terms are
dropped. The nature of the design and the model ensure this.

The direction of steepest ascent does not depend on the intercept or blocks but
only on

β̂∗ = (−0.0211,0.9353,1.5421,0.0905)′.

The normalizing constant is
√

β̂ ′∗β̂∗ = 1.805961, so the normalized direction of
steepest ascent is

(−0.012,0.52,0.85,0.05).

Note that changes in this direction yield little change in the levels of factors A and
D. Table 6.5 gives yields and predictor variables for a series of observations in the
direction of steepest ascent. Table 6.5 also gives the corresponding ξ values that
are necessary to obtain the observations. The sequence of observations was stopped
when a drop in yield was obtained.

Table 6.5 Observations in the direction of steepest ascent.

y x1 x2 x3 x4 ξ1 ξ2 ξ3 ξ4
13.9371 −0.012 0.52 0.85 0.05 0.988 1.52 1.85 1.05
14.7492 −0.023 1.04 1.71 0.10 0.977 2.04 2.71 1.10
15.0789 −0.035 1.55 2.56 0.15 0.965 2.55 3.56 1.15
16.2788 −0.047 2.07 3.42 0.20 0.953 3.07 4.42 1.20
16.6521 −0.058 2.59 4.27 0.25 0.942 3.59 5.27 1.25
17.3583 −0.070 3.11 5.12 0.30 0.930 4.11 6.12 1.30
16.9928 −0.082 3.63 5.98 0.35 0.918 4.63 6.98 1.35

The maximum yield obtained is at x = (−0.070,3.11,5.12,0.30)′, or equiva-
lently ξ = (0.930,4.11,6.12,1.30)′. It was decided to center the next design at
ξ = (1,4,6,1.5)′ and to use spreads of (.5,1,1, .5). Thus, ξ01 = 1− .5 = .5 and
ξ11 = 1+ .5 = 1.5. Similarly, ξ02 = 4− 1 = 3 and ξ12 = 4+ 1 = 5. We again use
the 1/2 rep. of the 24 design using ABCD to define the 1/2 rep. As the blocking had
little effect, we no longer incorporate it. Thus, we can now estimate the AB = CD
interaction by using x1x2 as a predictor variable. As before, the design includes four
center points. With no blocks in the design, the four center points provide three
degrees of freedom for pure error.

The data and model matrix for this second 1/2 rep. are given in Table 6.6 along
with data from a third 1/2 rep. with different scale factors that will be discussed
later. Note that many of the observations from the new design are in the high 16s.
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Yields have improved considerably from those reported in Table 6.1 and are consis-
tent with the yields in Table 6.5.

Table 6.6 Data and design for recentered and recentered-rescaled 1/2 replications.

Rescaled
y x1 x2 x3 x4 x1x3 x1x4 x1x2 Ctr 1/2 Rep.

16.1984 −1 −1 −1 −1 1 1 1 0 12.5737
16.9490 −1 −1 1 1 −1 −1 1 0 14.6108
16.5140 −1 1 −1 1 1 −1 −1 0 13.2115
16.8413 −1 1 1 −1 −1 1 −1 0 16.6965
16.3669 1 −1 −1 1 −1 1 −1 0 11.7133
16.6894 1 −1 1 −1 1 −1 −1 0 14.7368
16.8586 1 1 −1 −1 −1 −1 1 0 13.1926
16.3623 1 1 1 1 1 1 1 0 16.9687
17.0425 0 0 0 0 0 0 0 1 16.7286
16.6733 0 0 0 0 0 0 0 1 16.8469
16.5159 0 0 0 0 0 0 0 1 16.7771
16.6081 0 0 0 0 0 0 0 1 16.1963

Tables 6.7 and 6.8 present ANOVA tables for four designs all centered at ξ =
(1,4,6,1.5)′. The first three use the spreads (.5,1,1, .5). The actual data for these
three are given in Section 3. We consider the designs in turn. From Table 6.7, the
recentered 1/2 rep. just discussed is inadequate for drawing inferences because there
is almost no effect due to the linear terms.

In an attempt to obtain data worth interpreting, the 1/2 rep. was augmented with
additional observations to obtain one complete replication of a 24 design with four
center points. The full replication allows estimation of all six two-factor interactions,
so all of the predictor variables xix j can be included in the model. The five degrees of
freedom for higher-order interactions are pooled with the three degrees of freedom
for pure error to obtain the MSE for the model. The ANOVA table for the full
replication is given in Table 6.7. Again, none of the effects are significant. The
linear effects are not significant at the α = .10 level and thus are a far cry from
exceeding ten times the significance level. Nonetheless, from Table 6.8 we begin to
see variables x2 and x3 appearing as important, just as they did earlier.

We again augmented the design to obtain more informative data. This time, we
duplicated the full 24 plus four center points design. From Table 6.7, the linear
effects are now nearly significant at the 0.01 level but they are still far from having
the overwhelming significance required for further interpretation. More to the point,
we now have a clear indication of lack of fit. The F value of 7.86 for testing the
center points against the rest of the model exceeds the percentile F(.99,1,28) =
7.64. This suggests that we need at least a quadratic approximating function. The
design needs to be augmented to allow fitting of a second-order polynomial. This is
discussed in the next section. It is interesting to note from Table 6.8 that the most
significant effects are those for x2, x3, x2x3, and the center points. In fact, all of the
effects other than these have sums of squares that are smaller than the MSE.
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Table 6.7 Analysis of variance for augmented designs.

Recentered Half Replicate
Analysis of Variance

Source df SS MS F P
Linear 4 0.14542 0.03636 0.68 0.651
Interaction 3 0.38896 0.12965 2.43 0.242
Center 1 0.03373 0.03373 0.63 0.485
Error 3 0.15995 0.05332
Total 11 0.72806

Recentered Full Replicate
Analysis of Variance

Source df SS MS F P
Linear 4 0.79931 0.19983 2.69 0.109
Interaction 6 0.48957 0.08160 1.10 0.437
Center 1 0.15155 0.15155 2.04 0.191
Error 8 0.59432 0.07429
Total 19 2.03474

Recentered Two Replicates
Analysis of Variance

Source df SS MS F P
Linear 4 1.42594 0.35649 3.92 0.012
Interaction 6 0.45671 0.11418 1.26 0.307
Center 1 0.71427 0.71427 7.86 0.009
Error 28 2.54492 0.09089
Total 39 7.14182

Recentered-Rescaled 1/2 Replicate
Analysis of Variance

Source df SS MS F P
Linear 4 24.2434 6.0609 68.25 0.003
Interaction 3 0.9312 0.3104 3.50 0.165
Center 1 15.6717 15.6717 176.48 0.001
Error 3 0.2663 0.0888
Total 11 41.1127

In retrospect, the replicated 24 experiment was constructed in three blocks: an
initial 1/2 rep. with center points, the completion of the 1/2 rep., and the replica-
tion of the full factorial. Typically, such blocks are subject to different experimental
conditions, so an effect for blocks should be included in the regression model. This
is easily done by including predictor variables for blocks similar to the variable that
identifies the center points. The predictor variable for the second block consists of
zeros and ones with ones identifying observations in the second block. The predictor
variable for the third block is similar. The first block is identified by default as those
observations not belonging to any of the other blocks. In our example, the process
generating the data was identical across blocks, so no block effects were necessary.
In practice, having a process that does not change with blocks is extremely unusual.
It is also more common when adding a second half replicate to include the same
number of center points as were in the first half rep.
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Table 6.8 Effect sums of squares.

Rescaled
1/2 Rep. Full Rep. 2 Reps. 1/2 Rep.

Source df SS SS SS SS
x1 1 0.00635 0.00028 0.08203 0.0289
x2 1 0.01735 0.34631 2.54006 5.1756
x3 1 0.10216 0.45271 0.77505 18.9785
x4 1 0.01956 0.00001 0.02880 0.0604
x1x2 1 0.00023 0.02977 0.04842 0.1219
x1x3 1 0.19582 0.03704 0.02933 0.2040
x1x4 1 0.19291 0.06967 0.01950 0.6053
x2x3 1 0.12758 0.35619
x2x4 1 0.18781 0.00064
x3x4 1 0.03770 0.00263
Center 1 0.03373 0.15155 0.71427 15.6717
MSE 0.05332 0.07429 0.09089 0.0888

There is substantial work involved in completing the 24 design and then repli-
cating it. It is probably a good idea to see whether we inadvertently set the design
in a region of suboptimal yield. To check on this, we centered another design at
ξ = (1,4,6,1.5)′ but expanded the spreads to (1,3,5,1). Again, we used no block-
ing and a 1/2 rep. with four center points. Summaries of the analysis are given in
Tables 6.7 and 6.8 as the recentered-rescaled 1/2 rep. More importantly, Table 6.6
contains the yields in the recentered-rescaled 1/2 rep. The yields are uniformly
smaller than those in the original 1/2 rep except at x = (1,1,1,1) and at two of the
center points. This suggests that increasing the levels of the factors may still increase
yield slightly, but a more complete analysis requires a more extensive design and a
more extensive polynomial model. 2

6.3 Fitting Quadratic Models

In Example 6.2.1, we considered two replicates of a 24 design with four center points
per replicate. The data are given on the right of Table 6.9 with the first 1/2 rep.
being the observations above the horizontal line in the “1st Rep” column. A first-
order polynomial model was found to have significant lack of fit. We now consider
augmenting the design to allow fitting of a second-order polynomial

y = β0 +
4

∑
j=1

β jx j +
4

∑
j=1

∑
k≥ j

β jkx jxk + ε.

To do this we add a star design along with four more center points. Star points are
just the opposite of factorial treatment combinations. In a star design, you start at the
center point (0,0,0,0)′ and change only one of the factors. Each factor is changed
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by the same amount in both a positive and negative direction. We changed the fac-
tors by 2 units, thus we took new observations with x values such as (2,0,0,0)′,
(−2,0,0,0)′, (0,2,0,0)′, (0,−2,0,0)′, and so on. For f factors the location of the
star points is determined by ±

√
f . We included two replications of the star design;

the data are given on the left in Table 6.9. The complete design is a central composite
containing the center points, the 24 design, and the star design.

Table 6.9 Data from central composite design.

Star Design 1st Rep. 2nd Rep.
y x1 x2 x3 x4 y y x1 x2 x3 x4

16.7165 2 0 0 0 16.1984 15.9140 −1 −1 −1 −1
16.9255 2 0 0 0 16.9490 16.6119 −1 −1 1 1
16.8088 0 2 0 0 16.5140 16.9104 −1 1 −1 1
17.0992 0 2 0 0 16.8413 16.6026 −1 1 1 −1
16.4714 0 0 2 0 16.3669 15.9193 1 −1 −1 1
16.6335 0 0 2 0 16.6894 16.4512 1 −1 1 −1
17.3265 0 0 0 2 16.8586 16.7357 1 1 −1 −1
16.5691 0 0 0 2 16.3623 17.4326 1 1 1 1
16.5002 −2 0 0 0 17.0425 17.1692 0 0 0 0
16.8499 −2 0 0 0 16.6733 17.0099 0 0 0 0
15.8735 0 −2 0 0 16.5159 16.9727 0 0 0 0
15.9320 0 −2 0 0 16.6081 17.0657 0 0 0 0
16.6993 0 0 −2 0 16.0726 15.5941 −1 −1 −1 1
16.5193 0 0 −2 0 16.3502 16.3469 −1 −1 1 −1
16.8886 0 0 0 −2 16.3358 16.9532 −1 1 −1 −1
17.0260 0 0 0 −2 16.7109 17.0542 −1 1 1 1
17.1728 0 0 0 0 15.7130 16.2635 1 −1 −1 −1
16.3076 0 0 0 0 16.4223 16.3990 1 −1 1 1
16.5874 0 0 0 0 16.5337 17.3961 1 1 −1 1
16.5722 0 0 0 0 16.9590 17.0767 1 1 1 −1

We begin by fitting the quadratic model to the entire data. The fitted regression
equation is

ŷ = 16.8+0.0459x1 +0.275x2 +0.0990x3 +0.0192x4

−0.0366x2
1−0.116x2

2−0.0784x2
3 +0.0146x2

4

+0.0389x1x2−0.0303x1x3−0.0247x1x4

−0.106x2x3 +0.0045x2x4 +0.0091x3x4.

More detail on the parameters is given in Table 6.10. The coefficient of determina-
tion for the model is R2 = 58.8%.

Before interpreting the fitted model, we need to check assumptions, check for
lack of fit, and check whether the fit is adequate for interpretation. Illustrating these
methods is the point of the current section. Interpretation of this model is considered
in Section 4.



132 6 Response Surface Maximization

Table 6.10 Second-order model on all factors.

Table of Coefficients
Predictor β̂ SE(β̂ ) t P
Constant 16.8081 0.0864 194.50 0.000

x1 0.04592 0.04321 1.06 0.294
x2 0.27543 0.04321 6.37 0.000
x3 0.09902 0.04321 2.29 0.027
x4 0.01921 0.04321 0.44 0.659

x2
1 −0.03658 0.04042 −0.90 0.370
x2

2 −0.11649 0.04042 −2.88 0.006
x2

3 −0.07837 0.04042 −1.94 0.059
x2

4 0.01455 0.04042 0.36 0.720
x1x2 0.03890 0.05292 0.74 0.466
x1x3 −0.03027 0.05292 −0.57 0.570
x1x4 −0.02468 0.05292 −0.47 0.643
x2x3 −0.10550 0.05292 −1.99 0.052
x2x4 0.00447 0.05292 0.08 0.933
x3x4 0.00906 0.05292 0.17 0.865

To check whether the fit is adequate for interpretation, consider the analysis of
variance in Table 6.11. The F statistic is 4.58 while the F percentile for an α = 0.10
test is about 1.3; the statistic is nowhere near ten times greater than the percentile,
even for this large α level. From Table 6.10, we see that only terms involving x2 and
x3 have any substantial effect.

Table 6.11 Analysis of variance for second-order model on all factors.

Analysis of Variance
Source df SS MS F P
Regression 14 5.74740 0.41053 4.58 0.000
Error 45 4.03255 0.08961
Total 59 9.77995

Table 6.12 gives the analysis of variance for the quadratic model based only on
factors B and C. The F statistic is now 13.5 which is nearly ten times greater than
the 90th percentile of the F(5,54) distribution, about 1.38. At least in the directions
x2 and x3, it is probably worthwhile to interpret a fitted quadratic polynomial.

The fitted quadratic equation in x2 and x3 alone is

ŷ = 16.8+0.275x2 +0.0990x3−0.114x2
2−0.0756x2

3−0.106x2x3.

More detail is given in Table 6.13. The fitted model gives R2 = 55.5%.
We also need to check the assumptions of the quadratic model. Figures 6.3 and

6.4 give standardized residual plots for the quadratic model on x2 and x3. Both look
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Table 6.12 Analysis of variance for second-order model on factors B and C.

Analysis of Variance
Source df SS MS F P
Regression 5 5.4327 1.0865 13.50 0.000
Error 54 4.3473 0.0805
Total 59 9.7799

Table 6.13 Second-order model on factors B and C.

Table of Coefficients
Predictor β̂ SE(β̂ ) t P
Constant 16.7861 0.0579 289.83 0.000

x2 0.27543 0.04095 6.73 0.000
x3 0.09902 0.04095 2.42 0.019

x2
2 −0.11374 0.03762 −3.02 0.004
x2

3 −0.07562 0.03762 −2.01 0.049
x2x3 −0.10550 0.05016 −2.10 0.040

quite good. Figures 6.5 and 6.6 give standardized residual plots for the quadratic
model in all four factors. Again, both look quite good.
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Fig. 6.3 Standardized residuals versus predicted values, quadratic model for factors B and C.
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Fig. 6.4 Normal plot of standardized residuals, W ′ = 0.990, quadratic model for factors B and C.

Fig. 6.5 Standardized residuals versus predicted values, quadratic model for all factors.

Fig. 6.6 Normal plot of standardized residuals, W ′ = 0.984, quadratic model for all factors.

The last step before interpreting the model is to check for lack of fit. To do this,
we added cubic terms and a center point effect to the model fitted to x2 and x3 only.
The regression equation is

ŷ = 16.8+0.288x2 +0.212x3−0.105x2
2−0.0674x2

3−0.106x2x3

−0.0063x3
2−0.0566x3

3 +0.044Ctr,

with additional information on the parameters given in Table 6.14. The analysis of
variance is given in Table 6.15. Table 6.16 gives the sums of squares for each term
in the quadratic model and in the quadratic model with lack of fit.

From Table 6.15, we see little overall evidence of lack of fit. However, from
Table 6.14 the effect of x3

3 is of marginal significance. An analysis of the residuals
shows that this cubic effect is due almost entirely to the four high leverage points
with (x2,x3) = (0,2) or (0,−2). The design was set up to be well behaved in all
four of the x variables; when restricting the analysis to x2 and x3, the star points
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Table 6.14 Second-order model with lack-of-fit terms for factors B and C.

Table of Coefficients
Predictor β̂ SE(β̂ ) t P
Constant 16.7641 0.0811 206.74 0.000

x2 0.28804 0.07022 4.10 0.000
x3 0.21224 0.07022 3.02 0.004

x2
2 −0.10548 0.04300 −2.45 0.018
x2

3 −0.06736 0.04300 −1.57 0.123
x2x3 −0.10550 0.04966 −2.12 0.038
x3

2 −0.00631 0.02867 −0.22 0.827
x3

3 −0.05661 0.02867 −1.97 0.054
Ctr 0.0440 0.1147 0.38 0.703

Table 6.15 Analysis of variance for second-order model with lack-of-fit terms for B and C.

Analysis of Variance
Source df SS MS F P
Quadratic 5 5.43269 1.08654 13.77 0.000
Lack of Fit 3 0.32313 0.10771 1.37 0.262
Error 51 4.02413 0.07890
Total 59 9.77995

become high leverage points. Plotting the residuals against x3 shows something like
a linear trend because of these four residuals. Of course, linear trends cannot exist
for residuals plotted against variables in the model; the trend is actually cubic. Given
the nature of the quadratic surface as discussed later, any lack of fit should not have
great influence on our conclusions.

Table 6.16 Sums of squares for the quadratic model with lack-of-fit terms, x2 and x3 only.

Quadratic Model Lack of Fit
Source df Seq. SS Source df Seq. SS
x2 1 3.64146 Ctr 1 0.01164
x3 1 0.47059 x3

2 1 0.00382
x2

2 1 0.63915 x3
3 1 0.30768

x2
3 1 0.32530

x2x3 1 0.35619

The quadratic model in all four factors was also examined for lack of fit. Cubic
terms and three- and four-factor interactions were added to the quadratic model. The
sums of squares are given in Table 6.17. The analysis of variance is in Table 6.18.
Cumulatively, there is no evidence for lack of fit. Only x3

3 and x1x3x4 display any hint
of lack of fit. This second term is not significant when tested alone, and it involves
two factors, x1 and x4, that have not displayed any lower-order effects.
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Table 6.17 Second-order model with lack-of-fit terms for all factors.

Quadratic Model Lack of Fit
Source df Seq. SS Source df Seq. SS
x1 1 0.10120 x1x2x3 1 0.01090
x2 1 3.64146 x1x2x4 1 0.00013
x3 1 0.47059 x1x3x4 1 0.22789
x4 1 0.01770 x2x3x4 1 0.03585
x2

1 1 0.01576 x1x2x3x4 1 0.04324
x2

2 1 0.66992 x3
1 1 0.00213

x2
3 1 0.36244 x3

2 1 0.00382
x2

4 1 0.01162 x3
3 1 0.30768

x1x2 1 0.04842 x3
4 1 0.01119

x1x3 1 0.02933
x1x4 1 0.01950
x2x3 1 0.35619
x2x4 1 0.00064
x3x4 1 0.00263
Cross terms are interactions from the two replications of the 24.

Table 6.18 Analysis of variance for second-order model with lack-of-fit terms for all factors.

Analysis of Variance
Source df SS MS F P
Quadratic 14 5.74740 0.41053 4.36 0.000
Lack of Fit 9 0.64283 0.07143 0.76 0.654
Error 36 3.38972 0.09416
Total 59 9.77995

All in all, it seems worthwhile to try to draw conclusions from the quadratic
model on x2 and x3. Conclusions drawn from the quadratic model on all factors seem
much more questionable. In the next section, we use both of these fitted models to
illustrate methods for interpreting quadratic functions. It should be remembered that
any conclusions drawn from the model on all four factors are questionable because
of the relatively small regression F statistic.

6.4 Interpreting Quadratic Response Functions

In this section, we discuss methods for finding the maximum of a quadratic function
and for examining the nature of a quadratic surface when the maximum or critical
point is located far from the observed data. The discussion is considerably more so-
phisticated than earlier material as it relates to vector geometry. For x′= (x1, . . . ,x f ),
consider a response function that is quadratic in the x j’s,
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µ(x) = β0 +
f

∑
j=1

β jx j +
f

∑
j=1

∑
k≥ j

β jkx jxk.

As before, we write
β∗ = (β1, . . . ,β f )

′,

B =


β11 β12/2 β13/2 · · · β1q/2

β12/2 β22 β23/2 · · · β2q/2
...

...
...

. . .
...

β1q/2 β2q/2 β3q/2 · · · βqq

 ,
and

µ(x) = β0 + x′β∗+ x′Bx. (1)

Again, we realize that this is only an approximation to the true response function
and that β0, β∗, and B must be estimated from experimental data.

To find a critical point, differentiate the response function (1) to give

[dxµ(x) = β∗+2Bx.

Setting the derivative equal to the 0 vector gives

β∗+2Bx = 0, (2)

so a critical point is located at the solution

x0 ≡−B−1
β/2. (3)

From equation (2) note that
β∗ =−2Bx0,

so the value of the response function at the critical point is

µ0 ≡ µ(x0)

= β0 + x′0β∗+ x′0Bx0

= β0−2x′0Bx0 + x′0Bx0

= β0− x′0Bx0.

This analysis assumes that an inverse matrix exists for B. In practice, estimates of B
almost always have an inverse but the true matrix B may not. We will return to this
issue in the next subsection.

Even the simple form of the response function in equation (1) is too complicated
for a detailed analysis. For example, situations exist where changing any variable
by itself leads to a decrease in yield but changing variables together increases yield.
We need to rewrite the response function in its simplest form. First, recenter the
quadratic function as



138 6 Response Surface Maximization

µ(x) = β0 + x′β∗+ x′Bx

= β0−2x′Bx0 + x′Bx

= β0− x′0Bx0 + x′0Bx0−2x′Bx0 + x′Bx

= µ0 +(x− x0)
′B(x− x0).

We now use the singular value decomposition to go a step further and write the
symmetric matrix B as

B = PD(λ )P′

with P orthonormal (orthogonal) and D(λ ) diagonal. The elements of the vector λ

are eigenvalues of B, and the columns of P are corresponding eigenvectors. Substi-
tuting for B gives

µ(x) = µ0 +(x− x0)
′PD(λ )P′(x− x0)

= µ0 +[P′(x− x0)]D(λ )[P′(x− x0)].

Transforming x into
z = P′(x− x0)

gives

µ(x) = µ0 + z′D(λ )z (4)

= µ0 +
f

∑
j=1

λ jz2
j .

Equation (4) is known as the B canonical form of the quadratic response function.
If the λ j’s that comprise the vector λ are all positive, the function increases as x

differs from x0, thus x0 is the location of the minimum. If the λ j’s are all negative,
the function decreases as x differs from x0, so x0 is the location of the maximum. If
the λ j’s are both positive and negative, x0 is the location of a saddlepoint. If the λ j’s
were all negatives and zeros, a maximum could be attained for many different x val-
ues or the function could increase indefinitely. Having many values that maximize
the function can be useful because in such situations the value of x can be chosen to
minimize costs of production while attaining a maximum yield.

If any of the λ j’s are zero, the matrix B−1 does not exist and thus x0 does not exist.
The analysis just given breaks down. Such situations are discussed in the following
subsection. In practice, estimated λ j’s are almost never zero but they are often close
to zero. Investigating situations where some λ j’s equal zero sheds light on situations
where their estimates are almost zero.

The location x0 of a maximum is a key feature in modeling responses. If the
maximum is attained close to the center of data collection (i.e., if x0 is close to 0,
we can have some faith in the estimated location). If x0 is far from the center of data
collection, it provides only a direction for further exploration. 2
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EXAMPLE 6.4.1. In the previous section, we completed checks on assumptions,
on whether the fit is adequate for interpretation, and on lack of fit. In this example
we examine the fitted quadratic model for x2 and x3. Recall that this model is both
simpler and better estimated than the model with all four factors. The more complete
model will be examined later.

Using the matrix notation of this chapter, Table 6.13 gives

β̂∗ =

[
0.27543
0.09902

]
B̂ =

[
−0.11374 −0.05275
−0.05275 −0.07562

]
.

Applying equation (3) gives the location of the critical point as

x̂0 = (1.34097,−0.28069)′,

with the corresponding value of the estimated response function

µ̂0 = 16.9569.

The critical point is reasonably close to the center of the data (x2,x3) = (0,0). Some
of the design points are at the center, while the factorial points (±1,±1) are a dis-
tance of √

(±1)2 +(±1)2 =
√

2 .
= 1.414

from the center, and the star points are 2 units from the center. The distance of the
critical point from the center is √

x̂′0x̂0 = 1.37

units, so it is closer to the center than any of the actual observations other than those
taken at the center.

Recall that to transform x̂0 from the x scale to the original ξ scale involves solving
x j = (ξ j−m j)/s j to get ξ j = m j + s jx j. In this problem, m2 = 4, s2 = 1, m3 = 6,
s3 = 1, so x̂0 transforms into ξ̂0 = (5.34097,5.71931)′.

The eigenvalues of B̂ are given by

λ̂ = (−0.150768,−0.038592)′.

Both λ̂ j’s are negative, so the critical point is a maximum and the estimated response
surface gives a maximum achievable mean response of µ̂0 = 16.9569. Of course, we
have actually observed higher values for y, but we ascribe that to random variation.

The canonical form for the quadratic model is

ŷ = µ̂(z) = 16.9569−0.150768z2
1−0.038592z2

2,

where
z = P′(x− x̂0)
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and

P =

[
0.818482 −0.574533
0.574533 0.818482

]
.

The maximum of µ̂(z) is obtained at z = (0,0)′. Note that λ̂1 is about four times
greater than λ̂2, so the model is

√
4 = 2 times more sensitive to changes in the z1

direction than to changes in the z2 direction. Note that in Table 6.13 the standard
errors for the quadratic terms β̂22 and β̂33 are both 0.03762. This value can also be
used as a rough standard error for the λ̂ j’s. By this criterion, λ̂1 is clearly different
from zero, while λ̂2 shows little evidence of being different from zero.

The center of data collection as measured in the z variables is

zc ≡
[

z1c
z2c

]
≡ P′(0− x̂0) =

−
[

0.818482 −0.574533
0.574533 0.818482

][
1.34097
−0.28069

]
=

[
−1.25882
−0.54069

]
. (5)

If movement in the z2 direction has relatively little effect, the most dramatic im-
provement in response with the least change in current operating conditions is
obtained by moving from the current center zc = (z1c,z2c)

′ to (0,z2c)
′ — in other

words, by moving from zc = (−1.25882,−0.54069)′ to (0,−0.54069)′. We now
find this point in terms of x. The matrix P is orthonormal, so PP′ = I, Pz =
PP′(x− x̂0), and

x = Pz+ x̂0.

We want to find

P
(

0
z2c

)
+ x̂0.

From equation (5), writing P in terms of its columns, say P = [P1,P2], gives z2c =
−P′2x̂0, so the point we are looking for is

P
[

0
−P′2x̂0

]
+ x̂0 = [P1,P2]

[
0

−P′2x̂0

]
+[P1,P2]

[
P′1
P′2

]
x̂0

= −P2P′2x̂0 +P1P′1x̂0 +P2P′2x̂0

= P1P′1x̂0.

In this example,

P1P′1x̂0 =

[
0.766339
0.537931

]
.

(This is the perpendicular projection of x̂0 into C(P1).) Note that P1P′1x̂0 is the
scalar P′1x̂0 times the vector P1, so the most dramatic improvement in response with
the least change in current operating conditions is obtained by moving a specified
amount away from x = (0,0) in the direction P1. From this new point, we can inves-
tigate the effect of moving in the P2 direction. In this example, additional improve-
ment is possible by moving in the P2 direction toward x̂0. When λ2 is essentially
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zero, no substantial improvement is possible by changes in the P2 direction, so any
operating conditions that give z1c = 0 (i.e., any x values that give 0 = P′1(x− x̂0) give
optimal response). 2

EXAMPLE 6.4.2. We now consider the quadratic model for all four factors. Even
though the function is not well-estimated from our data, we will use the fitted poly-
nomial to illustrate the ideas of interpreting second-order polynomials. In the matrix
form used in this section, Table 6.10 gives the estimates of the coefficients of the
quadratic response function as

β̂∗ =


0.04592
0.27543
0.09902
0.01921

, B̂ =


−0.03658 0.03890 −0.03027 −0.02468

0.03890 −0.11649 −0.10550 0.00447
−0.03027 −0.10550 −0.07837 0.00906
−0.02468 0.00447 0.00906 0.02910

 .
The critical point is located at

x̂0 = (−0.77552,−0.79934,1.84107,−1.43821)′,

with a response at the critical point of

µ̂0 = 16.7576.

The distance of the critical point from the center of the design is
√

x̂′0x̂0 = 2.588.
The design points, other than centers, are all two units from the center, so the critical
point is substantially farther from the center than any of the design points. This
suggests that we should not put great faith in the precise location of the critical
point. We can, however, use the fitted model, including the critical point, to inform
us about the behavior of the fitted model in the region of data collection.

Transforming x̂0 from the x scale to the original ξ involves solving ξ j =
m j + s jx j. In this problem, (m1,m2,m3,m4) = (1,4,6,1.5) and (s1,s2,s3,s4) =

(.5,1,1,0.5), so x̂0 becomes ξ̂0 = (0.61224,5.34097,−0.28069,0.780895)′.
The eigenvalues of B̂ are

λ̂ = (−0.205831,−0.069644,0.053113,0.020022)′.

The λ̂ j’s are both positive and negative, so the critical point is a saddlepoint. The
canonical form for the quadratic model is

ŷ = µ̂(z) = 16.7576−0.205831z2
1−0.069644z2

2 +0.053113z2
3 +0.020022z2

4,

where
z = P′(x− x̂0)

and
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P =


0.072618 0.842179 −0.497374 0.195141
−0.774280 −0.261909 −0.390255 0.423787
−0.626938 0.434557 0.470081 −0.443996

0.046538 0.182478 0.615909 0.764978

 .
The critical point is obtained at z = (0,0,0,0)′. Note that |λ̂1| is about three times
greater than |λ̂2|, four times greater than |λ̂3|, and ten times greater than |λ̂4|. In
particular, the model is

√
10 .

= 3 times more sensitive to changes in the z1 direction
than to changes in the z4 direction. From Table 6.10, the standard errors for the
quadratic terms β̂ j j are all 0.04042. This value can be used as a rough standard
error for the λ̂ j’s. By this standard, λ̂1 is clearly different from zero, while the other
λ̂ j’s show little evidence of being different from zero. For this reason we focus on
movements only in the z1 direction.

The center of data collection in the z variables is

zc ≡


z1c
z2c
z3c
z4c

≡ P′(0− x̂0)

= −


0.072618 0.842179 −0.497374 0.195141
−0.774280 −0.261909 −0.390255 0.423787
−0.626938 0.434557 0.470081 −0.443996

0.046538 0.182478 0.615909 0.764978



−0.77552
−0.79934

1.84107
−1.43821



=


1.92586
0.51816
−1.64286

0.14822

 .
If movements in the z2, z3, and z4 directions have relatively little effect, the most dra-
matic change in response with the least change in current operating conditions is ob-
tained by moving from the current center zc = (z1c,z2c,z3c,z4c)

′ to (0,z2c,z3c,z4c)
′.

Writing P= [P1,P2,P3,P4], an argument similar to that in the previous example gives
this new point in terms of x as

P1P′1x̂0 =


−0.047824

0.509919
0.412884
−0.030649

 .
Again, the most dramatic change in response with the least change in current oper-
ating conditions is obtained by moving a specified amount away from x = (0,0,0,0)
in the direction P1. From this point, we need to investigate the effect of moving in
the P2, P3, and P4 directions. The response may increase with changes in some or
all of these directions, and the rate of increase typically varies with the direction. To
analyze this phenomenon further requires an alternative canonical form discussed
in the next subsection.
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In both this example and Example 6.4.1, the direction to move for the most dra-
matic change in response with the least change in current operating conditions (i.e.,
the direction P1), involves changing x2 about 8 units for every 6 unit change in x3
with little or no change in x1 or x4. Comparing the overall maximum of Exam-
ple 6.4.1 to the current example, the point that maximized the response in x2 and x3
alone gives the estimated response µ̂(0,1.34097,−.28069,0) = 17.0134, which is
greater than the saddlepoint response µ̂0. 2

EXAMPLE 6.4.3. We again consider the quadratic model for all factors, but this
time we consider only λ̂4 as being not substantially different from zero. As before,
the center of data collection in the z variables is

zc ≡


z1c
z2c
z3c
z4c

≡ P′(0− x̂0),

with P and x̂0 as given in the previous example. This time, we consider only move-
ment in the z4 direction as having an insubstantial effect on response. The most
dramatic change in response with the least change in current operating conditions is
obtained by moving from the current center zc = (z1c,z2c,z3c,z4c)

′ to (0,0,0,z4c)
′.

We now find this point in terms of x. Again writing P = [P1,P2,P3,P4], an argument
similar to that in Example 6.4.1 gives the point as

x =
3

∑
j=1

PjP′j x̂0 =


−0.305676

0.221018
0.772054
0.403639

 ,
where the vectors P1, P2, and P3 are used because they correspond to zeroing out
z1c, z2c, and z3c. A matrix equivalence establishes that the point is also (I−P4P′4)x̂0,
where the vector P4 is used because it was not zeroed out. The most dramatic change
in response with the least change in current operating conditions is obtained by
moving a specified amount away from (0,0,0,0) to P1(P′1x̂0)+P2(P′2x̂0)+P3(P′3x̂0).
This involves movement in all three of the directions P1, P2, and P3. From this point,
we need to investigate the effect of moving in the P4 direction. 2

6.4.1 Noninvertible B

When B has no inverse, x0 does not exist, so the canonical form (4) cannot be used.
We can write an alternative canonical form that does not involve recentering but
instead uses the transformation

z̃ = P′x.



144 6 Response Surface Maximization

The center of the data is still at (0, . . . ,0)′ under this transformation. Observing that
PP′ = I and B = PD(λ )P′ allows us to write µ(x) = β0 + x′β∗+ x′Bx as

µ(z̃) = β0 + z̃′P′β∗+ z̃′D(λ )z̃.

Now, defining
θ ≡ P′β∗

gives the A canonical form

µ(z̃) = β0 + z̃′θ + z̃′D(λ )z̃

= β0 +
f

∑
j=1

θ j z̃ j +
f

∑
j=1

λ j z̃2
j .

Suppose now that all the λ j’s are negative except for λ j′ = 0. If θ j′ is also zero,
then z̃ j′ has no effect on the response surface. There is a maximum value for

β0 +
f

∑
j 6= j′

θ j z̃ j +
f

∑
j 6= j′

λ j z̃2
j

that depends only on the other z̃ j’s, so z̃ j′ can be chosen to minimize costs of pro-
duction. Obviously, if more than one of the (λ j,θ j) pairs are both zero, a similar
analysis holds. In these cases, µ(z̃) is said to have a stationary ridge.

Now, suppose that all the λ j’s are negative except for λ j′ = 0, but θ j′ 6= 0. For
any fixed z̃ j′ , we can maximize the function. We need only consider behavior in the
z̃ j′ direction. If θ j′ is positive, the response will increase indefinitely as z̃ j′ increases,
and if θ j′ is negative, the response will increase indefinitely as z̃ j′ decreases. This
situation is known as a rising ridge.

EXAMPLE 6.4.4. Consider again the quadratic response function in x2 and x3.
In practice, the smallest λ̂ j values are almost never zero, but they are often close
enough to zero that the estimated response function behaves as if some λ̂ j’s were
zero. In this example, λ̂2 is reasonably small. We examine what can be learned from
treating it as though it were zero.

In Example 6.4.1, we gave the matrices P and β̂∗. Multiplying P′β̂∗ gives

θ̂ =

[
0.282325
−0.077198

]
,

and the A canonical form becomes

ŷ = µ̂(z̃) = 16.7861+0.282325z̃1−0.077198z̃2−0.150768z̃2
1−0.038592z̃2

2.

It is easily seen that when the z transformation exists, z̃ = z− zc. In other
words, the z̃ transformation takes the z transformation and recenters it at the orig-



6.4 Interpreting Quadratic Response Functions 145

inal x origin. In the z transform, the center of the data for this example was at
zc = (−1.25882,−0.54069)′.

We saw in Example 6.4.1 that by treating λ̂2 as zero, the point nearest the center
of the data with maximum response was (x2,x3) = (0.766339,0.537931), or equiv-
alently z = (0,−0.54069)′. In the z̃ transform, this is

z̃ = z− zc = (1.25882,0)′.

From this point, we indicated that one needs to examine the behavior of the function
in the x direction P2. A change in this direction involves a change in z̃2 but not in z̃1.
The estimated response when treating λ̂2 as zero and allowing only changes in the
z2 direction is

ŷ = µ̂(z̃) = 16.7861+0.282325(1.25882)−0.077198z̃2−0.150768(1.25882)2.

Clearly, increasing the value of z̃2 causes the response to decrease. To im-
prove response from (x2,x3) = (0.766339,0.537931), we need to change (x2,x3)

′

so that z̃2 decreases. Recalling that P2 = (−0.574533,0.818482)′, a change of
z̃2 units moves from (x2,x3) = (0.766339,0.537931) to (x2,x3) = (0.766339−
z̃20.574533,0.537931+ z̃20.818482). 2

EXAMPLE 6.4.5. Consider the quadratic response function in all four variables.
In Example 6.4.2, we gave the matrices P and β̂∗. Multiplying P′β̂∗ gives

θ̂ =


−0.271111

0.013070
−0.071948

0.096415

 ,
and the A canonical form becomes

ŷ = µ̂(z̃) = 16.8081−0.271111z̃1 +0.013070z̃2−0.071948z̃3 +0.096415z̃4

−0.205831z̃2
1−0.069644z̃2

2 +0.053113z̃2
3 +0.020022z̃2

4.

We saw in Example 6.4.2 that by treating λ̂2, λ̂3, and λ̂4 as zero, the point nearest
the center of the data (i.e., nearest zc = (1.92586,0.51816,−1.64286,0.14822)′)
that has maximum response is z= (0,0.51816,−1.64286,0.14822)′, or equivalently
(x1,x2,x3,x4)

′= (−0.047824,0.509919,0.412884,−0.030649)′. In the z̃ transform,
this is

z̃ = z− zc = (−1.92586,0,0,0)′.

From this point, one needs to examine the behavior of the function in the z̃2, z̃3,
and z̃4 directions. The estimated response when treating λ̂2, λ̂3, and λ̂4 as zero and
allowing only changes in the z̃2, z̃3, and z̃4 directions is

ŷ = µ̂(z̃) = 16.8081−0.271111(−1.92586)
+0.013070z̃2−0.071948z̃3 +0.096415z̃4−0.205831(−1.92586)2.
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Clearly, increasing the value of z̃2 causes the response to increase, as does increasing
the value of z̃4. Increasing the value of z̃3 causes the response to decrease. The
largest increases in response per unit change in z̃ j come from increasing z̃4, while
decreasing z̃3 is a reasonably close second. Very little occurs when changing z̃2
because the coefficient 0.013070 is so small. 2



Chapter 7
Recovery of Interblock Information in BIB
Designs

A version of this material appeared in the first four editions of PA.
Consider the analysis of a balanced incomplete block (BIB) design in which

blocks are random effects. This analysis is known as the recovery of interblock
information. The BIB analysis in which blocks are fixed effects is known as the
intrablock analysis and is discussed in PA Section 9.4.

We begin by fixing notation. The model for a BIB is

yi j = µ +βi + τ j + ei j,

i = 1, . . . ,b, with j ∈ Di or, equivalently, j = 1, . . . , t, with i ∈ Ai. Here β and τ

indicate block and treatment effects, respectively, Di is the set of treatment indices
for block i, and A j is the set of indices for blocks that contain treatment j. The model
is written using matrices as

Y = Jµ +Xβ +Zτ + e,

where µ , β , and τ are the grand mean, block effects vector, and treatment effects
vector, respectively. The matrix X is the matrix of indicators for the blocks and can
be written as

X = [xi j,m], xi j,m = δim.

Here the columns of X are m = 1, . . . ,b, the pair i j identifies a row of the matrix,
and δab for any two symbols a and b is 1 if a = b and 0 if a 6= b. Z is a matrix of
indicators for the treatments and is defined as Z = [zi j,r] with zi j,r = δ jr, r = 1, . . . , t,
and the pair i j denoting a row of the matrix.

Recall two fundamental relations necessary for a BIB,

rt = bk

and
(t−1)λ = r(k−1),

147
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where r is the number of replications for each treatment, k is the number of units
in each block, and λ is the number of times any two treatments occur in the same
block.

In the mixed model, β is a random vector with E(β ) = 0, Cov(β ) = σ2
BIb, and

Cov(β ,e) = 0. In a slight change of notation write Cov(e) = σ2
e In, where n = rt =

bk. Combining the random effects, write η = Xβ + e and the model as

Y = Zτ +η , E(η) = 0, Cov(η) = σ
2
e In +σ

2
BXX ′. (1)

Note that we have dropped the grand mean, thus removing the overparameterization
associated with the treatment effects. In other words, we are using the model yi j =
τ j +ηi j, where ηi j ≡ β j + ei j is the random error term.

As in PA Chapter 11, write σ2 = σ2
e +σ2

B and ρ = σ2
B/
(
σ2

e +σ2
B
)
. It follows that

σ2
e = σ2(1−ρ) and σ2

B = σ2ρ . A term that frequently appears in the analysis is the
interblock (between cluster) error term,

σ
2 [(1−ρ)+ kρ] = σ

2
e + kσ

2
B.

With the notation given earlier, write

Cov(η) = σ
2V,

where, again as in Chapter 11,

V =
[
(1−ρ)I +ρXX ′

]
= [(1−ρ)I + kρM]

and M is the perpendicular projection operator onto C(X).

7.1 Estimation

In this subsection we derive the BLUE of τ . From Section 2.7,

Zτ̂ = AY

= Z
(
Z′V−1Z

)−1
Z′V−1Y.

Note that finding τ̂ is essentially equivalent to finding the oblique projection opera-
tor A. Given τ̂ we can easily find Zτ̂; thus we know AY . With AY known for any vec-
tor Y , the matrix A is completely characterized. Finding τ̂ =

(
Z′V−1Z

)−1 Z′V−1Y

requires computation of both V−1 and
(
Z′V−1Z

)−1. These computations are facili-
tated by the following result.

Proposition 7.1.1. Let P be a projection operator (idempotent), and let a and b
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be real numbers. Then

[aI +bP]−1 =
1
a

[
I− b

a+b
P
]
.

PROOF.

1
a

[
I− b

a+b
P
]
[aI +bP] =

1
a

[
aI +bP− ab

a+b
P− b2

a+b
P
]
= I. 2

Using this result, we obtain two forms for V−1:

V−1 =
1

1−ρ

[
I− kρ

[(1−ρ)+ kρ]
M
]
=

1
1−ρ

[
(I−M)+

1−ρ

[(1−ρ)+ kρ]
M
]
. (2)

Both forms will be used frequently.
We now compute Z′V−1Z and

(
Z′V−1Z

)−1. First note that the fundamental rela-
tion (t−1)λ = r(k−1) implies

λ t = rk− (r−λ ).

Using this equality and the characterizations

Z′Z = rIt , Z′MZ =
1
k

[
(r−λ )I +λJt

t
]

(proven in PA Section 9.4), the first form for V−1 in equation (2), and writing Pt =
1
t Jt

t , we get

(Z′V−1Z) =
1

1−ρ

[
Z′Z− kρ

[(1−ρ)+ kρ]
Z′MZ

]
=

1
1−ρ

[
rI− ρ

[(1−ρ)+ kρ]
{(r−λ )I +λ tPt}

]
=

1
1−ρ

[
r(1−ρ)

[(1−ρ)+ kρ]
I +

λ tρ
[(1−ρ)+ kρ]

(I−Pt)

]
=

1
(1−ρ) [(1−ρ)+ kρ]

[r(1−ρ)I +λ tρ(I−Pt)] .

From Proposition 7.11.1,

(Z′V−1Z)−1 =
[(1−ρ)+ kρ]

r

[
I− λ tρ

r(1−ρ)+λ tρ
(I−Pt)

]
(3)

=
[(1−ρ)+ kρ]

r

[
r(1−ρ)

r(1−ρ)+λ tρ
I +

λ tρ
r(1−ρ)+λ tρ

Pt

]
.
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Rather than computing τ̂ = (Z′V−1Z)−1Z′V−1Y directly, it is convenient to de-
compose Z′V−1Y into intrablock and interblock components. The intrablock com-
ponent is related to the fixed block effect analysis. The interblock component is
what is left. The fixed block effect analysis is based on

Y ′(I−M)Z = (Q1, . . . ,Qt)

where, cf. PA Section 9.4,
Qm = ∑

i∈Am

(yim− ȳi·).

Define
Q = (Q1, . . . ,Qt)

′,

so Q≡ Z′(I−M)Y . Similarly, define

W = (W1, . . . ,Wt)
′,

where W ≡ Z′MY . M is the perpendicular projection operator for the one-way
ANOVA in blocks (ignoring treatments) so

MY = [ti j], ti j = ȳi· ,

with
ȳi· ≡

1
k ∑

j∈Di

yi j .

Z is a matrix of treatment indicators, so Z′MY yields

Wj = ∑
i∈A j

ȳi· .

In particular,
Q j = ∑

i∈A j

(yi j− ȳi·) = ∑
i∈A j

yi j−Wj.

In computing τ̂ , we will also have occasion to use

W · ≡
1
t

t

∑
j=1

Wj

and the fact that

Q· ≡
1
t

t

∑
j=1

Q j =
1
t

J′t Z
′(I−M)Y =

1
t

J′n(I−M)Y = 0.

Using the second form of V−1 given in (2),
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Z′V−1Y =
1

1−ρ
Z′(I−M)Y +

1
(1−ρ)+ kρ

Z′MY (4)

=
1

1−ρ
Q+

1
(1−ρ)+ kρ

W.

Finally, using (3) and (4),

τ̂ = (Z′V−1Z)−1Z′V−1Y

=
[(1−ρ)+ kρ]

r

[
r(1−ρ)

r(1−ρ)+λ tρ
I +

λ tρ
r(1−ρ)+λ tρ

Pt

]
Z′V−1Y

=
[(1−ρ)+ kρ] (1−ρ)

r(1−ρ)+λ tρ
Z′V−1Y +

[(1−ρ)+ kρ]λ tρ
r [r(1−ρ)+λ tρ]

PtZ′V−1Y

=
[(1−ρ)+ kρ]

r(1−ρ)+λ tρ
Q+

(1−ρ)

r(1−ρ)+λ tρ
W +

λ tρW ·
r [r(1−ρ)+λ tρ]

Jt .

The last equality comes from PtQ = Q·Jt = 0 and PtW = W ·Jt . In particular, an
individual component of τ̂ is

τ̂ j =
[(1−ρ)+ kρ]

r(1−ρ)+λ tρ
Q j +

(1−ρ)

r(1−ρ)+λ tρ
Wj +

λ tρW ·
r [r(1−ρ)+λ tρ]

.

For purposes of comparing treatments, the term involving W ·, which is constant, can
be dropped. Finally, the projection operator is characterized by

AY = Zτ̂ = [ti j], ti j = τ̂ j .

There are three additional aspects of the analysis to consider. First, we need to
consider testing the hypothesis τ1 = · · ·= τt . Second, we need to examine contrasts.
Third, we need to deal with the fact that our estimate of τ̂ is useless. The estimate de-
pends on ρ = σ2

B/(σ
2
e +σ2

B). This is an unknown parameter. Writing τ̂ = (σ2/σ2)τ̂ ,
and using σ2(1−ρ) = σ2

e and σ2ρ = σ2
B , gives

τ̂ =
σ2

e + kσ2
B

rσ2
e +λ tσ2

B
Q+

σ2
e

rσ2
e +λ tσ2

B
W +

λ tσ2
BW ·

rσ2
e +λ tσ2

B
Jt . (5)

Model (1) is a mixed model, so the methods of this chapter can be used to estimate
σ2

e and σ2
B . The variance estimates can be substituted into (5) to give a usable es-

timate of τ . Traditionally, Henderson’s Method 3 has been used to obtain variance
estimates. The use of Henderson’s Method 3 will be discussed in detail later. Tests
of models and examination of contrasts will be discussed as if σ2

e and σ2
B (hence σ2

and ρ) were known. A discussion in which only ρ is assumed known is also given.
Throughout we assume that η ≡ Xβ + e∼ N(0,σ2V ).
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7.2 Model Testing

We desire to test model (1) against the reduced model

Y = Jµ +η . (6)

In particular, we will show that an α level test rejects H0 if

rσ2
e +λ tσ2

B

σ2
e
[
σ2

e + kσ2
B

] t

∑
i=1

(τ̂ j− τ̃·)> χ
2(1−α, t−1), (7)

where τ̃· = ∑
t
j=1 τ̂ j/t is the mean of the τ̂ js. The remainder of this subsection is

devoted to showing that this is the appropriate test.
We begin by finding the BLUE of Jµ from model (6). The BLUE is Jµ̂ = A0Y =

J
(
J′V−1J

)−1 J′V−1Y . However, if we show that C(V J) ⊂ C(J), we can apply PA
Proposition 2.7.5 or Theorem 10.4.5 to see that the simple least squares estimate
Jµ̂ with µ̂ = ∑i j yi j/rt is the BLUE. Because J ∈C(X), V J = [(1−ρ)I + kρM]J =
(1−ρ)J+ kρJ = [(1−ρ)+ kρ]J ∈C(J).

From PA Corollary 3.8.3,

Y ′(A−A0)
′V−1(A−A0)Y

/
σ

2 ∼ χ
2(t−1,0)

if and only if model (6) is true. We wish to show that the test statistic is identical to
that used in (7). Our argument involves five algebraic identities. First,

t

∑
j=1

(τ̂ j− τ̃·)
2 = τ̂

′(I−Pt)τ̂.

Second, we show that µ̂ = τ̃·. Using the second form for V−1 in (2) gives V−1J =
[(1−ρ)+ kρ]−1J; also recall that J ∈C(Z) so AJ = J. These equalities lead to the
result.

τ̃· =
1
t

J′t τ̂ =
1
rt

J′Zτ̂ =
1
rt

J′AY

=
(1−ρ)+ kρ

rt
J′V−1AY

=
(1−ρ)+ kρ

rt
J′A′V−1Y

=
(1−ρ)+ kρ

rt
J′V−1Y

=
1
rt

J′Y = µ̂.

Third,
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τ̂
′(I−Pt)τ̂ = τ̂

′
τ̂− t

(
1
t

τ̂
′J′t

)2

= τ̂
′
τ̂− t µ̂2

= [τ̂− Jt µ̂]
′[τ̂− Jt µ̂].

Fourth, recall from Section 9.4 that

Z′(I−M)Z =
λ t
k
(I−Pt) ,

and, finally, from Section 9.4, and because r−λ = rk−λ t,

Z′MZ =
1
k
[(r−λ )I +λ tPt ]

=
1
k
[rkI−λ t (I−Pt)] .

Using the second form of V−1 in (2),

Y ′ (A−A0)
′V−1 (A−A0)Y

= [Zτ̂− Jµ̂]′V−1 [Zτ̂− Jµ̂]

=
1

1−ρ
[Zτ̂− Jµ̂]′ (I−M) [Zτ̂− Jµ̂]+

1
(1−ρ)+ kρ

[Zτ̂− Jµ̂]′M [Zτ̂− Jµ̂]

=
1

1−ρ
τ̂
′Z′(I−M)Zτ̂ +

1
(1−ρ)+ kρ

[Zτ̂−ZJt µ̂]
′M[Zτ̂−ZJt µ̂]

=
1

1−ρ

λ t
k

τ̂
′(I−Pt)τ̂ +

1
(1−ρ)+ kρ

[τ̂− Jt µ̂]
′Z′MZ[τ̂− Jt µ̂]

=
1

1−ρ

λ t
k

τ̂
′(I−Pt)τ̂ +

1
(1−ρ)+ kρ

[τ̂− Jt µ̂]
′
{

1
k
[rkI−λ t (I−Pt)]

}
[τ̂− Jt µ̂]

=
λ t
k

τ̂
′(I−Pt)τ̂

{
1

1−ρ
− 1

(1−ρ)+ kρ

}
+

r
(1−ρ)+ kρ

[τ̂− Jt µ̂]
′[τ̂− Jt µ̂]

=
kρ

[(1−ρ)+ kρ] (1−ρ)

λ t
k

τ̂
′(I−Pt)τ̂ +

r
(1−ρ)+ kρ

τ̂
′(I−Pt)τ̂

=
r(1−ρ)+λ tρ

(1−ρ) [(1−ρ)+ kρ]
τ̂
′(I−Pt)τ̂

=
rσ2(1−ρ)+λ tσ2ρ

σ2(1−ρ) [(1−ρ)+ kρ]
τ̂
′(I−Pt)τ̂

=
rσ2

e +λ tσ2
B

σ2
e [(1−ρ)+ kρ]

τ̂
′(I−Pt)τ̂.

Dividing by σ2 gives
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Y ′ (A−A0)
′V−1 (A−A0)Y
σ2 =

rσ2
e +λ tσ2

B

σ2
e
[
σ2

e + kσ2
B

] τ̂
′(I−Pt)τ̂,

which is the test statistic in (7). In practice, estimates of σ2
e and σ2

B are used to
compute both the multiplier and τ̂ . The substitution is then ignored and the χ2 test
is conducted as if σ2

e and σ2
B were known.

7.3 Contrasts

Model (1) is a one-way ANOVA model with an unusual covariance structure. How-
ever, estimable functions do not depend on the covariance matrix, so contrasts are
estimable. This is true regardless of whether µ is included as a parameter in the
model. A contrast is a linear parametric function ξ ′τ with ξ ′Jt = 0. The estimate is
ξ ′τ̂ = ∑

t
j=1 ξ ′j τ̂ j, where τ̂ has already been characterized.

We need to compute the variance of the estimate. Recall that with ξ ′Jt = 0 we
have ξ ′Pt = 0. Using the second form in (3),

Var
(
ξ
′
τ̂
)
= ξ

′Cov(τ̂)ξ

= σ
2
ξ
′ (Z′V−1Z

)−1
ξ

= σ
2 [(1−ρ)+ kρ] (1−ρ)

r(1−ρ)+λ tρ
ξ
′
ξ +σ

2 [(1−ρ)+ kρ]λ tρ
r [r(1−ρ)+λ tρ]

ξ
′Ptξ

=

[
σ2(1−ρ)+ kσ2ρ

]
σ2(1−ρ)

rσ2(1−ρ)+λ tσ2ρ
ξ
′
ξ

=

[
σ2

e + kσ2
B
]

σ2
e

rσ2
e +λ tσ2

B
ξ
′
ξ .

Note that the variance can also be written as

Var(ξ ′τ̂) = σ
2
e
[(1−ρ)+ kρ]

r(1−ρ)+λ tρ
ξ
′
ξ ;

this second form will be used in the next subsection. Under normality,

ξ
′
τ̂ ∼ N

(
ξ
′
τ,

[
σ2

e + kσ2
B
]

σ2
e

rσ2
e +λ tσ2

B
ξ
′
ξ

)
. (8)

In practice, estimates of σ2
e and σ2

B are substituted to find τ̂ and the estimated vari-
ance. Tests and confidence intervals are conducted using the distribution (8), ignor-
ing the fact that estimates have been substituted for σ2

e and σ2
B .
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7.4 Alternative Inferential Procedures

Traditionally, statistical inferences have been conducted using the distributions in
(7) and (8). These are based on the incorrect assumption that both σ2

e and σ2
B are

known. Some improvement is made by assuming that only ρ = σ2
B/
(
σ2

e +σ2
B
)

is
known while σ2 is unknown. In particular, it follows from Section 11.1 that the
model with both fixed block effects δ and random block effects β , i.e.,

Y = Jµ +Xδ +Zτ +η ,

provides an estimate of σ2(1−ρ) = σ2
e . This estimate is σ̂2

e , the mean squared error
for the fixed block effect model of Section 9.4.

The key results are that, under model (1),

σ̂2
e

σ2
e
∼ χ2(rt−b− t +1)

rt−b− t +1

and σ̂2
e is independent of τ̂ . We show the independence and leave the distributional

result to the reader:
Let P be the perpendicular projection operator onto C(X ,Z) so

σ̂
2
e =

Y ′(I−P)Y
rt−b− t +1

.

Independence follows from Theorem 1.2.3 upon observing that

Cov
(
(I−P)Y,(A−A0)Y

)
= σ

2(I−P) [(1−ρ)I + kρM] (A−A0)

= σ
2(1−ρ)(I−P)(A−A0)+σ

2kρ(I−P)M(A−A0)

= 0 .

The last equality holds because C(A−A0) ⊂ C(X ,Z) = C(P) so that (I−P)(A−
A0) = 0 and (I−P)M = 0.

A test of model (6) versus model (1) can be based on

r(1−ρ)+λ tρ
σ̂2

e [(1−ρ)+ kρ]

τ̂ ′(I−Pt)τ̂

t−1
∼ F(t−1,rt− t−b−1). (9)

This is true because the lefthand side equals

Y ′ (A−A0)
′V−1 (A−A0)Y/σ2(t−1)
σ̂2

e /σ2(1−ρ)
,

which has the appropriate F distribution under H0. To see the equality of the two
statistics, examine the third to the last equality given earlier in the simplification of
Y ′ (A−A0)

′V−1 (A−A0)Y . Similarly, tests and confidence intervals can be based
on
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ξ ′τ̂−ξ ′τ√
σ̂2

e [(1−ρ)+ kρ]/[r(1−ρ)+λ tρ]
∼ t(rt− t−b+1). (10)

This uses the second form for Var(ξ ′τ̂) given earlier. To actually use (9) and (10), we
need to estimate ρ =σ2

B/
(
σ2

e +σ2
B
)
. If we estimate σ2

B and take ρ̂ = σ̂2
B/
(
σ̂2

e + σ̂2
B
)
,

the inferential procedures will be identical to those based on (7) and (8), except that
they will be based on the more realistic F and t distributions rather than the χ2 and
normal. Thus we have replaced the traditional analysis, which does not account for
the estimation of either of the two unknown parameters σ2

e and σ2
B , with an analysis

that does not account for the estimation of only one parameter, ρ .

7.5 Estimation of Variance Components

The traditional analysis of a BIB with recovery of interblock information uses the
variance component estimates of Henderson’s Method 3, cf. Section 9. The estimate
of σ2

e is just that described in the previous subsection. To estimate σ2
B , let Pτ be the

perpendicular projection operator onto C(Z) and recall that P is the perpendicular
projection operator onto C(X ,Z). Using Henderson’s Method 3,

σ̂
2
B =

[
Y ′ (P−Pτ)Y − σ̂2

e tr(P−Pτ)
]

tr [X ′ (P−Pτ)X ]
.

All of these terms are easily computed. Y ′ (P−Pτ)Y =Y ′PY −Y PτY . Y ′PY is avail-
able from the fixed block effect analysis. In particular,

Y ′PY = SS(Grand Mean)+SS(Blocks)+SS(Treatments After Blocks)

and
Y ′PτY = SS(Grand Mean)+SS(Treatments),

where SS(Treatments) is just the sum of squares from a standard one-way ANOVA
that ignores the blocks and the covariance structure. The term tr(P−Pτ) is simply
b−1. It is shown later that tr[X ′ (P−Pτ)X ] = t(r−1); thus

σ̂
2
B =

SS(Blocks after Treatments)− σ̂2
e (b−1)

t(r−1)
.

To see that tr [X ′ (P−Pτ)X ] = t(r−1), note that tr [X ′ (P−Pτ)X ] = tr(X ′PX)−
tr(X ′Pτ X) = tr(X ′X)− tr(X ′Pτ X). However, X ′X = kIb, so tr(X ′X) = bk = rt. The
trace of X ′Pτ X is more complicated. From the one-way ANOVA, for any vector Y ,

PτY = [ti j], where ti j =
1
r ∑

i∈A j

yi j.

The matrix X = [X1, . . . ,Xb] has
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Xm = [vi j], where vi j = δim,

for m = 1, . . . ,b; so applying Pτ to Xm gives

Pτ Xm = [ti j], where ti j =
1
r ∑

i∈A j

δim =
1
r

δm(A j).

Recall that A j is the set of indices for blocks that include treatment j so that δm(A j)
is 1 if block m contains treatment j, and 0 otherwise. This occurs if and only if
treatment j is in block m, so δm(A j) = δ j(Dm). Again, Dm is the set of indices for
the treatments contained in block m. It follows that

X ′mPτ Xm = [Pτ Xm]
′ [Pτ Xm]

=
t

∑
j=1

∑
i∈A j

1
r2 δm(A j)

=
1
r2

t

∑
j=1

δm(A j) ∑
i∈A j

1

=
1
r

t

∑
j=1

δm(A j)

=
1
r

t

∑
j=1

δ j(Dm)

=
k
r
,

and therefore

tr
(
X ′Pτ X

)
=

b

∑
m=1

X ′mPτ Xm =
bk
r

=
rt
r
= t.

Combining results gives

tr
[
X ′ (P−Pτ)X

]
= rt− t = t(r−1).

Exercise 7.8 Find the REML estimates of σ2
e and σ2

B .

Exercise 7.9 Do an interblock analysis of the BIB data of PA Example 9.4.1. An
experiment was conducted to examine the effects of fertilizers on potato yields. Six
treatments (A, B, C, D, E, and F) were used but blocks were chosen that contained
only five experimental units. The experiment was performed using a balanced in-
complete block design with six blocks. The potato yields (in pounds) along with the
mean yield for each block are reported in Table 7.1.
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Table 7.1 Potato Yields in Pounds for Six Fertilizer Treatments.

Block
Block Data Means

1 E 583 B 512 F 661 A 399 C 525 536.0
2 B 439 C 460 D 424 E 497 F 592 482.4
3 A 334 E 466 C 492 B 431 D 355 415.6
4 F 570 D 433 E 514 C 448 A 344 461.8
5 D 402 A 417 B 420 F 626 E 615 496.0
6 C 450 F 490 A 268 D 375 B 347 386.0

The six treatments consist of all of the possible combinations of two factors.
One factor was that a nitrogen-based fertilizer was either applied (n1) or not applied
(n0). The other factor was that a phosphate-based fertilizer was either not applied
(p0), applied in a single dose (p1), or applied in a double dose (p2). In terms of the
factorial structure, the six treatments are A = n0 p0, B = n0 p1, C = n0 p2, D = n1 p0,
E = n1 p1, and F = n1 p2.

7.5.1 Recovery of interblock information

This was in my “notes” for PA-V.
Consider a variance component model with fixed effects τ and random effects γ ,

Y = Zτ +X1γ + e. (11)

As usual in a variance component model, take E(γ) = 0, E(e) = 0, Cov(γ) = σ2
BI,

and Cov(e) = σ2
e In. We also assume that X1 corresponds to indicator variables for

balanced groups of size k. Write σ2 = σ2
B +σ2

e and ρ = σ2
B/(σ

2
B +σ2

e ). Thus, with
M1 the ppo onto C(X1),

Cov(Y ) = σ
2{(1−ρ)I + kρM1}

Alternatively, we can write the GLS model

Y = Zτ +ξ , E(ξ ) = 0, Cov(ξ ) = σ
2{(1−ρ)I + kρM1}.

Typically we have to estimate ρ to get empirical GLS estimates. Generalized Split
Plot (GSP) models are an exception. GSP models have

Z = [X∗,X2], C(X∗)⊂C(X1), C(Z) =C[X∗,(I−M1)X2].

Instead of empirical GLS, might fit the following two linear models. The in-
terblock model (whole plot model)
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M1Y = M1Zτ +M1ξ , Cov(M1Y ) = σ
2{(1−ρ)I + kρ}M1.

and the intrablock model (subplot model)

(I−M1)Y = (I−M1)Zτ +(I−M1)ξ , Cov[(I−M1)Y ] = σ
2(1−ρ)(I−M1).

The intrablock model should give the same results as treating γ as fixed in model
(1). Both of these models have least squares estimates as BLUEs and I think both
allow statistical inferences for normal data. Moreover, Cov[M1Y,(I−M1)Y ] = 0.

We now combine the information from the two models. Let

M∗ ≡M1Z(Z′M1Z)−Z′M1, M2 ≡ (I−M1)Z[Z′(I−M1)Z]−Z′(I−M1)

and
Zτ̃ = M1Zτ̂1 +(I−M1)Zτ̂2 = M∗Y +M2Y.

I think one can do statistical inference on estimable functions of τ using the same
approximate methods as for two samples with unequal variance. In a GSP, whole
plot and subplot inferences use only one of M∗ and M2.

How does this compare to the empirical GLS estimate? When are they the same?
Obviously for GSP models. It would be nice if for some weight between 0 and 1 we
had

Zτ̂ = αM1Zτ̂1 +(1−α)(I−M1)Zτ̂2

but I haven’t had any luck with that, even for BIB designs. I guess α would need to
be, for estimating η ′Zτ , something like

1
σ2{(1−ρ)I+kρ}η ′M∗η
1

σ2{(1−ρ)I+kρ}η ′M∗η
+ 1

σ2(1−ρ)Iη ′M2η

.

Good application is a covariate measured at subplot level in a split plot
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