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Comment

Ronald CHRISTENSEN

I discuss predicting outcomes and the roles of causation and
sampling design.

KEY WORDS: Causal models; Logistic; Logit; Loglinear; Pre-
diction.

1. INTRODUCTION

In Dr. Armistead’s examination of Simpson’s paradox, there
are three medical (agricultural) variables: an outcome variable
recovery (yield), and two other variables: treatment (color) and
one, but not both, of sex or blood pressure [BP] (height). Note
that BP is assumed to be measured after treatments have been
applied. The data are reproduced in Table 1. Simpson’s paradox
is that the treatment outperforms the control in the combined
table which contradicts both the male and female tables.

Although I agree with the author that the data may have other
uses, I will focus on predicting outcomes as well as the roles of
causation and sampling design. For these data and the medical
interpretations, one hopes to be in the population that recovers
most frequently, and one makes choices that are consistent with
that goal. With sex as the third medical variable, one hopes to
be male, but that is not a choice, and regardless of sex, one
chooses the control rather than the treatment. With BP as the
third variable, one hopes to be in the normal group and chooses
the control. However, in this medical version of Simpson’s para-
dox, if one finds they are in the low BP group, a person would be
well advised to switch to the treatment in the hope that it might
put them into the normal group. In the agriculture version of the

Ronald Christensen, Department of Mathematics and Statistics, University of
New Mexico, Mexico (E-mail: fletcher@stat.unm.edu). I would like to thank Joe
Cavanaugh, who acted as editor on this discussion, for his valuable comments.
Also, I would like to dedicate this discussion to Dennis Lindley who recently
passed away.

data, after choosing to plant black seeds (medical: control), and
discovering that the plant is short (medical: low BP), one cannot
go back and change the seed to being white in the hope that it
becomes tall.

You can only make predictive choices based on the variables
that are observed at the time the choice must be made. If predic-
tive information is generally available but currently unobserved
for the case to be predicted, it is wise to base decisions on an
appropriate prior distribution for those unobserved variables. In
other words, use an aggregated table that aggregates using the
prior weights for the unobserved variables. Dr. Armistead illus-
trated this sort of aggregation for the observed variable sex using
50/50 weights. Weighting is discussed in much more detail in
Section 3.

In the medical examples, it remains an article of faith that
results on a new patient will be represented by the results of
the data, that is, that the new patient is from the same popula-
tion from which the data were sampled. Are patients assigned
treatments? Assigning treatments creates two subpopulations to
consider. Or do patients choose their treatments? Some treat-
ments may be much more palatable to males than females. In
these data, males got the treatment at a rate of three to one,
whereas women got the control at a rate of three to one. Less
faith seems needed in the agricultural example, only that the
new plant is from the same populations sampled for the data.

2. CAUSATION

Christensen (1997, p. 212) argued somewhat contro-
versially—see Spirtes, Glymour, and Scheines (2000)—that
causation cannot be inferred from data analysis. Of course, given
a collection of causal models, data analysis can help determine
the better models.

In the medical version of the paradox relating recovery, an
assigned treatment, and BP there are three self-evident causal
models: treatment causes both recovery and BP.
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T

R BP

Treatment causes BP which causes recovery.

T

R BP

And treatment is a direct cause of both recovery and BP, but BP
is also a direct cause of recovery.

T

R BP

The third of these models is consistent with the treatment
having either a direct negative or positive effect on recovery but,
through the mechanism of the treatment normalizing BP, which
helps recovery, perhaps positive overall and indirect treatment
effects.

These causal models are consistent with log-linear models
that, respectively, determine that recovery and BP are indepen-
dent given treatment (logit/logistic model with treatment effect
only), that treatment and recovery are independent given BP
(logit/logistic model with BP effect only), and models that ei-
ther include all two-factor interactions (logit/logistic model with
treatment and BP main effects only) or include the three-factor
interaction making it the saturated model (logit/logistic model
with treatment and BP interaction). Nonetheless, finding the

Table 1. Simpson’s Paradox data.

Recovery (Yield)

Combined + (High) − (Low) Total

Treatment (White) 20 20 40
Control (Black) 16 24 40
Total 36 44 80

Recovery (Yield)

Male/Normal BP (Tall) + (High) − (Low) Total

Treatment (White) 18 12 30
Control (Black) 7 3 10
Total 25 15 40

Recovery (Yield)

Female/Low BP (Short) + (High) − (Low) Total

Treatment (White) 2 8 10
Control (Black) 9 21 30
Total 11 29 40

best-fitting model (among the few models being considered) is
a far cry from determining that causation must follow because
the model fits best. In particular, the fitted log-linear model
would be as happy with recovery causing treatment as with treat-
ment causing recovery. For example, the second causal graph
with treatment causing BP which causes recovery suggests the
causal decomposition

Pr(R, T , BP) = Pr(R|BP) Pr(BP|T ) Pr(T ).

But the last two terms on the right merely define the joint dis-
tribution of BP and treatment, so this is probabilistically indis-
tinguishable from

Pr(R, T , BP) = Pr(R|BP) Pr(T |BP) Pr(BP),

which is recovery and treatment independent given BP and what
the log-linear model is traditionally described as fitting. More-
over, these are also indistinguishable from

Pr(R, T , BP) = Pr(R) Pr(BP|R) Pr(T |BP),

which are the probabilities suggested by reversing the causa-
tions.

The agricultural example works just like the BP example but,
interestingly, in the medical examples the obvious causal models
are different when we replace BP with sex. If treatments were
assigned independently of sex, we might have the model

S

R T

but in our data there is clearly a relationship between sex and
treatment, regardless of whether treatments were assigned to
people or if people got to choose their treatment. Moreover,
this directed graph does not correspond to standard methods
for modeling response variables in which one conditions on the
predictor variables, here both treatment and sex; see Aldrich
(2005). In particular, logit/logistic models are equivalent to log-
linear models that contain the (highest order) interaction among
all predictor variables, see Christensen (1997), but this graph
excludes that sex–treatment interaction.

The two more viable causal models involving sex are

S

R T

and

S

R T
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both of which are analogous to models that substitute BP for sex.
Baker (2013) discussed causal models that involve unobserved
variables.

Data analysis does not get at causation directly. The pur-
pose of randomly assigning treatments to experimental mate-
rial is that it provides a philosophical basis for inferring that
the treatments cause whatever effect we may see. Randomiza-
tion does not work perfectly, we can get bad randomizations,
but the chance of repeated bad randomizations is small. Ran-
domizing treatment assignment means that the levels of any
confounding variables should be distributed about evenly be-
tween the treatments. In the medical data under a completely
randomized design (CRD), we would have to be extremely
unlucky to get a 3 to 1 split of males getting the treatment
and another 3 to 1 split of the females getting the control.
It could happen, but it would not happen very often. And if
you thought that recovery was likely to vary a lot by sex, you
would use a randomized block design blocking on sexes. Again,
it would be an unusual randomization that gave 3 to 1 treat-
ment splits within blocks, but in the analysis of a block de-
sign that would not matter because the analysis must include
block/sex effects, so Simpson’s paradox should not raise its ugly
head.

In fact, there is strong internal evidence that these data were
collected by intentionally assigning treatments at a 3 to 1 rate
within blocks (block–treatment counts are multiples of 10) so
that the data collection scheme mandates an analysis includ-
ing block effects. These data have a clearly detectable block by
treatment interaction, something that is only detectable because
each block contains more subjects than there are treatments.
In such cases, we must decide whether the block by treatment
interaction is of interest in its own right or whether block by
treatment interaction determines the appropriate error term to
evaluate whether treatment main effects are significant. (If ev-
idence for main effects is not so blatant that it overwhelms
any block–treatment interaction we should not declare main
effects.) Neither the BP nor height scenarios from the article
allow blocking because the variables are only determined after
the treatments are assigned (although one could determine BP
prior to treatment assignment). And, although one can assign
treatments without randomization, any inference of causation
from these data requires random assignment of treatments to
experimental material, even if at a 3 to 1 ratio.

The key point is that randomization guards against the exis-
tence of other confounding variables that could skew the con-
clusions like sex skews them. As the author demonstrates, there
would have been no problem with the marginal table if the sexes
were evenly distributed between treatments and in a CRD the
randomization would likely have made that approximately true.
We should note as did Cox (1958, Sec. 4.2), more than 50 years
ago, that the causal validity of a randomized experiment can be
compromised by the inclusion in the data analysis of inappro-
priate covariates that are themselves affected by the treatments.
Thus, neither (post-treatment) BP nor height would be allowed
in analyzing causal effects from these data if they came from a
randomized experiment on treatments (seed colors). Nonethe-
less, as the author points out, relationships to such variables can
still be of interest.

3. PREDICTION AND SAMPLING

At the cost of getting a little more technical about predictive
distributions and sampling distributions, I think the issues clarify
further.

Two things seem self-evident: that we should collect as much
data as we can afford and that we should use as much data
as possible to make predictions. The other information that
is particularly germane is identifying how the data were col-
lected. We identify y with recovery (yield), x1 with treatment
(color), and x2 with sex or BP (height). Let f (y, x1, x2) denote
the joint density or probability mass function. We would like
to use f (y|x1, x2) as the basis for predictions of y because it
uses the most predictive information by conditioning on known
values for both x1 and x2, that is, we would like to use prob-
ability estimates from the disaggregated table. Unfortunately,
only the scenario with x2 being sex allows us to observe and
condition on x2 when choosing a treatment or seed color. In
the other two scenarios, x2 is not observed at the time a pre-
diction must be made, so predictions must be based on f (y|x1)
because the only predictive information we have is x1, that is,
we cannot use the probability estimates from the disaggregated
table.

Now let us look at the data that can be collected. Internal
evidence from Table 1 suggests that the data were collected
as independent samples from the four treatment–sex popula-
tions, that is, they are samples from f (y|x1, x2). The internal
evidence referred to is that the sample size for every combina-
tion of (x1, x2) is a multiple of 10. From such a sample we can
estimate the conditional probabilities f (y|x1, x2) directly from
the disaggregated table and make the obvious inferences. While
this sampling scheme is most natural for x2 as sex, one could
also take samples from all four treatment–BP categories or all
four color–height categories by picking the samples after the
populations have manifested themselves.

A number of other possible sampling schemes could give
rise to the disaggregated table. If we are assigning treatments
to people, we must sample from a distribution that conditions
on treatments x1. Rather than samples that condition on both x1

and x2 we could sample from each treatment (color) group, that
is, sample from f (y, x2|x1, ). If we are not assigning treatments
we could take a random sample of the entire population, that
is, sample from f (y, x1, x2). For example, we could imagine a
population of seeds, some of which are white and some of which
are black. Or we could sample a collection of patients and note
their recovery, treatment, and sex/BP. Alternatively, we could
take independent samples from the two sexes, that is, sample
f (y, x1|x2). This is also viable in the other two scenarios. We
could take a sample of patients from each BP group and see what
treatment they received and their recovery status. Similarly, we
could sample tall plants and see what color their seeds were
and their yields. These four sampling schemes are all consis-
tent with performing regression. Finally, we could sample from
f (x1, x2|y) which is the traditional discrimination problem. For
example, we can sample from recovered and unrecovered pa-
tients to examine their treatment and sex/BP. Of course, there
are other possible sampling schemes that condition on y but we
consider only this one.
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From any of the four regression sampling schemes, it is a
simple matter to estimate f (y|x1, x2). This amounts to using the
conditional probability estimates from the disaggregated table.
Estimating f (y|x1) from the four regression sampling schemes
requires more thought, which is why using the aggregated table
may cause problems.

If we sampled either the entire population f (y, x1, x2) or
sampled the different treatment (color) populations f (y, x2|x1),
the aggregated table gives direct information on

f (y1, x1) =
∑
x2

f (y, x1, x2)

and

f (y1|x1) =
∑
x2

f (y, x2|x1),

respectively. The former allows easy computation of probabil-
ities conditional on x1 and the latter is the end product. As
mentioned, because both are just marginal distributions relative
to the sampling distribution, the simple aggregated data provide
appropriate estimates of these probabilities. In both the BP med-
ical and agricultural scenarios, these are reasonable regression
sampling schemes that lead to using the aggregated table when
making predictions.

If we condition on x2 in the sampling scheme, finding the
predictive distribution f (y|x1) requires us to weight the samples
using a distribution on x2.

When sampling from treatment, sex groups as these data
probably would have been, it takes some thought to imagine how
you could sample from populations with both x1 and x2 fixed
but not know x2 when you want to make predictions. Perhaps
measuring x2 is very expensive. In any case, when sampling
from f (y|x1, x2),

f (y1|x1) =
∑
x2

f (y|x1, x2)f (x2|x1),

so before an aggregated table for x1 and y would be useful for
prediction, the samples need to be weighted by the conditional
distribution of x2 given x1. This conditional distribution is not
estimable when the data are sampled from f (y|x1, x2), must
be found outside the study, and can get quite complicated. In
cases where x1 is a randomly assigned treatment, it makes sense
that the weighting function f (x2|x1) would just be the marginal
distribution f (x2). So, as illustrated by the author, assuming
that males and females are equally likely in the population, the
estimated recovery probabilities given each treatment and sex
have to be given equal weights, rather than the 3 to 1 weights
that are implicit in the aggregated table based on the dispropor-
tionate sampling rates that were used in data collection. Note
that if f (x2|x1) is defined by Pr(Male|Treatment) = 0.75 and
Pr(Female|Control) = 0.75 we would get predictions consis-
tent with the aggregated table. However, these numbers only
agree with males choosing treatment and females choosing con-
trol at rates of 3 to 1, that is, Pr(Treatment|Male) = 0.75 and
Pr(Control|Female) = 0.75, because the sex ratio is taken as
50/50.

Similarly, if sampling from each level of x2 (sex, BP, height),
we must weight by the marginal distribution of x2,

f (y1, x1) =
∑
x2

f (y, x1|x2)f (x2).

Again, the marginal distribution of x2 must be known outside
the current study. This sampling scheme allows, for example,
treatments to depend on sex. For some reason, in these data 75%
of men would have chosen the treatment, while 75% of women
would have chosen the control. But to get a reasonable predic-
tion based on choosing a treatment for a person of unknown sex,
we again need to weight the treatment results by the proportions
of women in the population rather than the proportion in the
study. For these data, the population and study sex proportions
are both about 50/50 so this aggregated table leads to appropri-
ate conclusions for sex. We have no reason to believe that the
population proportions of BP or height would be 50/50, so no
reason to think that the aggregated table would be appropriate
in those circumstances.

Finally, these sorts of computations are much more familiar
when dealing with discrimination data. It is quite standard to
argue that for discrimination data sampled from f (x1, x2|y), we
need to use Bayes theorem to compute

f (y|x1, x2) = f (x1, x2|y)f (y)∑
y f (x1, x2|y)f (y)

,

where we need to know the prevalences of the conditions, f (y),
from outside the study. However, in the current situation we
really need the less standard computation

f (y|x1) =
∑
x2

f (y|x1, x2)f (x2|x1)

or perhaps more simply compute

f (y, x1) =
∑
x2

f (x1, x2|y)f (y)

before finding the conditional probabilities.
Perhaps I should also note that these issues do not usually

arise when doing variable selection in a regression analysis. In
such analyses, we often determine that, say, x2 has no effect on
f (y|x1, x2) so we can perform regression using x1 alone, that
is, using f (y|x1) = f (y|x1, x2). Here, we are trying to predict
using only x1 when we know that x2 is an important predictor
variable.

4. FINAL THOUGHTS

I would like to thank Dr. Armistead for his stimulating con-
tribution.

To me, a crucial distinction is to be made between predictive
models and causative models. The examination of Simpson’s
paradox reinforces my belief that it is not safe to infer causation
unless one has conducted a randomized experiment. Admit-
tedly, the randomizations can go bad, which is one reason that
replicating experiments is so important.

If the discussion of Simpson’s paradox is not about causation
and only about prediction, then the analysis takes a different
bent. The default is to use all of the information available to
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make predictions. However, if you do not know the height of a
plant or the sex of a person or their blood pressure when deciding
on a treatment, then you cannot use them. In such cases, the
appropriate predictive procedure depends crucially on how the
data were obtained. If predictor information becomes available
later, and you can change treatments, you might want to do that.

While prediction is the ultimate goal of science, causation is
the warm fuzzy. Causation can greatly simplify prediction and
we like to think that good causative models provide the best
predictions. But in the end, getting predictions correct is more
important than imagining that we understand why things hap-
pen the way they do. While I admit that I am not an expert on
the causal model literature, I am unfamiliar with any satisfac-
tory way to infer causation other than performing randomized
experiments. Sure, data analysis can help you choose between
two or more causative models, but that is a far cry from infer-

ring causation from data analysis. In fact, without knowing the
sampling design, we cannot even be sure of making appropriate
predictions from data analysis alone.
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Comment: A Fruitful Resolution to Simpson’s Paradox via
Multiresolution Inference

Keli LIU and Xiao-Li MENG

Simpson’s Paradox is really a Simple Paradox if one at all.
Peeling away the paradox is as easy (or hard) as avoiding a com-
parison of apples and oranges, a concept requiring no mention
of causality. We show how the commonly adopted notation has
committed the gross-ery mistake of tagging unlike fruit with
alike labels. Hence, the “fruitful” question to ask is not “Do
we condition on the third variable?” but rather “Are two fruits,
which appear similar, actually similar at their core?.” We in-
troduce the concept of intrinsic similarity to escape this bind.
The notion of “core” depends on how deep one looks—the
multi resolution inference framework provides a natural way to
define intrinsic similarity at the resolution appropriate for the
treatment. To harvest the fruits of this insight, we will need

Keli Liu (E-mail: keli.liu25@gmail.com) is A.B. Graduate, and Xiao-Li Meng
(E-mail: meng@stat.harvard.edu) is Whipple V. N. Jones Professor, Depart-
ment of Statistics, Harvard University, Cambridge, MA 02138. The authors
thank Dr. Armistead for an invigorating article that stimulated authors to take
a higher resolution look at Simpson’s Paradox. Jessica Hwang provided in-
valuable advice on organization and structure, as well as pointing out inco-
herencies and inconsistencies. Of course, the remaining incoherencies and in-
consistencies are entirely of the authors. The authors also thank the NSF for
partial financial support, and TAS editor, Ronald Christensen, and journal man-
ager, Eric Sampson, for their saintly patience amid growing despair. During
the preparation of this discussion, we learned the sad news of Dennis Lind-
ley’s passing. Without his work, our understanding of this and many other
topics would not be as rich today. We therefore dedicate this article in his
memory.

to estimate intrinsic similarity, which often results in an indi-
rect conditioning on the “third variable.” A ripening estimation
theory shows that the standard treatment comparisons, uncondi-
tional or conditional on the third variable, are low hanging fruit
but often rotten. We pose assumptions to pluck away higher-
resolution (more conditional) comparisons—the multiresolu-
tion framework allows us to rigorously assess the price of these
assumptions against the resulting yield. One such assessment
gives us Simpson’s Warning: less conditioning is most likely to
lead to serious bias when Simpson’s Paradox appears.

KEY WORDS: Bias-variance tradeoff; Principal stratification

1. THE SOURCE OF CONFUSIONS AND DEBATES

1.1 Comparing Apples and Oranges

Imagine Ms. Broken going to Dr. Heal to be treated for heart
disease. A new treatment was made available to Dr. Heal, who
also learned from a clinical trial that it can substantially out-
perform a standard treatment used as its control. However, its
effectiveness depends on a patient’s cholesterol level, which
can also be altered significantly by the treatment. Therefore, to
determine the appropriate treatment for Ms. Broken, Dr. Heal
needs to know how trial subjects with cholesterol level simi-
lar to Ms. Broken’s (say about 240 mg/dL) responded to the

© 2014 American Statistical Association DOI: 10.1080/00031305.2014.876842 The American Statistician, February 2014, Vol. 68, No. 1 17
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