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Preface

“Critical assessment of data is the essential task of the educated mind.”
Professor Garrett G. Fagan, Pennsylvania State University.

The last words in his audio course The Emperors of Rome, The Teaching Company.

“Statistical Learning is the uncritical assessment of data.”
Professor Ronald Christensen, University of New Mexico.

The last words in his ignominious career prior to retirement.

Preface to the First and Last Edition

Due to the current (overwhelming?) popularity of statistical learning, I decided to
consolidate the statistical learning material from some of my other books into one
source, independent of the other books, and to add in some additional statistics top-
ics that get designated as statistical learning. This came about because I recently
completed new editions of three books: Christensen (2015), Analysis of Variance,
Design, and Regression: Linear Models for Unbalanced Data (ANREG-II), Chris-
tensen (2020), Plane Answers to Complex Questions: The Theory of Linear Models
(PA or for the fifth edition PA-V) and Christensen (2019) Advanced Linear Model-
ing: Statistical Learning and Dependent Data (ALM-III). The new editions include
material on statistical learning as it applies to traditional topics in Statistics but (de-
spite the subtitle for one of them) none of those books really focus on statistical
learning. The most efficient way to perform the consolidation seemed to be by as-
suming that the reader had already been exposed to a course in regression analysis.
The book does not presuppose that the reader knows linear model theory. Consoli-
dating all of this material into a cogent whole turned out to be far more work than
I was expecting. Although this book should be accessible without any of the other
books, I frequently refer to the other books for details and theory not contained in
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this one. I like to point out that the number of references to my other work is at least
as much about sloth as it is about ego.

This book’s computer code http://www.stat.unm.edu/˜fletcher/
R-SL.pdf is being pieced together from that of the applications book ANREG-
II, http://www.stat.unm.edu/˜fletcher/Rcode.pdf, as well as that
for ALM-III, http://www.stat.unm.edu/˜fletcher/R-ALMIII.pdf,
with additions for the topics covered here that were not included in either of those
other books. The data files for this book can be downloaded from https://www.
stat.unm.edu/˜fletcher/SL-Data.zip with the data in Table x.y ap-
pearing in file SLx-y.dat.

After reviewing standard linear regression in Chapters 1 and 2 we observe that
most methods of nonparametric regression are merely applications of standard lin-
ear regression but that they often employ estimates of the regression parameters
that are alternatives to the traditional least squares estimates. After doing standard
regression, we introduce binomial and binary regression. These methods include
(regularized, nonparametric) logistic regression and support vector machines. Fi-
nally, we introduce some topics from multivariate analysis that are commonly used
in statistical learning.

The presentation assumes that the reader has encountered basic ideas of proba-
bility such as expected values, variances, covariances, and, for some topics near the
end of the book, conditional expectations and densities of multivariate distributions.
(Any calculus based statistics course should be sufficient but perhaps not necessary
background.) We do not do any sophisticated probability, the reader needs merely
not to be freaked out by the concepts. An extensive background in analysis of vari-
ance (ANOVA) is not necessary but I find ANOVA unavoidable when discussing a
few of the topics. The whole idea of generalized additive models is based on an anal-
ogy with multifactor ANOVA and the discussion of regression trees also requires
some knowledge of multifactor ANOVA. Moreover, there exist strong relationships
between one-way multivariate ANOVA (MANOVA) and one of the discrimination
procedures discussed, namely, linear discriminant analysis (LDA). For readers with-
out an extensive ANOVA background, Appendix B contains an example of a three-
factor ANOVA and Appendix C contains an example of a three-factor MANOVA.
Starting with three-factor examples is really dumping you into the deep end of the
pool, so each three-factor analysis is introduced using its equivalent one-factor anal-
ysis.

I would like to thank Carlos Torres Inga and Kevin J. Kloeppel for comments that
led to improvements in the discussion of cluster analysis. Also, I forgot to thank
Andrew Ng in ALM-III for posting a video that helped me to understand support
vector machines, namely “Support Vector Machines — Optimization Objective.”

http://www.stat.unm.edu/~fletcher/R-SL.pdf
http://www.stat.unm.edu/~fletcher/R-SL.pdf
http://www.stat.unm.edu/~fletcher/Rcode.pdf
http://www.stat.unm.edu/~fletcher/R-ALMIII.pdf
https://www.stat.unm.edu/~fletcher/SL-Data.zip
https://www.stat.unm.edu/~fletcher/SL-Data.zip


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Inferential Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Computing commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 General Statement of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Regression Surfaces and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Comparing Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Sequential Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Reduced Models and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9 More on Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.10 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.11 Final Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Matrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1 Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Matrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Simple linear regression in matrix form . . . . . . . . . . . . . . . . . . 45
2.2.2 One-way ANOVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.3 The general linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Least Squares Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6 Basic Notation and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Weighted Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



x Contents

2.8 Variance-Bias Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Nonparametric Regression I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Picking a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 Exploring the chosen model . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Overfitting Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4 Additional Spanning Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.1 High-order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.1 Fitting the partitioned model . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2 Output for categorical predictors* . . . . . . . . . . . . . . . . . . . . . . 93
3.5.3 Utts’ method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.7 Fisher’s Lack-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.8 Additive Effects Versus Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.9 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Alternative Estimates I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.1 Principal Component Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Classical Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3 Lasso Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4 Robust Estimation and Alternative Distances . . . . . . . . . . . . . . . . . . . . 121

5 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1 Best Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.1 R2 statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.2 Adjusted R2 statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.1.3 Mallows’s Cp statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1.4 A combined subset selection table . . . . . . . . . . . . . . . . . . . . . . 134
5.1.5 Information Criteria: AIC, BIC . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.1.6 Cost complexity pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Stepwise Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.1 Forward selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.2 Backwards elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.3 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Variable Selection and Case Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4 Discussion of Traditional Variable Selection Techniques . . . . . . . . . . 148

5.4.1 R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.2 Influential Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.4.3 Exploritory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.4.4 Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.5 Predictive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



Contents xi

5.4.6 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Modern Forward Selection: Boosting, Bagging, and Random Forests152

5.5.1 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.5.2 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5.3 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Multiple Comparison Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1 Bonferroni Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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Chapter 1
Linear Regression

Abstract This chapter reviews basic ideas of linear regression.

Regression involves predicting values of a dependent variable from a collection
of other (predictor) variables. Linear regression employs a prediction function that
is a linear combination of the values of the predictor variables. Most forms of non-
parametric regression are actually linear regression methods. The complete set of
predictor variables can include not only whatever original predictor variables that
were measured but nonlinear transformations of those original predictor variables.
This allows predictor functions that are complicated nonlinear functions of the orig-
inal measured predictors while still being linear combinations of the complete set of
predictors.

Traditionally, all observed variables in regression were measurement variables
in the sense that they resulted from measurements taken on objects. As such, these
variables typically have measurement units associated with them like millimeters,
grams, inches, pounds, etc. It can also be useful to incorporate as predictor variables
factor/categorical variables that are used to indicate group membership. To incor-
porate categorical predictors into a linear regression, they need to be replaced by a
collection of 0-1 indicators that identify each of the various group categories. Trans-
formations of categorical predictors serve no useful purpose unless they change the
group structure. (For example, if we think that two groups act alike, we can trans-
form the categorical predictor so that they become the same group.)

For simplicity, in this chapter we review linear regression methods using illus-
trations that employ only the original measured variables. Later chapters discuss
systematic methods for defining transformations of the original predictors. Nonethe-
less, the essential behavior of linear regression models in no way depends on how
the predictor variables are obtained, so this review really applies equally well to
nearly all of our approaches to nonparametric regression.

1
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1.1 An Example

The Coleman Report data were given in Mosteller and Tukey (1977). The data con-
sist of measurement variables from schools in the New England and Mid-Atlantic
states. The predictor variables are x1, staff salaries per pupil; x2, percentage of sixth
graders whose fathers have white-collar jobs; x3, a composite measure of socioeco-
nomic status; x4, the mean score of a verbal test given to the teachers; and x5, the
mean educational level of the sixth graders’ mothers (one unit equals two school
years). The dependent variable y is the mean verbal test score for sixth graders. The
data are given in Table 1.1. Figures 1.1 through 1.4 provide pairwise plots all of the
variables, i.e., a scatterplot matrix of the variables.

Table 1.1 Coleman Report data.

School y x1 x2 x3 x4 x5

1 37.01 3.83 28.87 7.20 26.60 6.19
2 26.51 2.89 20.10 −11.71 24.40 5.17
3 36.51 2.86 69.05 12.32 25.70 7.04
4 40.70 2.92 65.40 14.28 25.70 7.10
5 37.10 3.06 29.59 6.31 25.40 6.15
6 33.90 2.07 44.82 6.16 21.60 6.41
7 41.80 2.52 77.37 12.70 24.90 6.86
8 33.40 2.45 24.67 −0.17 25.01 5.78
9 41.01 3.13 65.01 9.85 26.60 6.51

10 37.20 2.44 9.99 −0.05 28.01 5.57
11 23.30 2.09 12.20 −12.86 23.51 5.62
12 35.20 2.52 22.55 0.92 23.60 5.34
13 34.90 2.22 14.30 4.77 24.51 5.80
14 33.10 2.67 31.79 −0.96 25.80 6.19
15 22.70 2.71 11.60 −16.04 25.20 5.62
16 39.70 3.14 68.47 10.62 25.01 6.94
17 31.80 3.54 42.64 2.66 25.01 6.33
18 31.70 2.52 16.70 −10.99 24.80 6.01
19 43.10 2.68 86.27 15.03 25.51 7.51
20 41.01 2.37 76.73 12.77 24.51 6.96

It is of interest to examine the correlations between y and each of the predictor
variables.

x1 x2 x3 x4 x5
Correlation with y 0.192 0.753 0.927 0.334 0.733

Of the five variables, x3 has the highest correlation. It explains more of the y vari-
ability than any other single variable. Variables x2 and x5 also have reasonably high
correlations with y. Low correlations exist between y and both x1 and x4. Interest-
ingly, x1 and x4 turn out to be more important in explaining y than either x2 or x5.
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However, the explanatory powers of x1 and x4 only manifest themselves after x3 has
been fitted to the data.

1.2 Inferential Procedures

A basic linear model for the Colman Report data that does not involve transforming
the predictors is

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi, (1)

i = 1, . . . ,20, where the εis are unobservable independent N(0,σ2) random vari-
ables and the β s are fixed unknown parameters. Fitting Model (1) with a computer
program typically yields a table of coefficients with parameter estimates, standard
errors for the estimates, t ratios for testing whether the parameters are zero, P values,
and a three line analysis of variance table.

Table of Coefficients: Model (1)
Predictor β̂k SE(β̂k) t P
Constant 19.95 13.63 1.46 0.165
x1 −1.793 1.233 −1.45 0.168
x2 0.04360 0.05326 0.82 0.427
x3 0.55576 0.09296 5.98 0.000
x4 1.1102 0.4338 2.56 0.023
x5 −1.811 2.027 −0.89 0.387

Analysis of Variance: Model (1)
Source df SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

From just these two tables of statistics much can be learned. In particular, the esti-
mated regression equation is

ŷ = 19.9−1.79x1 +0.0436x2 +0.556x3 +1.11x4 −1.81x5.

Substituting the observed values xi j, j = 1, . . . ,5 for the x js in the estimated regres-
sion equation gives the fitted (predicted) values ŷi and the residuals ε̂i = yi − ŷi.

The estimated regression equation describes the relationship between y and the
predictor variables for the current data; it does not imply a causal relationship. If
we go out and increase the percentage of sixth graders whose fathers have white-
collar jobs by 1%, i.e., increase x2 by one unit, we cannot infer that mean verbal
test scores will tend to increase by 0.0436 units. In fact, we cannot think about any
of the variables in a vacuum. No variable has an effect in the equation apart from
the observed values of all the other variables. If we conclude that some variable can
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be eliminated from the model, we cannot conclude that the variable has no effect
on y, we can only conclude that the variable is not necessary to explain these data.
The same variable may be very important in explaining other, rather different, data
collected on the same variables. All too often, people choose to interpret the esti-
mated regression coefficients as if the predictor variables cause the value of y but the
estimated regression coefficients simply describe an observed relationship. Frankly,
since the coefficients do not describe a causal relationship, many people, including
the author, find regression coefficients to be remarkably uninteresting quantities.
What this model is good at is predicting values of y for new cases that are simi-
lar to those in the current data. In particular, such new cases should have predictor
variables with values similar to those in the current data.

The t statistics for testing H0 : βk = 0 were reported in the table of coefficients.
For example, the test of H0 : β4 = 0 has

tobs =
β̂4

SE(β̂4)
=

1.1102
0.4338

= 2.56.

The P value is
P = Pr[|t(dfE)| ≥ 2.56] = 0.023.

The value 0.023 indicates a reasonable amount of evidence that variable x4 is needed
in the model. We can be reasonably sure that dropping x4 from the model harms
the explanatory (predictive) power of the model. In particular, with a P value of
0.023, the test of the null model with H0 : β4 = 0 is rejected at the α = 0.05 level
(because 0.05 > 0.023), but the test is not rejected at the α = 0.01 level (because
0.023 > 0.01).

A 95% confidence interval for β3 has endpoints β̂3 ± t(0.975,dfE)SE(β̂3). From
a t table, t(0.975,14) = 2.145 and from the table of coefficients the endpoints are

0.55576±2.145(0.09296).

The confidence interval is (0.356,0.755), so the data are consistent with β3 being
between 0.356 and 0.755.

The primary value of the analysis of variance table is that it gives the degrees
of freedom, the sum of squares, and the mean square for error. The mean squared
error is the estimate of σ2, and the sum of squares error and degrees of freedom for
error are vital for comparing various regression models. The degrees of freedom for
error are n−1− (the number of predictor variables). The minus 1 is an adjustment
for fitting the intercept β0.

The analysis of variance table also gives the test for whether any of the x variables
help to explain y, i.e., of whether yi = β0+εi is an adequate model. This test is rarely
of interest because it is almost always highly significant. It is a poor scholar who
cannot find any predictor variables that are related to the measurement of primary
interest. (Ok, I admit to being a little judgmental here.) The test of

H0 : β1 = · · ·= β5 = 0
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is based on
Fobs =

MSReg
MSE

=
116.5
4.303

= 27.08

and (typically) is rejected for large values of F . The numerator and denominator
degrees of freedom come from the ANOVA table. As suggested, the corresponding
P value in the ANOVA table is infinitesimal, i.e., zero to three decimal places. Thus
these x variables, as a group, help to explain the variation in the y variable. In other
words, it is possible to predict the mean verbal test scores for a school’s sixth grade
class from the five x variables measured. Of course, the fact that some predictive
ability exists does not mean that the predictive ability is sufficient to be useful.

The coefficient of determination, R2, measures the predictive ability of the model.
It is the squared correlation between the (ŷi,yi) pairs and also is the percentage of
the total variability in y that is explained by the x variables. If this number is large,
it suggests a substantial predictive ability. In this example

R2 ≡ SSReg
SSTot

=
582.69
642.92

= 0.906,

so 90.6% of the total variability is explained by the regression model. This large
percentage suggests that the five x variables have substantial predictive power. How-
ever, we will see that a large R2 does not imply that the model is good in absolute
terms. It may be possible to show that this model does not fit the data adequately. In
other words, this model is explaining much of the variability but we may be able to
establish that it is not explaining as much of the variability as it ought. Conversely,
a model with a low R2 value may be the perfect model but the data may simply have
a great deal of variability. Moreover, even an R2 of 0.906 may be inadequate for the
predictive purposes of the researcher, while in some situations an R2 of 0.3 may be
perfectly adequate. It depends on the purpose of the research. Finally, a large R2 may
be just an unrepeatable artifact of a particular data set. The coefficient of determina-
tion is a useful tool but it must be used with care. When using just x3 to predict y, R2

is the square of the correlation between the two variables, so R2 = (0.927)2 = 0.86.

1.2.1 Computing commands

Performing multiple regression without a computer program is impractical. Mintab’s
reg command is menu driven, hence very easy to use. SAS’s regression procedures
are a bit more complicated, but example commands are easily followed, as are the
commands for Minitab, most of which can be avoided by using the menus. (Minitab
and SAS code for ANREG-II can be found at http://www.stat.unm.edu/
˜fletcher/MinitabCode.pdf.) I have little personal experience with pro-
grams like SPSS, SYSTAT, and JMP. R, on the other hand, is not a program but a
programming language and is more complicated to use. Because multiple linear re-
gression is the fundamental model considered in this book, we present some R code
for it. The link to R code for this book was given in the Preface.

http://www.stat.unm.edu/~fletcher/MinitabCode.pdf
http://www.stat.unm.edu/~fletcher/MinitabCode.pdf
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The following R code should work for computing most of the statistics used in
this chapter and the next. Of course you have to replace the location of the data file
C:\\tab1-1.dat with the location where you stored the data. For completeness,
this code includes some procedures not yet discussed but that should have been
discussed in a first course on regression.

coleman <- read.table("C:\\tab1-1.dat",sep="",
col.names=c("School","x1","x2","x3","x4","x5","y"))

attach(coleman)
coleman
summary(coleman)

#Coefficient and ANOVA tables
co <- lm(y ˜ x1+x2+x3+x4+x5)
cop=summary(co)
cop
anova(co)

#Confidence intervals
confint(co, level=0.95)

#Predictions
new = data.frame(x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)
predict(co,new,se.fit=T,interval="confidence")
predict(co,new,interval="prediction")

# Diagnostics table
infv = c(y,co$fit,hatvalues(co),rstandard(co),rstudent(co),

cooks.distance(co))
inf=matrix(infv,I(cop$df[1]+cop$df[2]),6,dimnames =

list(NULL,c("y", "yhat", "lev","r","t","C")))
inf

# Normal and fitted values plots
qqnorm(rstandard(co),ylab="Standardized residuals")
plot(co$fit,rstandard(co),xlab="Fitted",

ylab="Standardized residuals",main="Residual-Fitted plot")

#Wilk-Francia Statistic
rankit=qnorm(ppoints(rstandard(co),a=I(3/8)))
ys=sort(rstandard(co))
Wprime=(cor(rankit,ys))ˆ2
Wprime

1.3 General Statement of Model

In general we consider a dependent variable y that is a random variable of interest.
We also consider p− 1 nonrandom predictor variables x1, . . . ,xp−1. These can be
original measurements or transformations of original measurements. The general
multiple (linear) regression model relates n observations on y to a linear combination
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of the corresponding observations on the x js plus a random error ε . In particular, we
assume

yi = β0 +β1xi1 + · · ·+βp−1xi,p−1 + εi,

where the subscript i = 1, . . . ,n indicates different observations and the εis are inde-
pendent N(0,σ2) random variables. The β js and σ2 are unknown constants and are
the fundamental parameters of the regression model.

Estimates of the β js are obtained by the method of least squares. The least
squares estimates are those that minimize

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2 .

In this function the yis and the xi js are all known quantities. Least squares estimates
have a number of interesting statistical properties. If the errors are independent with
mean zero, constant variance, and are normally distributed, the least squares esti-
mates are maximum likelihood estimates (MLEs) and minimum variance unbiased
estimates (MVUEs). If we keep the assumptions of mean zero and constant vari-
ance but weaken the independence assumption to that of the errors being merely
uncorrelated and stop assuming normal distributions, the least squares estimates are
best (minimum variance) linear unbiased estimates (BLUEs). For proofs of these
statements, see PA.

In checking assumptions we often use the predictions (fitted values) ŷ corre-
sponding to the observed values of the predictor variables, i.e.,

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂p−1xi,p−1,

i = 1, . . . ,n. Residuals are the values

ε̂i = yi − ŷi.

The other fundamental parameter to be estimated, besides the β js, is the variance
σ2. The sum of squares error is

SSE =
n

∑
i=1

ε̂
2
i

and the estimate of σ2 is the mean squared error (residual mean square)

MSE = SSE/(n− p).

The MSE is an unbiased estimate of σ2 in that E(MSE) = σ2. Under the standard
normality assumptions, MSE is the minimum variance unbiased estimate of σ2.
However, the maximum likelihood estimate of σ2 is σ̂2 = SSE/n, We will never
use the MLE of σ2. (Some programs for fitting generalized linear models, when
used to fit standard linear models, report the MLE rather than the MSE.)

Details of the estimation procedures are given in Chapter 2.
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1.4 Regression Surfaces and Prediction

One of the most valuable aspects of regression analysis is its ability to provide good
predictions of future observations. Of course, to obtain a prediction for a new value y
we need to know the corresponding values of the predictor variables, the x js. More-
over, to obtain good predictions, the values of the x js need to be similar to those on
which the regression model was fitted. Typically, a fitted regression model is only an
approximation to the true relationship between y and the predictor variables. These
approximations can be very good, but, because they are only approximations, they
are not valid for predictor variables that are dissimilar to those on which the approx-
imation was based. Trying to predict for x j values that are far from the original data
is always difficult. Even if the regression model is true and not an approximation, the
variance of such predictions is large. When the model is only an approximation, the
approximation is typically invalid for such predictor variables and the predictions
can be utter nonsense.

The regression surface for the Coleman data is the set of all values z that satisfy

z = β0 +β1x1 +β2x2 +β3x3 +β4x4 +β5x5

for some values of the predictor variables. The estimated regression surface is

z = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5.

There are two problems of interest. The first is estimating the value z on the re-
gression surface for a fixed set of predictor variables. The second is predicting the
value of a new observation to be obtained with a fixed set of predictor variables. For
any set of predictor variables, the estimate of the regression surface and the predic-
tion are identical. What differs are the standard errors associated with the different
problems.

Consider estimation and prediction at

(x1,x2,x3,x4,x5) = (2.07,9.99,−16.04,21.6,5.17).

These are the minimum values for each of the variables, so there will be substantial
variability in estimating the regression surface at this point. The estimator (predic-
tor) is

ŷ = β̂0 +
5

∑
j=1

β̂ jx j = 19.9−1.79(2.07)+0.0436(9.99)

+0.556(−16.04)+1.11(21.6)−1.81(5.17) = 22.375.

For constructing 95% t intervals, the percentile needed is t(0.975,14) = 2.145.
The 95% confidence interval for the point β0 +∑

5
j=1 β jx j on the regression sur-

face uses the standard error for the regression surface, which is
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SE(Sur f ace) = 1.577.

The standard error is obtained from the regression program and depends on the
specific value of (x1,x2,x3,x4,x5). The formula for the standard error is given in
Section 2.4. This interval has endpoints

22.375±2.145(1.577),

which gives the interval
(18.992,25.757).

The 95% prediction interval is

(16.785,27.964).

This is about 4 units wider than the confidence interval for the regression surface.
The standard error for the prediction interval can be computed from the standard
error for the regression surface.

SE(Prediction) =
√

MSE +SE(Sur f ace)2.

In this example,

SE(Prediction) =
√

4.303+(1.577)2 = 2.606,

and the prediction interval endpoints are

22.375±2.145(2.606).

We mentioned earlier that even if the regression model is true, the variance of
predictions is large when the x j values for the prediction are far from the original
data. We can use this fact to identify situations in which the predictions are unre-
liable because the locations are too far away. Let p− 1 be the number of predictor
variables so that, including the intercept, there are p regression parameters. Let n
be the number of observations. A sensible rule of thumb is that we should start
worrying about the validity of the prediction whenever

SE(Sur f ace)√
MSE

≥
√

2p
n

and we should be very concerned about the validity of the prediction whenever

SE(Sur f ace)√
MSE

≥
√

3p
n
.



12 1 Linear Regression

Recall from regression analysis that the leverage for a case is a number between
0 and 1 that measures the distance between the predictor variables for the case in
question and the average of the predictor variables from the entire data. Leverages
greater than 2p/n and 3p/n cause similar levels of concern to those mentioned in
the previous paragraph. We are comparing SE(Sur f ace)/

√
MSE to the square roots

of these guidelines because, for cases in the data, the ratio in question is the square
root of the leverage. In our example, p = 6 and n = 20, so

SE(Sur f ace)√
MSE

=
1.577√
4.303

= 0.760 < 0.775 =

√
2p
n
.

The location of this prediction is near the boundary of those locations for which we
feel comfortable making predictions.

1.5 Comparing Regression Models

A frequent goal in regression analysis is to find the simplest model that provides an
adequate explanation of the data. In examining the full model with all five x vari-
ables, there is little evidence that any of x1, x2, or x5 are needed in the regression
model. The t tests reported in Section 1.2 for the corresponding regression param-
eters gave P values of 0.168, 0.427, and 0.387. We could drop any one of the three
variables without significantly harming the model. While this does not imply that
all three variables can be dropped without harming the model, dropping the three
variables makes an interesting point of departure.

Fitting the reduced model

yi = β0 +β3xi3 +β4xi4 + εi

gives

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 14.583 9.175 1.59 0.130
x3 0.54156 0.05004 10.82 0.000
x4 0.7499 0.3666 2.05 0.057

Analysis of Variance
Source df SS MS F P
Regression 2 570.50 285.25 66.95 0.000
Error 17 72.43 4.26
Total 19 642.92

We can test whether this reduced model is an adequate explanation of the data as
compared to the full model. The sum of squares for error from the full model was
reported in Section 1.2 as SSE(Full) = 60.24 with degrees of freedom dfE(Full) =
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14 and mean squared error MSE(Full) = 4.30. For the reduced model we have
SSE(Red.) = 72.43 and dfE(Red.) = 17. The test statistic for the adequacy of the
reduced model is

Fobs =
[SSE(Red.)−SSE(Full)]

/
[dfE(Red.)−dfE(Full)]

MSE(Full)

=
[72.43−60.24]

/
[17−14]

4.30
= 0.94.

F has [dfE(Red.)−dfE(Full)] and dfE(Full) degrees of freedom in the numerator
and denominator, respectively. Here F is about 1, so it is not significant. In partic-
ular, 0.94 is less than F(0.95,3,14), so a formal α = 0.05 level one-sided F test
does not reject the adequacy of the reduced model. In other words, the 0.05 level
one-sided test of the null model with H0 : β1 = β2 = β5 = 0 is not rejected. (I also
ignored the fact that I looked at the data and let that guide my choice of a reduced
model. It is not surprising when dropping variables that seem unimportant turns out
to be ok but the criterion that guided my choice did not assure that the variables
would be unimportant.)

This test lumps the three variables x1, x2, and x5 together into one big test. It
is possible that the uselessness of two of these variables could hide the fact that
one of them is (marginally) significant when added to the model with x3 and x4. To
fully examine this possibility, we need to fit three additional models. Each variable
should be added, in turn, to the model with x3 and x4. We consider in detail only one
of these three models, the model with x1, x3, and x4. From fitting this model, the t
statistic for testing whether x1 is needed in the model turns out to be −1.47. This
has a P value of 0.162, so there is little indication that x1 is useful. We could also
construct an F statistic as illustrated previously. The sum of squares for error in the
model with x1, x3, and x4 is 63.84 on 16 degrees of freedom, so

Fobs =
[72.43−63.84]/[17−16]

63.84/16
= 2.16 .

Note that, up to round-off error, F = t2. The tests are equivalent and the P value
for the F statistic is also 0.162. F tests are only equivalent to a corresponding t test
when the numerator of the F statistic has one degree of freedom. Methods similar
to these establish that neither x2 nor x5 are important when added to the model that
contains x3 and x4.

Here we are testing two models: the full model with x1, x3, and x4 against a re-
duced model with only x3 and x4. Both of these models are special cases of a biggest
model that contains all of x1, x2, x3, x4, and x5. In ANREG-II Subsection 3.1.1, for
cases like this, we recommended an alternative F statistic,

Fobs =
[72.43−63.84]/[17−16]

4.30
= 2.00,
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where the denominator MSE of 4.30 comes from the biggest model (as would the
denominator degrees of freedom).

In testing the reduced model with only x3 and x4 against the full five-variable
model, we observed that one might miss recognizing a variable that was (marginally)
significant. In this case we did not miss anything important. However, if we had
taken the reduced model as containing only x3 and tested it against the full five-
variable model, we would have missed the importance of x4. The F statistic for this
test turns out to be only 1.74.

In the model with x1, x3, and x4, the t test for x4 turns out to have a P value of
0.021. As seen in the table given previously, if we drop x1 and use the model with
only x3, and x4, the P value for x4 goes to 0.057. Thus dropping a weak variable, x1,
can make a reasonably strong variable, x4, look weaker. There is a certain logical
inconsistency here. If x4 is important in the x1, x3, x4 model or the full five-variable
model (P value 0.023), it is illogical that dropping some of the other variables could
make it unimportant. Even though x1 is not particularly important by itself, it aug-
ments the evidence that x4 is useful. The problem in these apparent inconsistencies
is that the x variables are all related to each other; this is known as the problem of
collinearity. One reason for using the alternative F tests that employ MSE(Big.) in
the denominator is that it ameliorates this phenomenon.

Although a reduced model may be an adequate substitute for a full model on a
particular set of data, it does not follow that the reduced model will be an adequate
substitute for the full model with any data collected on the variables in the full
model.

1.5.1 General discussion

Suppose that we want to compare two regression models, say,

yi = β0 +β1xi1 + · · ·+βq−1xi,q−1 + · · ·+βp−1xi,p−1 + εi (1)

and
yi = β0 +β1xi1 + · · ·+βq−1xi,q−1 + εi. (2)

The key fact here is that all of the variables in Model (2) are also in Model (1). In
this comparison, we dropped the last variables xi,q, . . . ,xi,p−1 for notational conve-
nience only; the discussion applies to dropping any group of variables from Model
(1). Throughout, we assume that Model (1) gives an adequate fit to the data and
then compare how well Model (2) fits the data with how well Model (1) fits. Before
applying the results of this subsection, the validity of the model (1) assumptions
should be evaluated.

We want to know if the variables xi,q, . . . ,xi,p−1 are needed in the model, i.e.,
whether they are useful predictors. In other words, we want to know if Model (2)
is an adequate model; whether it gives an adequate explanation of the data. The
variables xq, . . . ,xp−1 are extraneous if and only if βq = · · ·= βp−1 = 0. The test we
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develop can be considered as a test of

H0 : βq = · · ·= βp−1 = 0.

Parameters are very tricky things; you never get to see the value of a parameter. I
strongly prefer the interpretation of testing one model against another model rather
than the interpretation of testing whether βq = · · · = βp−1 = 0. In practice, useful
regression models are rarely correct models, although they can be very good approx-
imations. Typically, we do not really care whether Model (1) is true, only whether
it is useful, but dealing with parameters in an incorrect model becomes tricky.

In practice, we are looking for a (relatively) succinct way of summarizing the
data. The smaller the model, the more succinct the summarization. However, we
do not want to eliminate useful explanatory variables, so we test the smaller (more
succinct) model against the larger model to see if the smaller model gives up sig-
nificant explanatory power. Note that the larger model always has at least as much
explanatory power as the smaller model because the larger model includes all the
variables in the smaller model plus some more.

Applying model testing procedures to this problem yields the following test: Re-
ject the hypothesis

H0 : βq = · · ·= βp−1 = 0

at the α level if

F ≡
[SSE(Red.)−SSE(Full)]

/
(p−q)

MSE(Full)
> F(1−α, p−q,n− p).

The notation SSE(Red.)− SSE(Full) focuses on the ideas of full and reduced
models. Other notations that focus on variables and parameters are also commonly
used. One can view the model comparison procedure as fitting Model (2) first and
then seeing how much better Model (1) fits. The notation based on this refers to the
(extra) sum of squares for regressing on xq, . . . ,xp−1 after regressing on x1, . . . ,xq−1
and is written

SSR(xq, . . . ,xp−1|x1, . . . ,xq−1)≡ SSE(Red.)−SSE(Full).

This notation assumes that the model contains an intercept. Alternatively, one can
think of fitting the parameters βq, . . . ,βp−1 after fitting the parameters β0, . . . ,βq−1.
The relevant notation refers to the reduction in sum of squares (for error) due to
fitting βq, . . . ,βp−1 after β0, . . . ,βq−1 and is written

R(βq, . . . ,βp−1|β0, . . . ,βq−1)≡ SSE(Red.)−SSE(Full).

Note that it makes perfect sense to refer to SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) as the
reduction in sum of squares for fitting xq, . . . ,xp−1 after x1, . . . ,xq−1.

It was mentioned earlier that the degrees of freedom for SSE(Red.)−SSE(Full)
is p− q. Note that p− q is the number of variables to the left of the vertical bar
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in SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) and the number of parameters to the left of the
vertical bar in R(βq, . . . ,βp−1|β0, . . . ,βq−1).

A point that is quite clear when thinking of model comparisons is that if you
change either model, (1) or (2), the test statistic and thus the test changes. This point
continues to be clear when dealing with the notations SSR(xq, . . . ,xp−1|x1, . . . ,xq−1)
and R(βq, . . . ,βp−1|β0, . . . ,βq−1). If you change any variable on either side of the
vertical bar, you change SSR(xq, . . . ,xp−1|x1, . . . ,xq−1). Similarly, the parametric
notation R(βq, . . . ,βp−1|β0, . . . ,βq−1) is also perfectly precise, but confusion can
easily arise when dealing with parameters if one is not careful. For example, when
testing, say, H0 : β1 = β3 = 0, the tests are completely different in the three models

yi = β0 +β1xi1 +β3xi3 + εi, (3)

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, (4)

and
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi . (5)

In Model (3) the test is based on SSR(x1,x3)≡ R(β1,β3|β0), i.e., the sum of squares
for regression (SSReg) in the model with only x1 and x3 as predictor variables. In
Model (4) the test uses

SSR(x1,x3|x2)≡ R(β1,β3|β0,β2).

Model (5) uses SSR(x1,x3|x2,x4) ≡ R(β1,β3|β0,β2,β4). In all cases we are testing
β1 = β3 = 0 after fitting all the other parameters in the model. In general, we think
of testing H0 : βq = · · ·= βp−1 = 0 after fitting β0, . . . ,βq−1.

If the reduced model is obtained by dropping out only one variable, e.g., if q−1=
p−2, the parametric hypothesis is H0 : βp−1 = 0. We have just developed an F test
for this and we have earlier used a t test for the hypothesis. In multiple regression
the F test is equivalent to the t test. It follows that the t test must be considered
as a test for the parameter after fitting all of the other parameters in the model. In
particular, the t tests reported in the table of coefficients when fitting a regression
tell you only whether a variable can be dropped relative to the model that contains
all the other variables. These t tests cannot tell you whether more than one variable
can be dropped from the fitted model. If you drop any variable from a regression
model, all of the t tests change. It is only for notational convenience that we are
discussing testing βp−1 = 0; the results hold for any βk.

The SSR notation can also be used to find SSEs. Consider models (3), (4), and
(5) and suppose we know SSR(x2|x1,x3), SSR(x4|x1,x2,x3), and the SSE from Model
(5). We can easily find the SSEs for models (3) and (4). By definition,

SSE(4) = [SSE(4)−SSE(5)]+SSE(5)
= SSR(x4|x1,x2,x3)+SSE(5).

Also
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SSE(3) = [SSE(3)−SSE(4)]+SSE(4)
= SSR(x2|x1,x3)+{SSR(x4|x1,x2,x3)+SSE(5)} .

Moreover, we see that

SSR(x2,x4|x1,x3) = SSE(3)−SSE(5)
= SSR(x2|x1,x3)+SSR(x4|x1,x2,x3).

Note also that we can change the order of the variables.

SSR(x2,x4|x1,x3) = SSR(x4|x1,x3)+SSR(x2|x1,x3,x4).

1.6 Sequential Fitting

Multiple regression analysis is largely impractical without the aid of a computer.
One specifies a regression model and the computer returns the vital statistics for
that model. Many computer programs actually fit a sequence of models rather than
fitting the model all at once.

EXAMPLE 1.6.1. Suppose you want to fit the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi.

Many regression programs actually fit the sequence of models

yi = β0 +β1xi1 + εi,

yi = β0 +β1xi1 +β2xi2 + εi,

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi,

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi.

The sequence is determined by the order in which the variables are specified. If the
identical model is specified in the form

yi = β0 +β3xi3 +β1xi1 +β4xi4 +β2xi2 + εi,

the end result is exactly the same but the sequence of models is

yi = β0 +β3xi3 + εi,

yi = β0 +β3xi3 +β1xi1 + εi,

yi = β0 +β3xi3 +β1xi1 +β4xi4 + εi,

yi = β0 +β3xi3 +β1xi1 +β4xi4 +β2xi2 + εi.



18 1 Linear Regression

Frequently, programs that fit sequences of models also provide sequences of sums
of squares. Thus the first sequence of models yields

SSR(x1), SSR(x2|x1), SSR(x3|x1,x2), and SSR(x4|x1,x2,x3)

while the second sequence yields

SSR(x3), SSR(x1|x3), SSR(x4|x3,x1), and SSR(x2|x3,x1,x4).

These can be used in a variety of ways. For example, as shown at the end of the
previous section, to test

yi = β0 +β1xi1 +β3xi3 + εi

against
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi

we need SSR(x2,x4|x3,x1). This is easily obtained from the second sequence as

SSR(x2,x4|x3,x1) = SSR(x4|x3,x1)+SSR(x2|x3,x1,x4). 2

EXAMPLE 1.6.2. If we fit the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi

to the Coleman Report data, we get the sequential sums of squares listed below.

Source df Seq SS Notation
x1 1 23.77 SSR(x1)
x2 1 343.23 SSR(x2|x1)
x3 1 186.34 SSR(x3|x1,x2)
x4 1 25.91 SSR(x4|x1,x2,x3)
x5 1 3.43 SSR(x5|x1,x2,x3,x4)

Recall that the MSE for the five-variable model is 4.30 on 14 degrees of freedom.
From the sequential sums of squares we can test a variety of hypotheses related

to the full model. For example, we can test whether variable x5 can be dropped
from the five-variable model. The F statistic is 3.43/4.30, which is less than 1, so
the effect of x5 is insignificant. This test is equivalent to the t test for x5 given in
Section 2 when fitting the five-variable model. We can also test whether we can
drop both x4 and x5 from the full model. The F statistic is

Fobs =
(25.91+3.43)/2

4.30
= 3.41.

F(0.95,2,14) = 3.74, so this F statistic provides little evidence that the pair of vari-
ables is needed. (The relative importance of x4 is somewhat hidden by combining
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it in a test with the unimportant x5.) Similar tests can be constructed for dropping
x3, x4, and x5, for dropping x2, x3, x4, and x5, and for dropping x1, x2, x3, x4, and x5
from the full model. The last of these is just the ANOVA table F test.

We can also make a variety of tests related to ‘full’ models that do not include
all five variables. In the previous paragraph, we found little evidence that the pair
x4 and x5 help explain the data in the five-variable model. We now test whether x4
can be dropped when we have already dropped x5. In other words, we test whether
x4 adds explanatory power to the model that contains x1, x2, and x3. The numer-
ator has one degree of freedom and is SSR(x4|x1,x2,x3) = 25.91. The usual de-
nominator mean square for this test is the MSE from the model with x1, x2, x3,
and x4, i.e., {14(4.303) + 3.43}/15. (For numerical accuracy we have added an-
other significant digit to the MSE from the five-variable model. The SSE from the
model without x5 is just the SSE from the five-variable model plus the sequen-
tial sum of squares SSR(x5|x1,x2,x3,x4).) Our best practice would be to construct
the test using the same numerator mean square but the MSE from the five-variable
model in the denominator of the test. Using this second denominator, the F statistic
is 25.91/4.30 = 6.03. Corresponding F percentiles are F(0.95,1,14) = 4.60 and
F(0.99,1,14) = 8.86, so x4 may be contributing to the model. If we had used the
MSE from the model with x1, x2, x3, and x4, the F statistic would be equivalent to
the t statistic for dropping x4 that is obtained when fitting this four-variable model.

If we wanted to test whether x2 and x3 can be dropped from the model that con-
tains x1, x2, and x3, the usual denominator is [14(4.303)+25.91+3.43]/16 = 5.60.
(The SSE for the model without x4 or x5 is just the SSE from the five-variable model
plus the sequential sum of squares for x4 and x5.) Again, we would alternatively use
the MSE from the five-variable model in the denominator. Using the first denomi-
nator, the test is

Fobs =
(343.23+186.34)/2

5.60
= 47.28,

which is much larger than F(0.999,2,16) = 10.97, so there is overwhelming evi-
dence that variables x2 and x3 cannot be dropped from the x1, x2, x3 model.

The argument for basing tests on the MSE from the five-variable model is that it is
less subject to bias than the other MSEs. In the test given in the previous paragraph,
the MSE from the usual ‘full’ model incorporates the sequential sums of squares
for x4 and x5. A reason for doing this is that we have tested x4 and x5 and are not
convinced that they are important. As a result, their sums of squares are incorporated
into the error. Even though we may not have established an overwhelming case for
the importance of either variable, there is some evidence that x4 is a useful predictor
when added to the first three variables. The sum of squares for x4 may or may not
be large enough to convince us of its importance but it is large enough to change the
MSE from 4.30 in the five-variable model to 5.60 in the x1, x2, x3 model. In general,
if you test terms and pool them with the Error whenever the test is insignificant, you
are biasing the MSE that results from this pooling. 2

In general, when given the ANOVA table and the sequential sums of squares, we
can test any model in the sequence against any reduced model that is part of the
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sequence. We cannot use these statistics to obtain a test involving a model that is not
part of the sequence.

1.7 Reduced Models and Prediction

Fitted regression models are, not surprisingly, very dependent on the observed val-
ues of the predictor variables. We have already discussed the fact that fitted re-
gression models are particularly good for making predictions but only for making
predictions on new cases with predictor variables that are similar to those used in fit-
ting the model. Fitted models are not good at predicting observations with predictor
variable values that are far from those in the observed data. We have also discussed
the fact that in evaluating a reduced model we are evaluating whether the reduced
model is an adequate explanation of the data. An adequate reduced model should
serve well as a prediction equation but only for new cases with predictor variables
similar to those in the original data. It should not be overlooked that when using a
reduced model for prediction, new cases need to be similar to the observed data on
all predictor variables and not just on the predictor variables in the reduced model.

Good prediction from reduced models requires that new cases be similar to ob-
served cases on all predictor variables because of the process of selecting reduced
models. Predictor variables are eliminated from a model if they are not necessary
to explain the data. This can happen in two ways. If a predictor variable is truly
unrelated to the dependent variable, it is both proper and beneficial to eliminate that
variable. The other possibility is that a predictor variable may be related to the de-
pendent variable but that the relationship is hidden by the nature of the observed
predictor variables. In the Coleman Report data, suppose the true response depends
on both x3 and x5. We know that x3 is clearly the best single predictor but the ob-
served values of x5 and x3 are closely related; the sample correlation between them
is 0.819. Because of their high correlation in these data, much of the actual depen-
dence of y on x5 could be accounted for by the regression on x3 alone. Variable x3
acts as a surrogate for x5. As long as we try to predict new cases that have values of
x5 and x3 similar to those in the original data, a reduced model based on x3 should
work well. Variable x3 should continue to act as a surrogate. On the other hand, if
we tried to predict a new case that had an x3 value similar to that in the observed
data but where the pair x3, x5 was not similar to x3, x5 pairs in the observed data,
the reduced model that uses x3 as a surrogate for x5 would be inappropriate. Pre-
dictions could be very bad and, if we thought only about the fact that the x3 value
is similar to those in the original data, we might expect the predictions to be good.
Unfortunately, when we eliminate a variable from a regression model, we typically
have no idea if it is eliminated because the variable really has no effect on y or be-
cause its effect is being masked by some other set of predictor variables. For further
discussion of these issues see Mandel (1989a, b).

Of course there is reason to hope that predictions will typically work well for re-
duced models. If the data come from an observational study in which the cases are
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some kind of sample from a population, there is reason to expect that future cases
that are sampled in the same way will behave similarly to those in the original study.
In addition, if the data come from an experiment in which the predictor variables
are under the control of the investigator, it is reasonable to expect the investigator to
select values of the predictor variables that cover the full range over which predic-
tions will be made. Nonetheless, regression models give good approximations and
good predictions only within the range of the observed data and, when a reduced
model is used, the definition of the range of the observed data includes the values
of all predictor variables that were in the full model. In fact, even this statement is
too weak. When using a reduced model or even when using the full model for pre-
diction, new cases need to be similar to the observed cases in all relevant ways. If
there is some unmeasured predictor that is related to y and if the observed predictors
are highly correlated with this unmeasured variable, then for good prediction a new
case needs to have a value of the unmeasured variable that is similar to those for the
observed cases. In other words, the variables in any model may be acting as surro-
gates for some unmeasured variables and to obtain good predictions the new cases
must be similar on both the observed predictor variables and on these unmeasured
variables.

Prediction should work well whenever (xi1,xi2, . . . ,xi,p−1,yi), i = 1, . . . ,n consti-
tutes a random sample from some population and when the point we want to predict,
say y0, corresponds to predictor variables (x01,x02, . . . ,x0,p−1) that are sampled from
the same population. In practice, we rarely have this ideal, but the ideal illuminates
what can go wrong in practice.

1.8 Collinearity

Collinearity exists when the predictor variables x1, . . . ,xp−1 are correlated. We have
n observations on each of these variables, so we can compute the sample corre-
lations between them. Typically, the x variables are assumed to be fixed and not
random. For data like the Coleman Report, we have a sample of schools so the
predictor variables really are random. But for the purpose of fitting the regression
we treat them as fixed. (Probabilistically, we look at the conditional distribution
of y given the predictor variables.) In some applications, the person collecting the
data actually has control over the predictor variables so they truly are fixed. If the
x variables are fixed and not random, there is some question as to what a correla-
tion between two x variables means. Actually, we are concerned with whether the
observed predictor variables are orthogonal, but that turns out to be equivalent to
having sample correlations of zero between the x variables. Nonzero sample cor-
relations indicate nonorthogonality, thus we need not concern ourselves with the
interpretation of sample correlations between nonrandom samples. (Technically, for
orthogonal and uncorrelated predictors to mean the same thing, the predictor vari-
ables should have their sample means subtracted from them. I tend to use the terms
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interchangeably in this book because of my perception that “uncorrelated” is a less
daunting term to people in a second course on regression.)

In regression, it is almost unheard of to have x variables that display no collinear-
ity (correlation) [unless the variables are constructed to have no correlation]. In other
words, observed x variables are almost never orthogonal. The key ideas in dealing
with collinearity were previously incorporated into the discussion of comparing re-
gression models. In fact, the methods discussed earlier were built around dealing
with the collinearity of the x variables. This section merely reviews a few of the
main ideas.

1. The estimate of any parameter, say β̂2, depends on all the variables that are in-
cluded in the model.

2. The sum of squares for any variable, say x2, depends on all the other variables
that are included in the model. For example, none of SSR(x2), SSR(x2|x1), and
SSR(x2|x3,x4) would typically be equal.

3. Suppose the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi

is fitted and we obtain t statistics for each parameter. If the t statistic for testing
H0 : β1 = 0 is small, we are led to the model

yi = β0 +β2xi2 +β3xi3 + εi.

If the t statistic for testing H0 : β2 = 0 is small, we are led to the model

yi = β0 +β1xi1 +β3xi3 + εi.

However, if the t statistics for both tests are small, we are not led to the model

yi = β0 +β3xi3 + εi.

To arrive at the model containing only the intercept and x3, one must at some
point use the model containing only the intercept and x3 as a reduced model.

4. A moderate amount of collinearity has little effect on predictions and therefore
little effect on SSE, R2, and the explanatory power of the model. Collinearity in-
creases the variance of the β̂ks, making the estimates of the parameters less reli-
able. (I told you not to rely on parameters anyway.) Depending on circumstances,
sometimes a large amount of collinearity can have an effect on predictions. Just
by chance, one may get a better fit to the data than can be justified scientifically.

The complications associated with points 1 through 4 all vanish if the sample corre-
lations between the x variables are all zero.

Many computer programs will print out a matrix of correlations between the
variables. One would like to think that if all the correlations between the x variables
are reasonably small, say less than 0.3 or 0.4, then the problems of collinearity
would not be serious. Unfortunately, that is simply not true. To avoid difficulties
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with collinearity, not only do all the correlations need to be small but all of the
partial correlations among the x variables must be small. Thus, small correlations
alone do not ensure small collinearity.

EXAMPLE 1.8.1. The correlations among predictors for the Coleman data are given
below.

x1 x2 x3 x4 x5
x1 1.000 0.181 0.230 0.503 0.197
x2 0.181 1.000 0.827 0.051 0.927
x3 0.230 0.827 1.000 0.183 0.819
x4 0.503 0.051 0.183 1.000 0.124
x5 0.197 0.927 0.819 0.124 1.000

A visual display of these relationships was provided in Figures 1.1–1.4.
Note that x3 is highly correlated with x2 and x5. Since x3 is highly correlated with

y, the fact that x2 and x5 are also quite highly correlated with y is not surprising.
Recall that the correlations with y were given in Section 1. Moreover, since x3 is
highly correlated with x2 and x5, it is also not surprising that x2 and x5 have little to
add to a model that already contains x3. We have seen that it is the two variables x1
and x4, i.e., the variables that do not have high correlations with either x3 or y, that
have the greater impact on the regression equation.

Having regressed y on x3, the sample correlations between y and any of the other
variables are no longer important. Having done this regression, it is more germane to
examine the partial correlations between y and the other variables after adjusting for
x3. (Recall that the sample partial correlation between, say, x4 and y given x3 is the
just sample correlation between the residuals from fitting y on x3 and the residuals
from fitting x4 on x3.) However, as we will see in our discussion of variable selection
in Chapter 5, even this has its drawbacks. 2

As long as points 1 through 4 are kept in mind, a moderate amount of collinear-
ity is not a big problem. For severe collinearity, there are four common approaches:
a) classical ridge regression, b) generalized inverse regression, c) principal com-
ponents regression, and d) canonical regression. Classical ridge regression is prob-
ably the best known of these methods, cf. Section 4.2. The other three methods
are closely related and seem quite reasonable. Principal components regression is
discussed in Section 4.1. While these methods were originally developed for deal-
ing with collinearity, they are now often used to deal with overfitting, i.e., fitting
so many predictor variables that prediction becomes unreliable. Another procedure,
lasso regression, is becoming increasingly popular for dealing with overfitting but
it is considerably more difficult to understand how it works, cf. Section 4.3.
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1.9 More on Model Testing

In this section, we take the opportunity to introduce various methods of defining
reduced models. To this end we introduce some new data, a subset of the Chapman
data.

EXAMPLE 1.9.1. Dixon and Massey (1983) report data from the Los Angeles
Heart Study supervised by J. M. Chapman. The variables are y, weight in pounds;
x1, age in years; x2, systolic blood pressure in millimeters of mercury; x3, diastolic
blood pressure in millimeters of mercury; x4, cholesterol in milligrams per dl; x5,
height in inches. The data from 60 men are given in Table 1.2.

Table 1.2 L. A. heart study data.

i x1 x2 x3 x4 x5 y i x1 x2 x3 x4 x5 y
1 44 124 80 254 70 190 31 42 136 82 383 69 187
2 35 110 70 240 73 216 32 28 124 82 360 67 148
3 41 114 80 279 68 178 33 40 120 85 369 71 180
4 31 100 80 284 68 149 34 40 150 100 333 70 172
5 61 190 110 315 68 182 35 35 100 70 253 68 141
6 61 130 88 250 70 185 36 32 120 80 268 68 176
7 44 130 94 298 68 161 37 31 110 80 257 71 154
8 58 110 74 384 67 175 38 52 130 90 474 69 145
9 52 120 80 310 66 144 39 45 110 80 391 69 159

10 52 120 80 337 67 130 40 39 106 80 248 67 181
11 52 130 80 367 69 162 41 40 130 90 520 68 169
12 40 120 90 273 68 175 42 48 110 70 285 66 160
13 49 130 75 273 66 155 43 29 110 70 352 66 149
14 34 120 80 314 74 156 44 56 141 100 428 65 171
15 37 115 70 243 65 151 45 53 90 55 334 68 166
16 63 140 90 341 74 168 46 47 90 60 278 69 121
17 28 138 80 245 70 185 47 30 114 76 264 73 178
18 40 115 82 302 69 225 48 64 140 90 243 71 171
19 51 148 110 302 69 247 49 31 130 88 348 72 181
20 33 120 70 386 66 146 50 35 120 88 290 70 162
21 37 110 70 312 71 170 51 65 130 90 370 65 153
22 33 132 90 302 69 161 52 43 122 82 363 69 164
23 41 112 80 394 69 167 53 53 120 80 343 71 159
24 38 114 70 358 69 198 54 58 138 82 305 67 152
25 52 100 78 336 70 162 55 67 168 105 365 68 190
26 31 114 80 251 71 150 56 53 120 80 307 70 200
27 44 110 80 322 68 196 57 42 134 90 243 67 147
28 31 108 70 281 67 130 58 43 115 75 266 68 125
29 40 110 74 336 68 166 59 52 110 75 341 69 163
30 36 110 80 314 73 178 60 68 110 80 268 62 138

For now, our interest is not in analyzing the data but in illustrating modeling
techniques. We fitted the basic multiple regression model
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yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi. (1)

The table of coefficients and ANOVA table follow.

Table of Coefficients: Model (1)
Predictor β̂k SE(β̂k) t P
Constant −112.50 89.56 −1.26 0.214
x1-age 0.0291 0.2840 0.10 0.919
x2-sbp 0.0197 0.3039 0.06 0.949
x3-dbp 0.7274 0.4892 1.49 0.143
x4-chol −0.02103 0.04859 −0.43 0.667
x5-ht 3.248 1.241 2.62 0.011

Analysis of Variance: Model (1)
Source df SS MS F P
Regression 5 7330.4 1466.1 3.30 0.011
Residual Error 54 24009.6 444.6
Total 59 31340.0

One plausible reduced model is that systolic and diastolic blood pressure have
the same regression coefficient, i.e, H0 : β2 = β3. Incorporating this into Model (1)
gives

yi = β0 +β1xi1 +β2xi2 +β2xi3 +β4xi4 +β5xi5 + εi

= β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 +β5xi5 + εi, (2)

which involves regressing y on the four variables x1, x2 +x3, x4, x5. The fitted equa-
tion is

ŷ =−113+0.018x1 +0.283(x2 + x3)−0.0178x4 +3.31x5.

The ANOVA table

Analysis of Variance for Model (2).
Source df SS MS F P
Regression 4 6941.9 1735.5 3.91 0.007
Residual Error 55 24398.1 443.6
Total 59 31340.0

leads to the test statistic for whether the reduced model fits,

Fobs =
(24398.1−24009.6)/(55−54)

444.6
.
= 1.

The reduced model based on the sum of the blood pressures fits as well as the model
with the individual blood pressures.

The table of coefficients for Model (2)
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Table of Coefficients: Model (2)
Predictor β̂k SE(β̂k) t P
Constant −113.16 89.45 −1.27 0.211
x1-age 0.0182 0.2834 0.06 0.949
x2 + x3 0.2828 0.1143 2.47 0.016
x4-chol −0.01784 0.04841 −0.37 0.714
x5-ht 3.312 1.237 2.68 0.010

shows a significant effect for the sum of the blood pressures. Although neither blood
pressure looked important in the table of coefficients for the full model, we find that
the sum of the blood pressures is a good predictor of weight, with a positive regres-
sion coefficient. Although high blood pressure is not likely to cause high weight,
there is certainly a correlation between weight and blood pressure, so it is plausible
that blood pressure could be a good predictor of weight. The reader should inves-
tigate whether x2, x3, and x2 + x3 are all acting as surrogates for one another, i.e.,
whether it is sufficient to include any one of the three in the model, after which the
others add no appreciable predictive ability.

Another plausible idea, perhaps more so for other dependent variables rather than
weight, is that it could be the difference between the blood pressure readings that
is important. In this case, the corresponding null hypothesis is H0 : β2 + β3 = 0.
Writing β3 =−β2, the model becomes

yi = β0 +β1xi1 +β2xi2 −β2xi3 +β4xi4 +β5xi5 + εi

= β0 +β1xi1 +β2(xi2 − xi3)+β4xi4 +β5xi5 + εi. (3)

With

Analysis of Variance for Model (3)
Source df SS MS F P
Regression 4 4575.5 1143.9 2.35 0.065
Residual Error 55 26764.5 486.6
Total 59 31340.0

the test statistic for whether the reduced model fits is

Fobs =
(26764.5−24009.6)/(55−54)

444.6
= 6.20.

The one-sided P value is 0.016, i.e., 6.20 = F(1− .016,1,54). Clearly the reduced
model fits inadequately. Replacing the blood pressures by their difference does not
predict as well as having the blood pressures in the model.

It would have worked equally well to have written β3 = −β2 and fitted the re-
duced model

yi = β0 +β1xi1 +β3(xi3 − xi2)+β4xi4 +β5xi5 + εi.

Tests for proportional coefficients are similar to the previous illustrations. For
example, we could test if the coefficient for x2 (sbp) is 4 times smaller than for x3
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(dbp). To test H0 : 4β2 = β3, the reduced model becomes

yi = β0 +β1xi1 +β2xi2 +4β2xi3 +β4xi4 +β5xi5 + εi

= β0 +β1xi1 +β2(xi2 +4xi3)+β4xi4 +β5xi5 + εi.

We leave it to the reader to evaluate this hypothesis.
Now let’s test whether the regression coefficient for diastolic blood pressure is

0.5 units higher than for systolic. The hypothesis is H0 : β2 +0.5 = β3. Substitution
gives

yi = β0 +β1xi1 +β2xi2 +(β2 +0.5)xi3 +β4xi4 +β5xi5 + εi

= 0.5xi3 +β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 +β5xi5 + εi. (4)

The term 0.5xi3 is a known constant for each observation i, often called an offset.
Such terms are easy to handle in linear models, just take them to the other side of
the equation,

yi −0.5xi3 = β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 +β5xi5 + εi, (5)

and fit the model with the new dependent variable yi −0.5xi3.
The fitted regression equation is

ŷ−0.5x3 =−113+0.026x1 +0.097(x2 + x3)−0.0201x4 +3.27x5

or
ŷ =−113+0.026x1 +0.097x2 +0.597x3 −0.0201x4 +3.27x5.

The ANOVA table for the reduced model (5) is

Analysis of Variance for Model (5)
Source df SS MS F P
Regression 4 3907.7 976.9 2.23 0.077
Residual Error 55 24043.1 437.1
Total 59 27950.8

It may not be obvious but Model (5) can be tested against the full model (1) in the
usual way. Since xi3 is already included in Model (1), subtracting 0.5 times it from
yi has little effect on Model (1): the fitted values differ only by the constant 0.5xi3
being subtracted; the residuals and degrees of freedom are identical. Performing the
test of Model (5) versus Model (1) gives

Fobs =
(24043.1−24009.6)/(55−54)

444.6
= 0.075

for a one-sided P value of 0.79, so the equivalent reduced models (4) and (5) are
consistent with the data.

We could similarly test whether the height coefficient is 3.5 in Model (1), i.e.,
test H0 : β5 = 3.5 by fitting
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yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +3.5xi5 + εi

or
yi −3.5xi5 = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi. (6)

Fitting Model (6) gives the regression equation

ŷ−3.5x5 =−130+0.045x1 +0.019x2 +0.719x3 −0.0203x4

or
ŷ =−130+0.045x1 +0.019x2 +0.719x3 −0.0203x4 +3.5x5.

The ANOVA table is

Analysis of Variance for Model (6)
Source df SS MS F P
Regression 4 3583.3 895.8 2.05 0.100
Residual Error 55 24027.9 436.9
Total 59 27611.2

and testing the models in the usual way gives

Fobs =
(24027.9−24009.6)/(55−54)

444.6
= 0.041

for a one-sided P value of 0.84. The reduced model (6) is consistent with the data.
Alternatively, we could test H0 : β5 = 3.5 from the original table of coefficients

for Model (1) by computing

tobs =
3.248−3.5

1.241
=−0.203

and comparing the result to a t(54) distribution. The square of the t statistic equals
the F statistic.

Finally, we illustrate a simultaneous test of the last two hypotheses, i.e., we test
H0 : β2 +0.5 = β3; β5 = 3.5. The reduced model is

yi = β0 +β1xi1 +β2xi2 +(β2 +0.5)xi3 +β4xi4 +3.5xi5 + εi

= 0.5xi3 +3.5xi5 +β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 + εi

or
yi −0.5xi3 −3.5xi5 = β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 + εi. (7)

The fitted regression equation is

ŷ− .5x3 −3.5x5 =−129+0.040x1 +0.094(x2 + x3)−0.0195x4

or
ŷ =−129+0.040x1 +0.094x2 +0.594x3 −0.0195x4 +3.5x5.
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The ANOVA table is

Analysis of Variance for Model (7)
Source df SS MS F P
Regression 3 420.4 140.1 0.33 0.806
Residual Error 56 24058.8 429.6
Total 59 24479.2

and testing Model (7) against Model (1) in the usual way gives

Fobs =
(24058.8−24009.6)/(56−54)

444.6
= 0.055,

for a one-sided P value of 0.95. In this case, the high one-sided P value is probably
due less to any problems with Model (7) and due more to me looking at the table
of coefficients for Model (1) and choosing a null hypothesis that seemed consistent
with the data. Typically, hypotheses should be suggested by previous theory or data,
not inspection of the current data.

1.10 Diagnostics

One tool for checking the assumptions of regression models is looking at diagnos-
tic statistics. If problems with assumptions become apparent, one way to deal with
them is to try transformations, e.g., ANREG-II Section 7.3. Among the methods dis-
cussed there, only the circle of transformations does not apply to all linear regres-
sion models. In particular, the discussion of transforming x at the end of ANREG-II
Section 7.3 takes on new importance in multiple regression because multiple re-
gression involves several predictor variables, each of which is a candidate for Box–
Tidwell transformation. Incidentally, the modified Box–Tidwell procedure evaluates
each predictor variable separately, so it involves adding only one predictor variable
xi j log(xi j) to the multiple regression model at a time.

Table 1.3 contains a variety of measures for checking the assumptions of the
multiple regression model with five predictor variables that was fitted to the Cole-
man Report data. The table includes case indicators, the data y, the predicted values
ŷ, the leverages, the standardized residuals r, the standardized deleted residuals t,
and Cook’s distances C. All of these are standard regression diagnostics. Recall that
leverages measure the distance between the predictor variables of a particular case
and the overall center of those data. Cases with leverages near 1 dominate any fitted
regression. As a rule of thumb, leverages greater than 2p/n cause concern and lever-
ages greater than 3p/n cause (at least mild) consternation. Here n is the number of
observations in the data and p is the number of regression coefficients, including the
intercept. The standardized deleted residuals t contain essentially the same informa-
tion as the standardized residuals r but t values can be compared to a t(dfE − 1)
distribution to obtain a formal test of whether a case is consistent with the other
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data. (A formal test based on the r values requires a more exotic distribution than
the t(dfE −1).) Cook’s distance for case i is defined as

Ci =
∑

n
h=1
(
ŷh − ŷh[i]

)2

pMSE
, (1)

where ŷh is the predictor of the hth case and ŷh[i] is the predictor of the hth case
when case i has been removed from the data. Cook’s distance measures the effect of
deleting case i on the prediction of all of the original observations.

Table 1.3 Diagnostics: Coleman Report, full data.

Case y ŷ Leverage r t C
1 37.01 36.66 0.482 0.23 0.23 0.008
2 26.51 26.86 0.486 −0.24 −0.23 0.009
3 36.51 40.46 0.133 −2.05 −2.35 0.107
4 40.70 41.17 0.171 −0.25 −0.24 0.002
5 37.10 36.32 0.178 0.42 0.40 0.006
6 33.90 33.99 0.500 −0.06 −0.06 0.001
7 41.80 41.08 0.239 0.40 0.38 0.008
8 33.40 33.83 0.107 −0.22 −0.21 0.001
9 41.01 40.39 0.285 0.36 0.34 0.008

10 37.20 36.99 0.618 0.16 0.16 0.007
11 23.30 25.51 0.291 −1.26 −1.29 0.110
12 35.20 33.45 0.403 1.09 1.10 0.133
13 34.90 35.95 0.369 −0.64 −0.62 0.040
14 33.10 33.45 0.109 −0.18 −0.17 0.001
15 22.70 24.48 0.346 −1.06 −1.07 0.099
16 39.70 38.40 0.157 0.68 0.67 0.014
17 31.80 33.24 0.291 −0.82 −0.81 0.046
18 31.70 26.70 0.326 2.94 4.56 0.694
19 43.10 41.98 0.285 0.64 0.63 0.027
20 41.01 40.75 0.223 0.14 0.14 0.001

Figures 1.5 and 1.6 are plots of the standardized residuals versus normal scores
and against the predicted values. (W ′ is the Shapiro-Francia statistic which is the
squared sample correlation between the ordered standardized residuals and the nor-
mal scores, thus high values are consistent with normality.) The largest standardized
residual, that for case 18, appears to be somewhat unusually large. To test whether
the data from case 18 are consistent with the other data, we can compare the stan-
dardized deleted residual to a t(dfE −1) distribution. From Table 1.3, the t residual
is 4.56. The corresponding P value is 0.0006. Actually, we chose to perform the test
on the t residual for case 18 only because it was the largest of the 20 t residuals.
Because the test is based on the largest of the t values, it is appropriate to multiply
the P value by the number of t statistics considered. This gives 20×0.0006 = 0.012,
which is still a small P value. There is considerable evidence that the data of case
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18 are inconsistent, for whatever reason, with the other data. This fact cannot be
discovered from a casual inspection of the raw data.

The only point of any concern with respect to the leverages is case 10. Its leverage
is 0.618, while 2p/n = 0.6. This is only a mildly high leverage and case 10 seems
well behaved in all other respects; in particular, C10 is small, so deleting case 10 has
very little effect on predictions.
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Fig. 1.5 Normal plot, full data, W ′ = 0.903.

We now reconsider the analysis with case 18 deleted. The regression equation is

y = 34.3−1.62x1 +0.0854x2 +0.674x3 +1.11x4 −4.57x5

and R2 = 0.963. Table 1.4 contains the table of coefficients. Table 1.5 contains the
analysis of variance. Table 1.6 contains diagnostics. Note that the MSE is less than
half of its previous value when case 18 was included in the analysis. It is no sur-
prise that the MSE is smaller, since the case being deleted is often the single largest
contributor to the SSE. Correspondingly, the regression parameter t statistics in Ta-
ble 1.3 are all much more significant. The actual regression coefficient estimates
have changed a bit but not greatly. Predictions have not changed radically either,
as can be seen by comparing the predictions given in Tables 1.3 and 1.6. Although
the predictions have not changed radically, they have changed more than they would
have if we deleted any observation other than case 18. From the definition of Cook’s
distance given in Equation (1), C18 is precisely the sum of the squared differences
between the predictions in Tables 1.3 and 1.6 divided by 6 times the MSE from the
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Fig. 1.6 Standardized residuals versus predicted values, full data.

full data. From Table 1.3, Cook’s distance when dropping case 18 is much larger
than Cook’s distance from dropping any other case.

Table 1.4 Table of Coefficients: Case 18 deleted.

Predictor β̂ SE(β̂ ) t P
Constant 34.287 9.312 3.68 0.003
x1 −1.6173 0.7943 −2.04 0.063
x2 0.08544 0.03546 2.41 0.032
x3 0.67393 0.06516 10.34 0.000
x4 1.1098 0.2790 3.98 0.002
x5 −4.571 1.437 −3.18 0.007

Table 1.5 Analysis of Variance: Case 18 deleted.

Source df SS MS F P
Regression 5 607.74 121.55 68.27 0.000
Error 13 23.14 1.78
Total 18 630.88
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Consider again Table 1.6 containing the diagnostic statistics when case 18 has
been deleted. Case 10 has moderately high leverage but seems to be no real prob-
lem. Figures 1.7 and 1.8 give the normal plot and the standardized residual versus
predicted value plot, respectively, with case 18 deleted. Figure 1.8 is particularly
interesting. At first glance, it appears to have a horn shape opening to the right. But
there are only three observations on the left of the plot and many on the right, so
one would expect a horn shape because of the data distribution. Looking at the right
of the plot, we see that in spite of the data distribution, much of the horn shape is
due to a single very small residual. If we mentally delete that residual, the remain-
ing residuals contain a hint of an upward opening parabola. The potential outlier is
case 3. From Table 1.6, the standardized deleted residual for case 3 is −5.08, which
yields a raw P value of 0.0001, and if we adjust for having 19 t statistics, the P value
is 0.0019, still an extremely small value. Note also that in Table 1.3, when case 18
was included in the data, the standardized deleted residual for case 3 was somewhat
large but not nearly so extreme.

Table 1.6 Diagnostics: Case 18 deleted.

Case y ŷ Leverage r t C
1 37.01 36.64 0.483 0.39 0.37 0.023
2 26.51 26.89 0.486 −0.39 −0.38 0.024
3 36.51 40.21 0.135 −2.98 −5.08 0.230
4 40.70 40.84 0.174 −0.12 −0.11 0.001
5 37.10 36.20 0.179 0.75 0.73 0.020
6 33.90 33.59 0.504 0.33 0.32 0.018
7 41.80 41.66 0.248 0.12 0.12 0.001
8 33.40 33.65 0.108 −0.20 −0.19 0.001
9 41.01 41.18 0.302 −0.15 −0.15 0.002

10 37.20 36.79 0.619 0.50 0.49 0.068
11 23.30 23.69 0.381 −0.37 −0.35 0.014
12 35.20 34.54 0.435 0.66 0.64 0.055
13 34.90 35.82 0.370 −0.87 −0.86 0.074
14 33.10 32.38 0.140 0.58 0.57 0.009
15 22.70 22.36 0.467 0.35 0.33 0.017
16 39.70 38.25 0.158 1.18 1.20 0.044
17 31.80 32.82 0.295 −0.91 −0.90 0.058
18 24.28 0.483
19 43.10 41.44 0.292 1.48 1.56 0.151
20 41.01 41.00 0.224 0.00 0.00 0.000

With cases 3 and 18 deleted, the regression equation becomes

ŷ = 29.8−1.70x1 +0.0851x2 +0.666x3 +1.18x4 −4.07x5.

The R2 for these data is 0.988. The table of coefficients is in Table 1.7, the analysis
of variance is in Table 1.8, and the diagnostics are in Table 1.9.
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Fig. 1.7 Normal plot, case 18 deleted, W ′ = 0.852.
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Fig. 1.8 Standardized residuals versus predicted values, case 18 deleted.
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Table 1.7 Table of Coefficients: Cases 3 and 18 deleted.

Predictor β̂ SE(β̂ ) t P
Constant 29.758 5.532 5.38 0.000
x1 −1.6985 0.4660 −3.64 0.003
x2 0.08512 0.02079 4.09 0.001
x3 0.66617 0.03824 17.42 0.000
x4 1.1840 0.1643 7.21 0.000
x5 −4.0668 0.8487 −4.79 0.000

Table 1.8 Analysis of Variance: Cases 3 and 18 deleted.

Source df SS MS F P
Regression 5 621.89 124.38 203.20 0.000
Error 12 7.34 0.61
Total 17 629.23

Deleting the outlier, case 3, again causes a drop in the MSE, from 1.78 with only
case 18 deleted to 0.61 with both cases 3 and 18 deleted. This creates a correspond-
ing drop in the standard errors for all regression coefficients and makes them all
appear to be more significant. The actual estimates of the regression coefficients do
not change much from Table 1.4 to Table 1.7. The largest changes seem to be in the
constant and in the coefficient for x5.

From Table 1.9, the leverages, t statistics, and Cook’s distances seem reasonable.
Figures 1.9 and 1.10 contain a normal plot and a plot of standardized residuals ver-
sus predicted values. Both plots look good. In particular, the suggestion of lack of
fit in Figure 1.8 appears to be unfounded. Once again, Figure 1.10 could be misin-
terpreted as a horn shape but the ‘horn’ is due to the distribution of the predicted
values.

Ultimately, someone must decide whether or not to delete unusual cases based
on subject matter considerations. There is only moderate statistical evidence that
case 18 is unusual and case 3 does not look severely unusual unless one previously
deletes case 18. Are there subject matter reasons for these schools to be unusual?
Will the data be more or less representative of the appropriate population if these
data are deleted?

1.11 Final Comment

The maxim for unbalanced data, and regression data are typically unbalanced, is that
if you change anything, you change everything. If you change a predictor variable
in a model, you change the meaning of the regression coefficients (to the extent that
they have any meaning), you change the estimates, the fitted values, the residuals,
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Table 1.9 Diagnostics: Cases 3 and 18 deleted.

Case y ŷ Leverage r t C
1 37.01 36.83 0.485 0.33 0.31 0.017
2 26.51 26.62 0.491 −0.20 −0.19 0.007
3 40.78 0.156
4 40.70 41.43 0.196 −1.04 −1.05 0.044
5 37.10 36.35 0.180 1.07 1.07 0.041
6 33.90 33.67 0.504 0.42 0.41 0.030
7 41.80 42.11 0.261 −0.46 −0.44 0.012
8 33.40 33.69 0.108 −0.39 −0.38 0.003
9 41.01 41.56 0.311 −0.84 −0.83 0.053

10 37.20 36.94 0.621 0.54 0.52 0.078
11 23.30 23.66 0.381 −0.58 −0.57 0.035
12 35.20 34.24 0.440 1.65 1.79 0.356
13 34.90 35.81 0.370 −1.47 −1.56 0.212
14 33.10 32.66 0.145 0.60 0.59 0.010
15 22.70 22.44 0.467 0.46 0.44 0.031
16 39.70 38.72 0.171 1.38 1.44 0.066
17 31.80 33.02 0.298 −1.85 −2.10 0.243
18 24.50 0.486
19 43.10 42.22 0.332 1.37 1.43 0.155
20 41.01 41.49 0.239 −0.70 −0.68 0.025
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Fig. 1.9 Normal plot, cases 3 and 18 deleted, W ′ = 0.979.
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Fig. 1.10 Standardized residuals versus predicted values, cases 3 and 18 deleted.

the leverages: everything! If you drop out a data point, you change the meaning of
the regression coefficients, the estimates, the fitted values, the residuals, the lever-
ages: everything! If you change anything, you change everything. There are a few
special cases where this is not true, but they are only special cases.

1.12 Exercises

EXERCISE 1.12.1. Younger (1979, p. 533) presents data from a sample of 12
discount department stores that advertise on television, radio, and in the newspapers.
The variables x1, x2, and x3 represent the respective amounts of money spent on
these advertising activities during a certain month while y gives the store’s revenues
during that month. The data are given in Table 1.10. Complete the following tasks
using multiple regression.

(a) Give the theoretical model along with the relevant assumptions.
(b) Give the fitted model, i.e., repeat (a) substituting the estimates for the unknown

parameters.
(c) Test H0 : β2 = 0 versus HA : β2 ̸= 0 at α = 0.05.
(d) Test the hypothesis H0 : β1 = β2 = β3 = 0.
(e) Give a 99% confidence interval for β2.
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(f) Test whether the reduced model yi = β0 +β1xi1 + εi is an adequate explanation
of the data as compared to the full model.

(g) Test whether the reduced model yi = β0 +β1xi1 + εi is an adequate explanation
of the data as compared to the model yi = β0 +β1xi1 +β2xi2 + εi.

(h) Write down the ANOVA table for the ‘full’ model used in (g).
(i) Construct an added variable plot for adding variable x3 to a model that already

contains variables x1 and x2. Interpret the plot.
(j) Compute the sample partial correlation ry3·12. What does this value tell you?

Table 1.10 Younger’s advertising data.

Obs. y x1 x2 x3 Obs. y x1 x2 x3
1 84 13 5 2 7 34 12 7 2
2 84 13 7 1 8 30 10 3 2
3 80 8 6 3 9 54 8 5 2
4 50 9 5 3 10 40 10 5 3
5 20 9 3 1 11 57 5 6 2
6 68 13 5 1 12 46 5 7 2

EXERCISE 1.12.2. The information below relates y, a second measurement on
wood volume, to x1, a first measurement on wood volume, x2, the number of trees,
x3, the average age of trees, and x4, the average volume per tree. Note that x4 =
x1/x2. Some of the information has not been reported, so that you can figure it out
on your own.

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 23.45 14.90 0.122
x1 0.93209 0.08602 0.000
x2 0.4721 1.5554 0.126
x3 −0.4982 0.1520 0.002
x4 3.486 2.274 0.132

Analysis of Variance
Source df SS MS F P
Regression 4 887994 0.000
Error
Total 54 902773

Sequential
Source df SS
x1 1 883880
x2 1 183
x3 1 3237
x4 1 694
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(a) How many observations are in the data?
(b) What is R2 for this model?
(c) What is the mean squared error?
(d) Give a 95% confidence interval for β2.
(e) Test the null hypothesis β3 = 0 with α = 0.05.
(f) Test the null hypothesis β1 = 1 with α = 0.05.
(g) Give the F statistic for testing the null hypothesis β3 = 0.
(h) Give SSR(x3|x1,x2) and find SSR(x3|x1,x2,x4).
(i) Test the model with only variables x1 and x2 against the model with all of vari-

ables x1, x2, x3, and x4.
(j) Test the model with only variables x1 and x2 against the model with variables x1,

x2, and x3.
(k) Should the test in part (g) be the same as the test in part (j)? Why or why not?
(l) For estimating the point on the regression surface at (x1,x2,x3,x4)= (100,25,50,4),

the standard error of the estimate for the point on the surface is 2.62. Give the
estimated point on the surface, a 95% confidence interval for the point on the
surface, and a 95% prediction interval for a new point with these x values.

(m) Test the null hypothesis β1 = β2 = β3 = β4 = 0 with α = 0.05.

EXERCISE 1.12.3. Atkinson (1985) and Hader and Grandage (1958) have pre-
sented Prater’s data on gasoline. The variables are y, the percentage of gasoline
obtained from crude oil; x1, the crude oil gravity oAPI; x2, crude oil vapor pressure
measured in lbs/in2; x3, the temperature, in oF, at which 10% of the crude oil is
vaporized; and x4, the temperature, in oF, at which all of the crude oil is vaporized.
The data are given in Table 1.3. Find a good model for predicting gasoline yield
from the other four variables.

Table 1.11 Prater’s gasoline–crude oil data.

y x1 x2 x3 x4 y x1 x2 x3 x4
6.9 38.4 6.1 220 235 24.8 32.2 5.2 236 360

14.4 40.3 4.8 231 307 26.0 38.4 6.1 220 365
7.4 40.0 6.1 217 212 34.9 40.3 4.8 231 395
8.5 31.8 0.2 316 365 18.2 40.0 6.1 217 272
8.0 40.8 3.5 210 218 23.2 32.2 2.4 284 424
2.8 41.3 1.8 267 235 18.0 31.8 0.2 316 428
5.0 38.1 1.2 274 285 13.1 40.8 3.5 210 273

12.2 50.8 8.6 190 205 16.1 41.3 1.8 267 358
10.0 32.2 5.2 236 267 32.1 38.1 1.2 274 444
15.2 38.4 6.1 220 300 34.7 50.8 8.6 190 345
26.8 40.3 4.8 231 367 31.7 32.2 5.2 236 402
14.0 32.2 2.4 284 351 33.6 38.4 6.1 220 410
14.7 31.8 0.2 316 379 30.4 40.0 6.1 217 340
6.4 41.3 1.8 267 275 26.6 40.8 3.5 210 347
17.6 38.1 1.2 274 365 27.8 41.3 1.8 267 416
22.3 50.8 8.6 190 275 45.7 50.8 8.6 190 407
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EXERCISE 1.12.4. Analyze the Chapman data of Example 1.9.1. Find a good
model for predicting weight from the other variables.

EXERCISE 1.12.5. Table 1.12 contains a subset of the pollution data analyzed by
McDonald and Schwing (1973). The data are from various years in the early 1960s.
They relate air pollution to mortality rates for various standard metropolitan statis-
tical areas in the United States. The dependent variable y is the total age-adjusted
mortality rate per 100,000 as computed for different metropolitan areas. The predic-
tor variables are, in order, mean annual precipitation in inches, mean January tem-
perature in degrees F, mean July temperature in degrees F, population per household,
median school years completed by those over 25, percent of housing units that are
sound and with all facilities, population per sq. mile in urbanized areas, percent non-
white population in urbanized areas, relative pollution potential of sulphur dioxide,
annual average of percent relative humidity at 1 pm. Find a good predictive model
for mortality.

Alternatively, you can obtain the complete data from the Internet statistical ser-
vice STATLIB by going to http://lib.stat.cmu.edu/datasets/ and
clicking on “pollution.” The data consist of 16 variables on 60 cases.

EXERCISE 1.12.6. Go to http://lib.stat.cmu.edu/datasets/ and
click on “bodyfat.” There are data for 15 variables along with a description of the
data.

(a) Using the body density measurements as a dependent variable, perform a multi-
ple regression using all of the other variables except body fat as predictor vari-
ables. What variables can be safely eliminated from the analysis? Discuss any
surprising or expected results in terms of the variables that seem to be most im-
portant.

(b) Using the body fat measurements as a dependent variable, perform a multiple
regression using all of the other variables except density as predictor variables.
What variables can be safely eliminated from the analysis? Discuss any surpris-
ing or expected results in terms of the variables that seem to be most important.
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Table 1.12 Pollution data.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y
36 27 71 3.34 11.4 81.5 3243 8.8 42.6 59 921.870
35 23 72 3.14 11.0 78.8 4281 3.5 50.7 57 997.875
44 29 74 3.21 9.8 81.6 4260 0.8 39.4 54 962.354
47 45 79 3.41 11.1 77.5 3125 27.1 50.2 56 982.291
43 35 77 3.44 9.6 84.6 6441 24.4 43.7 55 1071.289
53 45 80 3.45 10.2 66.8 3325 38.5 43.1 54 1030.380
43 30 74 3.23 12.1 83.9 4679 3.5 49.2 56 934.700
45 30 73 3.29 10.6 86.0 2140 5.3 40.4 56 899.529
36 24 70 3.31 10.5 83.2 6582 8.1 42.5 61 1001.902
36 27 72 3.36 10.7 79.3 4213 6.7 41.0 59 912.347
52 42 79 3.39 9.6 69.2 2302 22.2 41.3 56 1017.613
33 26 76 3.20 10.9 83.4 6122 16.3 44.9 58 1024.885
40 34 77 3.21 10.2 77.0 4101 13.0 45.7 57 970.467
35 28 71 3.29 11.1 86.3 3042 14.7 44.6 60 985.950
37 31 75 3.26 11.9 78.4 4259 13.1 49.6 58 958.839
35 46 85 3.22 11.8 79.9 1441 14.8 51.2 54 860.101
36 30 75 3.35 11.4 81.9 4029 12.4 44.0 58 936.234
15 30 73 3.15 12.2 84.2 4824 4.7 53.1 38 871.766
31 27 74 3.44 10.8 87.0 4834 15.8 43.5 59 959.221
30 24 72 3.53 10.8 79.5 3694 13.1 33.8 61 941.181
31 45 85 3.22 11.4 80.7 1844 11.5 48.1 53 891.708
31 24 72 3.37 10.9 82.8 3226 5.1 45.2 61 871.338
42 40 77 3.45 10.4 71.8 2269 22.7 41.4 53 971.122
43 27 72 3.25 11.5 87.1 2909 7.2 51.6 56 887.466
46 55 84 3.35 11.4 79.7 2647 21.0 46.9 59 952.529
39 29 75 3.23 11.4 78.6 4412 15.6 46.6 60 968.665
35 31 81 3.10 12.0 78.3 3262 12.6 48.6 55 919.729
43 32 74 3.38 9.5 79.2 3214 2.9 43.7 54 844.053
11 53 68 2.99 12.1 90.6 4700 7.8 48.9 47 861.833
30 35 71 3.37 9.9 77.4 4474 13.1 42.6 57 989.265
50 42 82 3.49 10.4 72.5 3497 36.7 43.3 59 1006.490
60 67 82 2.98 11.5 88.6 4657 13.5 47.3 60 861.439
30 20 69 3.26 11.1 85.4 2934 5.8 44.0 64 929.150
25 12 73 3.28 12.1 83.1 2095 2.0 51.9 58 857.622
45 40 80 3.32 10.1 70.3 2682 21.0 46.1 56 961.009
46 30 72 3.16 11.3 83.2 3327 8.8 45.3 58 923.234
54 54 81 3.36 9.7 72.8 3172 31.4 45.5 62 1113.156
42 33 77 3.03 10.7 83.5 7462 11.3 48.7 58 994.648
42 32 76 3.32 10.5 87.5 6092 17.5 45.3 54 1015.023
36 29 72 3.32 10.6 77.6 3437 8.1 45.5 56 991.290
37 38 67 2.99 12.0 81.5 3387 3.6 50.3 73 893.991
42 29 72 3.19 10.1 79.5 3508 2.2 38.8 56 938.500
41 33 77 3.08 9.6 79.9 4843 2.7 38.6 54 946.185
44 39 78 3.32 11.0 79.9 3768 28.6 49.5 53 1025.502
32 25 72 3.21 11.1 82.5 4355 5.0 46.4 60 874.281





Chapter 2
Matrix Formulation

Abstract In this chapter we use matrices to write regression models. Properties of
matrices are reviewed in Appendix A. The economy of notation achieved through
using matrices allows us to arrive at some interesting new insights and to derive
several of the important properties of regression analysis.

2.1 Random Vectors

In this section we discuss vectors and matrices that are made up of random variables
rather than just numbers. For simplicity, we focus our discussion on vectors that
contain 3 rows, but the results are completely general.

Let y1, y2, and y3 be random variables. From these, we can construct a 3× 1
random vector, say

Y =

y1
y2
y3

 .
The expected value of the random vector is just the vector of expected values of the
random variables. For the random variables write E(yi) = µi, then

E(Y )≡

E(y1)
E(y2)
E(y3)

=

µ1
µ2
µ3

≡ µ.

In other words, expectation of a random vector is performed elementwise. In fact,
the expected value of any random matrix (a matrix consisting of random variables)
is the matrix made up of the expected values of the elements in the random matrix.
Thus if wi j, i = 1,2,3, j = 1,2 is a collection of random variables and we write

43
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W =

w11 w12
w21 w22
w31 w33

 ,
then

E(W )≡

E(w11) E(w12)
E(w21) E(w22)
E(w31) E(w33)

 .
We also need a concept for random vectors that is analogous to the variance of

a random variable. This is the covariance matrix, sometimes called the dispersion
matrix, the variance matrix, or the variance-covariance matrix. The covariance ma-
trix is simply a matrix consisting of all the variances and covariances associated
with the vector Y . Write

Var(yi) = E(yi −µi)
2 ≡ σii

and
Cov(yi,y j) = E[(yi −µi)(y j −µ j)]≡ σi j.

Two subscripts are used on σii to indicate that it is the variance of yi rather than
writing Var(yi) = σ2

i .
The covariance matrix of our 3×1 vector Y is

Cov(Y ) =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 .
When Y is 3×1, the covariance matrix is 3×3. If Y were 20×1, Cov(Y ) would be
20×20. The covariance matrix is always symmetric because σi j = σ ji for any i, j.
The variances of the individual random variables lie on the diagonal that runs from
the top left to the bottom right. The covariances lie off the diagonal.

In general, if Y is an n×1 random vector and E(Y ) = µ , then Cov(Y ) = E[(Y −
µ)(Y − µ)′]. In other words, Cov(Y ) is the expected value of the random matrix
(Y −µ)(Y −µ)′.

Three simple rules about expectations and covariance matrices can take one a
long way in the theory of regression. The first two are matrix analogues of basic
results for linear combinations of random variables. In fact, to prove these matrix
results, one really only needs the random variable results. The third result is impor-
tant but a little more complicated to prove. All of these results are establishing in
PA.

Proposition 2.1.1. Let A be a fixed r×n matrix, let c be a fixed r×1 vector, and
let Y be an n×1 random vector with E(Y ) = µ and Cov(Y ) =V , then

1. E(AY + c) = A µ + c,
2. Cov(AY + c) = AVA′,
3. If r = n, then E(Y ′AY ) = tr(AV )+µ ′Aµ .
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2.2 Matrix Formulation

2.2.1 Simple linear regression in matrix form

The usual model for simple linear regression is

yi = β0 +β1xi + εi i = 1, . . . ,n , (1)

E(εi) = 0, Var(εi) = σ2, and Cov(εi,ε j) = 0 for i ̸= j. As vectors equation (1) can
be written as 

y1
y2
...

yn

=


β0 +β1x1 + ε1
β0 +β1x2 + ε2

...
β0 +β1xn + εn

 .
These two vectors are equal if and only if the corresponding elements are equal,
which occurs if and only if equation (1) holds.

We can also see by multiplying and adding the matrices on the right-hand side
below that 

y1
y2
...

yn

 =


1 x1
1 x2
...

...
1 xn

 [β0
β1

]
+


ε1
ε2
...

εn

 .
Yn×1 = Xn×2 β2×1 + en×1

This gives the simple linear regression model in the form of a general linear model
for which Y is an n×1 vector of observations on the dependent variable, X is an
n× p matrix of observed predictor variables that usually includes a column of ones
associated with fitting an intercept term (for simple linear regression p = 2), β is a
p×1 vector of unobservable regression parameters, and e is an unobservable n×1
vector of random error terms.

The model conditions on the εis translate into matrix terms as

E(e) = 0

where 0 is the n×1 matrix containing all zeros and

Cov(e) = σ
2I

where I is the n× n identity matrix. By definition, the covariance matrix Cov(e)
has the variances of the εis down the diagonal. The variance of each individual εi
is σ2, so all the diagonal elements of Cov(e) are σ2, just as in σ2I. The covariance
matrix Cov(e) has the covariances of distinct εis as its off-diagonal elements. The
covariances of distinct εis are all 0, so all the off-diagonal elements of Cov(e) are
zero, just as in σ2I.



46 2 Matrix Formulation

Table 2.1 Weights for various heights.

Ht. Wt. Ht. Wt.
65 120 63 110
65 140 63 135
65 130 63 120
65 135 72 170
66 150 72 185
66 135 72 160

EXAMPLE 2.2.1. Height and weight data are given in Table 2.1 for 12 individuals.
In matrix terms, the simple linear regression (SLR) model for regressing weights (y)
on heights (x) is 

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 65
1 65
1 65
1 65
1 66
1 66
1 63
1 63
1 63
1 72
1 72
1 72



[
β0
β1

]
+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

The observed dependent variable data for this example are

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



120
140
130
135
150
135
110
135
120
170
185
160



.

We could equally well rearrange the order of the observations to write
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y7
y8
y9
y1
y2
y3
y4
y5
y6
y10
y11
y12



=



1 63
1 63
1 63
1 65
1 65
1 65
1 65
1 66
1 66
1 72
1 72
1 72



[
β0
β1

]
+



ε7
ε8
ε9
ε1
ε2
ε3
ε4
ε5
ε6
ε10
ε11
ε12


in which the xi values are ordered from smallest to largest. 2

2.2.2 One-way ANOVA

A one-way analysis of variance (ANOVA) model is written

yi j = µi + εi j (2)

or
yi j = µ +αi + εi j (3)

for, say, i = 1, . . . ,a and j = 1, . . . ,Ni.

EXAMPLE 2.2.2. Let a = 3 and (N1,N2,N3) = (2,3,2). Model (2) is a regression
model and it is an exercise to write it in matrix form. The vector version of equation
(3) for these values is 

y11
y12
y21
y22
y23
y31
y32


=



µ +α1 + ε11
µ +α1 + ε12
µ +α2 + ε21
µ +α2 + ε22
µ +α2 + ε23
µ +α3 + ε31
µ +α3 + ε32


.

Model (3) holds for a = 3 and these Nis if and only if these two vectors are equal.
The vector on the right hand side can be obtained from multiplication and addition
so that
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y11
y12
y21
y22
y23
y31
y32


=



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1




µ

α1
α2
α3

 +



ε11
ε12
ε21
ε22
ε23
ε31
ε32


Y = X β + e

Note that the last three columns of X added together give the first column of X . That
causes the rank of this 7×4 matrix to be 3 which is less than the number of columns
p = 4, so this will not satisfy our forthcoming mathematical condition for being a
regression model. 2

2.2.3 The general linear model

The standard general linear model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I.

Y is an n×1 vector of observable random variables. X is an n× p matrix of known
constants. β is a p×1 vector of unknown (regression) parameters. e is an n×1 vec-
tor of unobservable random errors. It will typically be assumed that n ≥ p. Mathe-
matically, regression is any general linear model where the rank of X is p. (This was
not the case for model (3).) In a general linear model, the number of functionally
distinct mean parameters is the rank of X .

Using Proposition 2.1.1 and the fact that Xβ is a fixed vector, it follows that

E(Y ) = Xβ

because
E(Y ) = E(Xβ + e) = Xβ +E(e) = Xβ +0 = Xβ .

Moreover,
Cov(Y ) = σ

2I

because
Cov(Y ) = Cov(Xβ + e) = Cov(e) = σ

2I.

In particular, since we know X but we do not know β , all that E(Y ) = Xβ really tells
us is that E(Y )∈C(X). In particular, if we have two different models for the same Y
vector, say, Y = X1β1 +e1 and Y = X2β2 +e2, if we happen to have C(X1) =C(X2),
these two models are telling us the same thing about E(Y ) and are therefore referred
to as equivalent models. In particular, when using least squares estimates, two equiv-
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alent models give the same fitted values and thus the same residuals. This does not
necessarily happen when using estimates that are alternatives to least squares.

EXAMPLE 2.2.3. Multiple regression.
In non-matrix form, the multiple regression model is

yi = β0 +β1xi1 +β2xi2 + · · ·+βp−1xi,p−1 + εi, i = 1, . . . ,n , (4)

where
E(εi) = 0, Var(εi) = σ

2, Cov(εi,ε j) = 0, i ̸= j.

In matrix terms this can be written as
y1
y2
...

yn

 =


1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
...

. . .
...

1 xn1 xn2 · · · xn,p−1




β0
β1
β2
...

βp−1

 +


ε1
ε2
...

εn

 .
Yn×1 = Xn×p βp×1 + en×1

Multiplying and adding the right-hand side gives
y1
y2
...

yn

=


β0 +β1x11 +β2x12 + · · ·+βp−1x1,p−1 + ε1
β0 +β1x21 +β2x22 + · · ·+βp−1x2,p−1 + ε2

...
β0 +β1xn1 +β2xn2 + · · ·+βp−1xn,p−1 + εn

 ,
which holds if and only if (4) holds. The conditions on the εis translate into

E(e) = 0,

where 0 is the n×1 matrix consisting of all zeros, and

Cov(e) = σ
2I,

where I is the n×n identity matrix. 2

EXAMPLE 2.2.4. In Example 2.2.1 we illustrated the matrix form of a SLR using
data on heights and weights. We now illustrate some of the models from Chapter 3
applied to these data.

A cubic model
yi = β0 +β1xi +β2x2

i +β3x3
i + εi (5)

is
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y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 65 652 653

1 65 652 653

1 65 652 653

1 65 652 653

1 66 662 663

1 66 662 663

1 63 632 633

1 63 632 633

1 63 632 633

1 72 722 723

1 72 722 723

1 72 722 723




β0
β1
β2
β3
β4

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

Some of the numbers in X are getting quite large, i.e., 653 = 274,625. The model
has better numerical properties if we compute x̄· = 69.41666̄ and replace model (5)
with the equivalent model

yi = γ0 + γ1(xi − x̄·)+ γ2(xi − x̄·)2 +β3(xi − x̄·)3 + εi

and its matrix form

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (66− x̄·) (66− x̄·)2 (66− x̄·)3

1 (66− x̄·) (66− x̄·)2 (66− x̄·)3

1 (63− x̄·) (63− x̄·)2 (63− x̄·)3

1 (63− x̄·) (63− x̄·)2 (63− x̄·)3

1 (63− x̄·) (63− x̄·)2 (63− x̄·)3

1 (72− x̄·) (72− x̄·)2 (72− x̄·)3

1 (72− x̄·) (72− x̄·)2 (72− x̄·)3

1 (72− x̄·) (72− x̄·)2 (72− x̄·)3




γ0
γ1
γ2
β3

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

This third-degree polynomial is the largest polynomial that we can fit to these data.
Two points determine a line, three points determine a quadratic, and with only four
district x values in the data, we cannot fit a model greater than a cubic. Incidentally,
it is not a typo that β3 appears in the both versions of the model. Unlike the γ js and
their corresponding β js, β3 turns out to have the same meaning in both models.

For some models it is convenient to transform x into a variable that takes values
between 0 and 1. Define x̃ = (x−63)/9 so that

(x1, . . . ,x12) = (65,65,65,65,66,66,63,63,63,72,72,72)

transforms to

(x̃1, . . . , x̃12) = (2/9,2/9,2/9,2/9,1/3,1/3,0,0,0,1,1,1).
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A model based on cosines

yi = β0 +β1xi +β2 cos(π x̃i)+β3 cos(π2x̃i)+ εi

becomes 

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 65 cos(2π/9) cos(4π/9)
1 65 cos(2π/9) cos(4π/9)
1 65 cos(2π/9) cos(4π/9)
1 65 cos(2π/9) cos(4π/9)
1 66 cos(π/3) cos(2π/3)
1 66 cos(π/3) cos(2π/3)
1 63 cos(0) cos(0)
1 63 cos(0) cos(0)
1 63 cos(0) cos(0)
1 72 cos(π) cos(2π)
1 72 cos(π) cos(2π)
1 72 cos(π) cos(2π)




β0
β1
β2
β3

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

A Haar wavelet model involves indicator functions for sets. The indicator func-
tion for a set A is IA(u) where IA(u) = 1 if u ∈ A and IA(u) = 0 if u ̸∈ A. A Haar
wavelet model is

yi = β0 +β1xi +β2I[0,.50)(x̃i)+β3I[.5,1](x̃i)+ εi

and becomes 

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 65 1 0
1 65 1 0
1 65 1 0
1 65 1 0
1 66 1 0
1 66 1 0
1 63 1 0
1 63 1 0
1 63 1 0
1 72 0 1
1 72 0 1
1 72 0 1




β0
β1
β2
β3

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

Notice that the last two columns of the X matrix add up to a column of 1s, like the
first column. This causes the rank of the 12×4 model matrix X to be only 3, so the
model is not a regression model. Dropping either of the last two columns (or the first
column) does not change the model in any meaningful way but makes the model a
regression.

Another thing we could do is fit one SLR model to the heights below 65.5 and a
different SLR to heights above 65.5. The corresponding matrix model can be written
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y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
0 0 1 66
0 0 1 66
1 63 0 0
1 63 0 0
1 63 0 0
0 0 1 72
0 0 1 72
0 0 1 72




β1
β2
β3
β4

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

Here β1 and β2 are the intercept and slope for the heights below 65.5 whereas β3
and β4 are the intercept and slope for the heights above 65.5. Alternatively, we could
rewrite the model as

y7
y8
y9
y1
y2
y3
y4
y5
y6
y10
y11
y12



=



1 63 0 0
1 63 0 0
1 63 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
0 0 1 66
0 0 1 66
0 0 1 72
0 0 1 72
0 0 1 72




β1
β2
β3
β4

+



ε7
ε8
ε9
ε1
ε2
ε3
ε4
ε5
ε6
ε10
ε11
ε12



.

This makes it a bit clearer that we are fitting a SLR to the points with small x values
and a separate SLR to cases with large x values. The pattern of 0s in the X matrix
ensure that the small x values only involve the intercept and slope parameters β1 and
β2 for the line on the first partition set and that the large x values only involve the
intercept and slope parameters β3 and β4 for the line on the second partition set.

Fitting this model can also be accomplished by fitting the model
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y7
y8
y9
y1
y2
y3
y4
y5
y6
y10
y11
y12



=



1 63 0 0
1 63 0 0
1 63 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 66 1 66
1 66 1 66
1 72 1 72
1 72 1 72
1 72 1 72




β0
β1
γ0
γ1

+



ε7
ε8
ε9
ε1
ε2
ε3
ε4
ε5
ε6
ε10
ε11
ε12



.

Here we have changed the first two columns to make them agree with the SLR of
Example 2.2.1. However, notice that if we subtract the third column from the first
column we get the first column of the previous version. Similarly, if we subtract
the fourth column from the second column we get the second column of the previ-
ous version. This model has intercept and slope parameters β0 and β1 for the first
partition and intercept and slope parameters (β0 + γ0) and (β1 + γ1) for the second
partition. Thus γ0 and γ1 are the change in intercept and slope when going from the
first partition to the second.

Another equivalent model makes an adjustment in the predictor variable based
on the splitting point 65.5.

y7
y8
y9
y1
y2
y3
y4
y5
y6
y10
y11
y12



=



1 63 0 0
1 63 0 0
1 63 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 66 1 66−65.5
1 66 1 66−65.5
1 72 1 72−65.5
1 72 1 72−65.5
1 72 1 72−65.5




β0
β1
γ0
γ1

+



ε7
ε8
ε9
ε1
ε2
ε3
ε4
ε5
ε6
ε10
ε11
ε12



.

It is not hard to see that this has the same column space as the previous model. The
reason for illustrating this model is that dropping the intercept adjustment for large
values gives the reduced model
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y7
y8
y9
y1
y2
y3
y4
y5
y6
y10
y11
y12



=



1 63 0
1 63 0
1 63 0
1 65 0
1 65 0
1 65 0
1 65 0
1 66 66−65.5
1 66 66−65.5
1 72 72−65.5
1 72 72−65.5
1 72 72−65.5



β0
β1
γ1

+



ε7
ε8
ε9
ε1
ε2
ε3
ε4
ε5
ε6
ε10
ε11
ε12



,

which turns out to be the linear spline model with a knot a 65.5. In other words, this
model forces the two lines to meet one another at the height value 65.5.

Because of the particular structure of these data with 12 observations but only
four distinct values of x, except for the Haar wavelet and linear spline models, all of
these models are equivalent to one another and all of them are equivalent to a model
with the one-way ANOVA regression matrix formulation

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12



=



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1




β0
β1
β2
β3

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12



.

The models are equivalent in that they all give the same column spaces and therefore
the same least squares fitted values, residuals, and degrees of freedom for error. 2

2.3 Least Squares Estimation

The regression estimates given by standard computer programs are least squares
estimates. For simple linear regression, the least squares estimates are the values of
β0 and β1 that minimize

n

∑
i=1

(yi −β0 −β1xi)
2 . (1)
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For multiple regression, the least squares estimates of the β js minimize

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2 .

In matrix terms these can both be written as minimizing

(Y −Xβ )′(Y −Xβ ). (2)

The form in (2) is just the sum of the squares of the elements in the vector (Y −Xβ ).
We now give the general form for the least squares estimate of β in regression

problems.

Proposition 2.3.1. If r(X) = p, then β̂ = (X ′X)−1 X ′Y is the least squares esti-
mate of β .

PROOF: Note that (X ′X)−1 exists only because in a regression problem the rank
of X is p so that X ′X is a p× p matrix of rank p and hence invertible. (Note that X ′X
is also symmetric.) The proof stems from rewriting the function to be minimized.

(Y −Xβ )′ (Y −Xβ ) =
(

Y −X β̂ +X β̂ −Xβ

)′(
Y −X β̂ +X β̂ −Xβ

)
(3)

=
(

Y −X β̂

)′(
Y −X β̂

)
+
(

Y −X β̂

)′(
X β̂ −Xβ

)
+
(

X β̂ −Xβ

)′(
Y −X β̂

)
+
(

X β̂ −Xβ

)′(
X β̂ −Xβ

)
.

Consider either one of the two cross-product terms from the previous expression,

say,
(

X β̂ −Xβ

)′(
Y −X β̂

)
. Using the definition of β̂ given in the proposition,

(
X β̂ −Xβ

)′(
Y −X β̂

)
=
[
X
(

β̂ −β

)]′(
Y −X β̂

)
=
(

β̂ −β

)′
X ′
(

Y −X
(
X ′X

)−1 X ′Y
)

=
(

β̂ −β

)′
X ′
(

I −X
(
X ′X

)−1 X ′
)

Y

but
X ′
(

I −X
(
X ′X

)−1 X ′
)
= X ′−

(
X ′X

)(
X ′X

)−1 X ′ = X ′−X ′ = 0.

Thus (
X β̂ −Xβ

)′(
Y −X β̂

)
= 0

and similarly (
Y −X β̂

)′(
X β̂ −Xβ

)
= 0.

Eliminating the two cross-product terms in (3) gives
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(Y −Xβ )′ (Y −Xβ ) =
(

Y −X β̂

)′(
Y −X β̂

)
+
(

X β̂ −Xβ

)′(
X β̂ −Xβ

)
.

This form is easily minimized. The first of the terms on the right-hand side does
not depend on β , so the β that minimizes (Y −Xβ )′ (Y −Xβ ) is the β that mini-

mizes the second term
(

X β̂ −Xβ

)′(
X β̂ −Xβ

)
. The second term is non-negative

because it is the sum of squares of the elements in the vector X β̂ −Xβ and it is
minimized by making it zero. This is accomplished by choosing β = β̂ . 2

EXAMPLE 2.3.2. Simple linear regression.
We now show that Proposition 2.3.1 gives the usual algebraic estimates for simple
linear regression. Assume the model

yi = β0 +β1xi + εi i = 1, . . . ,n.

and recall that

β̂1 =
∑

n
i=1 (xi − x̄·)yi

∑
n
i=1 (xi − x̄·)

2 =
∑

n
i=1 (xi − x̄·)(yi − ȳ·)

∑
n
i=1 (xi − x̄·)

2 =
sxy

s2
x
=

(∑n
i=1 xiyi)−nx̄·ȳ·
(n−1)s2

x

with
β̂0 = ȳ·− β̂1x̄· .

Now write

X =


1 x1
1 x2
...

...
1 xn


so that

X ′X =

[
n ∑

n
i=1 xi

∑
n
i=1 xi ∑

n
i=1 x2

i

]
.

Inverting this matrix gives

(
X ′X

)−1
=

1

n∑
n
i=1 x2

i − (∑n
i=1 xi)

2

[
∑

n
i=1 x2

i −∑
n
i=1 xi

−∑
n
i=1 xi n

]
.

The denominator in this term can be simplified by observing that

n
n

∑
i=1

x2
i −

(
n

∑
i=1

xi

)2

= n

(
n

∑
i=1

x2
i −nx̄2

·

)
= n

n

∑
i=1

(xi − x̄·)
2 .

Note also that

X ′Y =

[
∑

n
i=1 yi

∑
n
i=1 xiyi

]
.

Finally, we get
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β̂ =
(
X ′X

)−1 X ′Y

=
1

n∑
n
i=1 (xi − x̄·)

2

[
∑

n
i=1 x2

i −∑
n
i=1 xi

−∑
n
i=1 xi n

][
∑

n
i=1 yi

∑
n
i=1 xiyi

]

=
1

n∑
n
i=1 (xi − x̄·)

2

[
∑

n
i=1 x2

i ∑
n
i=1 yi −∑

n
i=1 xi ∑

n
i=1 xiyi

−∑
n
i=1 xi ∑

n
i=1 yi +n∑

n
i=1 xiyi

]

=
1

∑
n
i=1 (xi − x̄·)

2

[
ȳ· ∑n

i=1 x2
i − x̄· ∑n

i=1 xiyi
(∑n

i=1 xiyi)−nx̄·ȳ·

]

=
1

∑
n
i=1 (xi − x̄·)

2

[
ȳ· ∑n

i=1 x2
i −nx̄2

· ȳ·−
{

x̄· (∑n
i=1 xiyi)−

(
nx̄2

· ȳ·
)}

∑
n
i=1(xi − x̄·)(yi − ȳ·)

]

=
1

∑
n
i=1 (xi − x̄·)

2

[
ȳ·
(
∑

n
i=1 x2

i −nx̄2
·
)
− x̄· {∑

n
i=1 xiyi −nx̄·ȳ·}

β̂1 ∑
n
i=1 (xi − x̄·)

2

]
=

1

∑
n
i=1 (xi − x̄·)

2

[
ȳ· ∑n

i=1 (xi − x̄·)
2 − x̄· {∑

n
i=1 (xi − x̄·)(yi − ȳ·)}

β̂1 ∑
n
i=1 (xi − x̄·)

2

]
=

[
ȳ·− β̂1x̄·

β̂1

]
=

[
β̂0
β̂1

]
.

The alternative regression model

yi = β∗0 +β1 (xi − x̄·)+ εi i = 1, . . . ,n

is easier to work with. Write the model in matrix form as

Y = Zβ∗+ e

where

Z =


1 (x1 − x̄·)
1 (x2 − x̄·)
...

...
1 (xn − x̄·)


and

β∗ =

[
β∗0
β1

]
.

We need to compute β̂∗ = (Z′Z)−1 Z′Y . Observe that

Z′Z =

[
n 0
0 ∑

n
i=1 (xi − x̄·)

2

]
,

(
Z′Z
)−1

=

[ 1
n 0

0 1
/

∑
n
i=1 (xi − x̄·)

2

]
,
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Z′Y =

[
∑

n
i=1 yi

∑
n
i=1 (xi − x̄·)yi

]
,

and

β̂∗ =
(
Z′Z
)−1 Z′Y =

[
ȳ·

∑
n
i=1 (xi − x̄·)yi

/
∑

n
i=1 (xi − x̄·)

2

]
=

[
β̂∗0
β̂1

]
.

These are the usual estimates. 2

Recall that least squares estimates have a number of other properties, for proofs
cf. e.g. PA. If the errors are independent with mean zero, constant variance, and are
normally distributed, the least squares estimates are maximum likelihood estimates
and minimum variance unbiased estimates. If the errors are merely uncorrelated
with mean zero and constant variance, the least squares estimates are best (minimum
variance) linear unbiased estimates.

In multiple regression, simple algebraic expressions for the parameter estimates
are not possible. The only nice equations for the estimates are the matrix equations.
Applying Proposition 2.1.1, we can find the expected value and covariance matrix
of the least squares estimate β̂ . In particular, we show that β̂ is an unbiased estimate
of β by showing

E
(

β̂

)
= E

((
X ′X

)−1 X ′Y
)
=
(
X ′X

)−1 X ′E(Y ) =
(
X ′X

)−1 X ′Xβ = β .

To find variances and standard errors we need Cov
(

β̂

)
. In particular, recall that the

inverse of a symmetric matrix is symmetric and that X ′X is symmetric.

Cov
(

β̂

)
= Cov

[(
X ′X

)−1 X ′Y
]

=
[(

X ′X
)−1 X ′

]
Cov(Y )

[(
X ′X

)−1 X ′
]′

=
[(

X ′X
)−1 X ′

]
Cov(Y )X

[(
X ′X

)−1
]′

=
(
X ′X

)−1 X ′Cov(Y )X
(
X ′X

)−1

=
(
X ′X

)−1 X ′ (
σ

2I
)

X
(
X ′X

)−1

= σ
2 (X ′X

)−1 X ′X
(
X ′X

)−1

= σ
2 (X ′X

)−1
.

EXAMPLE 2.3.2 CONTINUED. For simple linear regression we only need to take
the inverse of a 2×2 matrix so the covariance matrix becomes
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Cov
(

β̂

)
= σ

2 (X ′X
)−1

= σ
2 1

n∑
n
i=1 (xi − x̄·)

2

[
∑

n
i=1 x2

i −∑
n
i=1 xi

−∑
n
i=1 xi n

]
= σ

2 1

n∑
n
i=1 (xi − x̄·)

2

[
∑

n
i=1 x2

i −nx̄2
· +nx̄2

· −nx̄·
−nx̄· n

]
= σ

2 1

n∑
n
i=1 (xi − x̄·)

2

[
∑

n
i=1 (xi − x̄·)

2 +nx̄2
· −nx̄·

−nx̄· n

]

= σ
2

 1
n +

x̄2
·

∑
n
i=1(xi−x̄·)2

−x̄·
∑

n
i=1(xi−x̄·)2

−x̄·
∑

n
i=1(xi−x̄·)2

1
∑

n
i=1(xi−x̄·)2

 .
2

In vector/matrix terms the least squares fitted (predicted) values are

Ŷ ≡ X β̂ = MY,

where we define the perpendicular projection operator (ppo) onto C(X) as

M = X
(
X ′X

)−1 X ′.

Note that M is both symmetric (M = M′) and idempotent (MM = M). The residuals
are

ê ≡ Y − Ŷ = Y −X β̂ = (I −M)Y.

Proposition 2.1.1 leads to

E(Ŷ ) = Xβ ; Cov(Ŷ ) = σ
2M

and
E(ê) = 0; Cov(ê) = σ

2(I −M).

For example,

Cov(ê) = Cov([I −M]Y )

= [I −M]Cov(Y )[I −M]′

= [I −M]σ2I[I −M]′

= σ
2 (I −M−M′+MM′)

= σ
2 (I −M) .

The last equality follows because M is symmetric and idempotent.
The sum of squares for error is just the sum of the squared residuals, so

SSE = ê′ê.
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Proposition 2.1.1 part 3 then leads to the result

E(MSE) = σ
2

because, after recalling that tr(AB) = tr(BA), tr(A+B) = tr(A)+ tr(B), and noting
that

tr(M) = tr
[
X
(
X ′X

)−1 X ′
]
= tr

[
X ′X

(
X ′X

)−1
]
= tr [Ip] = p,

we see that

E(MSE) =
1

n− p
E(ê′ê) =

1
n− p

{
tr[σ2(I −M)]+0

}
= σ

2 n− p
n− p

= σ
2.

2.4 Inference

We begin by examining the analysis of variance table for the regression model
(2.2.4). We then discuss tests, confidence intervals, and prediction intervals.

There are two frequently used forms of the ANOVA table:

Source df SS MS

β0 1 nȳ2
· ≡C nȳ2

·
Regression p−1 β̂ ′X ′X β̂ −C SSReg/(p−1)
Error n− p Y ′Y −C−SSReg SSE/(n− p)
Total n Y ′Y

and the more often used form
Source df SS MS

Regression p−1 β̂ ′X ′X β̂ −C SSReg/(p−1)
Error n− p Y ′Y −C−SSReg SSE/(n− p)
Total n−1 Y ′Y −C

Note that Y ′Y = ∑
n
i=1 y2

i , C = nȳ2
· = (∑n

i=1 yi)
2 /n, and β̂ ′X ′X β̂ = β̂ ′X ′Y = Y ′MY .

The difference between the two tables is that the first includes a line for the intercept
or grand mean while in the second the total has been corrected for the grand mean.

The coefficient of determination can be computed as

R2 =
SSReg

Y ′Y −C
.

This is the ratio of the variability explained by the predictor variables to the total
variability of the data. Note that (Y ′Y −C)/(n−1) = s2

y , the sample variance of the
ys without adjusting for any structure except the existence of a possibly nonzero
mean.

EXAMPLE 2.4.1. Simple linear Regression.
For simple linear regression, we know that
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SSReg = β̂
2
1

n

∑
i=1

(xi − x̄·)
2 = β̂1

n

∑
i=1

(xi − x̄·)
2

β̂1.

We will examine the alternative model

yi = β∗0 +β1 (xi − x̄·)+ εi,

which we denote in matrix terms as Y = Zβ∗+e. Note that C = nβ̂ 2
∗0, so the general

form for SSReg reduces to the simple linear regression form because

SSReg = β̂
′
∗Z′Zβ̂∗−C

=

[
β̂∗0
β̂1

]′ [n 0
0 ∑

n
i=1 (xi − x̄·)

2

][
β̂∗0
β̂1

]
−C

= β̂
2
1

n

∑
i=1

(xi − x̄·)
2 .

The same result can be obtained from β̂ ′X ′X β̂ −C but the algebra is more tedious.
2

To obtain tests and confidence regions we need to make additional distributional
assumptions. In particular, we assume that the yis have independent normal distri-
butions. Equivalently, we take

ε1, . . . ,εn indep. N(0,σ2).

To test the hypothesis

H0 : β1 = β2 = · · ·= βp−1 = 0,

use the analysis of variance table test statistic

F =
MSReg
MSE

.

Under H0,
F ∼ F(p−1,n− p).

We can also perform a variety of t tests for individual regression parameters βk.
The procedures fit into a general technique based on identifying 1) the parameter, 2)
the estimate, 3) the standard error of the estimate, and 4) the distribution of (Est −
Par)/SE(Est), cf. ANREG-II, Chapter 3. The parameter of interest is βk. Having
previously established that

E


β̂0
β̂1
...

β̂p−1

=


β0
β1
...

βp−1

 ,
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it follows that for any k = 0, . . . , p−1,

E
(

β̂k

)
= βk.

This shows that β̂k is an unbiased estimate of βk. Before obtaining the standard
error of β̂k, it is necessary to identify its variance. The covariance matrix of β̂ is
σ2 (X ′X)−1, so the variance of β̂k is the (k+1)st diagonal element of σ2 (X ′X)−1.
The (k+ 1)st diagonal element is appropriate because the first diagonal element is
the variance of β̂0 not β̂1. If we let ak be the (k+1)st diagonal element of (X ′X)−1

and estimate σ2 with MSE, we get a standard error for β̂k of

SE
(

β̂k

)
=
√

MSE
√

ak.

Under normal errors, the appropriate reference distribution is

β̂k −βk

SE(β̂k)
∼ t(n− p).

Standard techniques now provide tests and confidence intervals. For example, a 95%
confidence interval for βk has endpoints

β̂k ± t(.975,n− p)SE(β̂k)

where t(.975,n− p) is the 97.5th percentile of a t distribution with n− p degrees of
freedom.

A (1−α)100% simultaneous confidence region for β0,β1, . . . ,βp−1 consists of
all the β vectors that satisfy(

β̂ −β

)′
X ′X

(
β̂ −β

)/
p

MSE
≤ F(1−α, p,n− p).

This region also determines joint (1−α)100% confidence intervals for the individ-
ual βks with limits

β̂k ±
√

pF(1−α, p,n− p)SE(β̂k).

These intervals are an application of Scheffé’s method of multiple comparisons,
cf. Chapter 6.

We can also use the Bonferroni method to obtain joint (1−α)100% confidence
intervals with limits

β̂k ± t
(

1− α

2p
,n− p

)
SE(β̂k).

Finally, we consider estimation of the point on the surface that corresponds to a
given set of predictor variables and the prediction of a new observation with a given
set of predictor variables. Let the predictor variables be x1,x2, . . . ,xp−1. Combine
these into the row vector
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x′ = (1,x1,x2, . . . ,xp−1) .

The point on the surface that we are trying to estimate is the parameter x′β = β0 +

∑
p−1
j=1 β jx j. The least squares estimate is x′β̂ , which can be thought of as a 1× 1

matrix. The variance of the estimate is

Var
(

x′β̂
)
= Cov

(
x′β̂
)
= x′Cov

(
β̂

)
x = σ

2x′
(
X ′X

)−1 x,

so the standard error is

SE
(

x′β̂
)
=
√

MSE
√

x′ (X ′X)−1 x ≡ SE(Sur f ace).

This is the standard error of the estimated regression surface. The appropriate refer-
ence distribution is

x′β̂ − x′β

SE
(

x′β̂
) ∼ t(n− p)

and a (1−α)100% confidence interval has endpoints

x′β̂ ± t
(

1− α

2
,n− p

)
SE(x′β̂ ).

When predicting a new observation, the point prediction is just the estimate of the
point on the surface but the standard error must incorporate the additional variability
associated with a new observation. The original observations were assumed to be
independent with variance σ2. It is reasonable to assume that a new observation is
independent of the previous observations and has the same variance. Thus, in the
prediction we have to account for the variance of the new observation, which is
σ2, plus the variance of the estimate x′β̂ , which is σ2 x′ (X ′X)−1 x. This leads to a
variance for the prediction of σ2 +σ2 x′ (X ′X)−1 x and a standard error of√

MSE +MSE x′ (X ′X)−1 x =

√
MSE

[
1+ x′ (X ′X)−1 x

]
≡ SE(Prediction).

Note that
SE(Prediction) =

√
MSE +[SE(Sur f ace)]2.

The (1−α)100% prediction interval has endpoints

x′β̂ ± t
(

1− α

2
,n− p

)√
MSE

[
1+ x′ (X ′X)−1 x

]
.

Results of this section constitute the theory behind most of the applications in
Sections 1.1, 1.2, and 1.3.
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2.5 Diagnostics

Let x′i = (1,xi1, . . . ,xi,p−1) be the ith row of X , then the ith fitted value is

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂p−1xi,p−1 = x′iβ̂

and the corresponding residual is

ε̂i = yi − ŷi = yi − x′iβ̂ .

As mentioned earlier, the vector of predicted (fitted) values is

Ŷ =

 ŷ1
...

ŷn

=

x′1β̂

...
x′nβ̂

= X β̂ .

The vector of residuals is

ê = Y − Ŷ

= Y −X β̂

= Y −X(X ′X)−1X ′Y

=
(
I −X(X ′X)−1X ′)Y

= (I −M)Y

where
M ≡ X(X ′X)−1X ′

is the perpendicular projection operator (matrix) onto C(X). M is the key item in the
analysis of the general linear model, cf. PA. Since M is symmetric (M = M′) and
idempotent (MM = M),

SSE =
n

∑
i=1

ε̂
2
i

= ê′ê

= [(I −M)Y ]′ [(I −M)Y ]

= Y ′(I −M′−M+M′M)Y

= Y ′(I −M)Y.

Another common way of writing SSE is

SSE =
[
Y −X β̂

]′ [
Y −X β̂

]
.
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EXERCISE 2.1 Use the form SSE =Y ′(I−M)Y and Proposition 2.1.1 part 3 to show
that E[Y ′(I−M)Y ] = (n− p)σ2 and E(MSE) = σ2. (This is an alternate proof for a
result at the end of Section 2.3.)

We can now define the standardized residuals. Recall that the covariance matrix
of the residual vector ê is Cov(ê) = σ2 (I −M) . Typically, the covariance matrix
is not diagonal, so the residuals are not uncorrelated. Nonetheless, the variance of
a particular residual ε̂i is σ2 times the ith diagonal element of (I − M). The ith
diagonal element of (I−M) is the ith diagonal element of I, 1, minus the ith diagonal
element of M, say, mii. Thus

Var(ε̂i) = σ
2(1−mii)

and the standard error of ε̂i is

SE(ε̂i) =
√

MSE(1−mii).

The ith standardized residual is defined as

ri ≡
ε̂i√

MSE(1−mii)
.

The leverage of the ith case is defined to be mii, the ith diagonal element of M.
Some people like to think of M as the ‘hat’ matrix because it transforms Y into Ŷ ,
i.e., Ŷ = X β̂ = MY . More common than the name ‘hat matrix’ is the consequent use
of the notation hi for the ith leverage, thus hi ≡ mii. In any case, the leverage can
be interpreted as a measure of how unusual x′i is relative to the other rows of the X
matrix, cf. PA.

PA also discusses the computation of standardized deleted residuals and Cook’s
distance.

2.6 Basic Notation and Concepts

It seems useful to review and consolidate in one place the basic notation and ideas
to be used for linear models (unless defined otherwise for particular purposes). Any-
thing that is not obvious is explained in PA.

A linear model has Y = Xβ + e where Y is an n× 1 vector of observable ran-
dom variables, X is an n× p matrix of known values, β is a p× 1 vector of fixed
but unknown coefficients, and e is an n× 1 vector of unobservable random errors.
For this to be a linear model we need E(e) = 0 so that E(Y ) = Xβ . A standard lin-
ear model assumes that an individual observation or error has variance σ2 and that
Cov(Y ) = Cov(e) = σ2I. The assumption that the observations have a multivariate
normal distribution is written Y ∼ N(Xβ ,σ2I).
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The column space of X is denoted C(X). Since E(Y ) = Xβ but we do not know
β , all we really know is that E(Y ) ∈C(X). In fact,

C(X)≡ {µ|µ = Xβ for some β}.

A partitioned linear model is written Y = Xβ +Zγ + e where Z is also a matrix
of known values and γ is also a vector of fixed, unknown coefficients. If Z has s
columns, write

X = [X1, . . . ,Xp] =

x′1
...

x′n

 ; Z = [Z1, . . . ,Zs] =

z′1
...

z′n

 .
For any vector v, ∥v∥2 ≡ v′v is the squared (Euclidean) length of v. The Euclidean

inner product between two vectors u and v is u′v. They are perpendicular (orthogo-
nal), written v ⊥ u, if v′u = 0.

A− denotes a generalized inverse of the matrix A, i.e., any matrix that satisfies
AA−A = A. If A−1 exists, it is the unique generalized inverse of A. r(A) denotes the
rank of A and tr(A) denotes its trace.

M =X(X ′X)−X ′ denotes the unique perpendicular projection operator (ppo) onto
the column space of X . (With tongue slightly in cheek) the Fundamental Theorem
of Least Squares Estimation is that in a linear model, β̂ is a least squares estimate if
and only if

X β̂ = MY.

The proof works pretty much the same as in Section 3 when r(X)< p except that you
have to use (X ′X)− instead of the inverse. In particular, least squares estimates have
the form β̂ = (X ′X)− X ′Y . Any one of the infinite number of generalized inverses
gives a perfectly good least squares estimate. For regression models wherein r(X) =
p, (X ′X)−1 always exists, so a generalized inverse is not needed and the unique
estimate that satisfies the fundamental theorem is β̂ = (X ′X)−1X ′Y .

M has the properties that M = M′ and MX = X . (These are easy to see when
(X ′X)−1 exists.) The property MX = X implies that MM = M, i.e., that M is idem-
potent. More generally, MA denotes the ppo onto C(A), so in particular M ≡ MX . If
C(X)⊂C(A), we can find a matrix B such that X = AB. Moreover, we can use this
fact to show that if C(X) =C(A), then M = MA.

C(A)⊥ denotes the orthogonal complement of C(A), i.e. all the vectors that are
orthogonal to C(A). If C(X)⊂C(A), C(X)⊥C(A) denotes the orthogonal complement
of C(X) with respect to C(A), i.e. all vectors in C(A) that are orthogonal to C(X).

An r×c matrix of 1s is denoted Jc
r with Jn ≡ J1

n and J ≡ Jn with similar notation
for matrices of 0s.

This is all common notation and, except for the use of M and J, it is pretty much
standard notation. (Some authors prefer P and 1.)
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2.7 Weighted Least Squares

Generalized least squares is a method for dealing with observations that have non-
constant variances and nonzero correlations. In this section, we deal with the sim-
plest form in which we assume zero correlations between observations.

Our standard regression model has

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I.

We now consider a model for data that do not all have the same variance. In this
model, we assume that the relative sizes of the variances are known but that the
variances themselves are unknown. In this simplest form of weighted regression, we
have a covariance structure that changes from Cov(e)=σ2I to Cov(e)=σ2D(w)−1.
Here D(w) is a diagonal matrix with known weights w = (w1, . . . ,wn)

′ along the
diagonal. The covariance matrix involves D(w)−1, which is just a diagonal matrix
having diagonal entries that are 1/w1, . . . ,1/wn. The variance of an observation yi
is σ2/wi. If wi is large relative to the other weights, the relative variance of yi is
small, so it contains more information than other observations and we should place
more weight on it. Conversely, if wi is relatively small, the variance of yi is large, so
it contains little information and we should place little weight on it. For all cases,
wi is a measure of how much relative weight should be placed on case i. Note that
the weights are relative, so we could multiply or divide them all by a constant and
obtain essentially the same analysis. Obviously, in standard regression the weights
are all taken to be 1.

In matrix form, our new model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2D(w)−1. (1)

In this model all the observations are uncorrelated because the covariance matrix
is diagonal. We do not know the variance of any observation because σ2 is un-
known. However, we do know the relative sizes of the variances because we know
the weights wi. It should be noted that when model (1) is used to make predictions,
it is necessary to specify weights for any future observations.

The analysis of the weighted regression model (1) is based on changing it into
a standard regression model. The trick is to create a new diagonal matrix that has
entries

√
wi. In a minor abuse of notation, we write this matrix as D(

√
w). We now

multiply model (1) by this matrix to obtain

D(
√

w)Y = D(
√

w)Xβ +D(
√

w)e. (2)

It is not difficult to see from Proposition 2.1.1 that

E
[
D(

√
w)e
]
= D(

√
w)E(e) = D(

√
w)0 = 0

and
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Cov
[
D(

√
w)e
]
= D(

√
w)Cov(e)D(

√
w)′ = D(

√
w)
[
σ

2D(w)−1]D(
√

w) = σ
2I.

Thus equation (2) defines a standard regression model. By Proposition 2.3.1, the
least squares regression estimates from model (2) are

β̂ =
{
[D(

√
w)X ]′[D(

√
w)X ]

}−1
[D(

√
w)X ]′[D(

√
w)Y ]

= [X ′D(w)X ]−1X ′D(w)Y.

The estimate of β given above is referred to as a weighted least squares estimate
because rather than minimizing [Y −Xβ ]′ [Y −Xβ ], the estimates are obtained by
minimizing

[Y −Xβ ]′ D(w) [Y −Xβ ] =
[
D(

√
w)Y −D(

√
w)Xβ

]′ [D(
√

w)Y −D(
√

w)Xβ
]
.

Thus the original minimization problem has been changed into a similar minimiza-
tion problem that incorporates the weights. The sum of squares for error from model
(2) is

SSE =
[
D(

√
w)Y −D(

√
w)X β̂

]′ [
D(

√
w)Y −D(

√
w)X β̂

]
=
[
Y −X β̂

]′
D(w)

[
Y −X β̂

]
.

The dfE are unchanged from a standard model and MSE is simply SSE divided by
dfE. Standard errors are found in much the same manner as usual except now

Cov
(

β̂

)
= σ

2[X ′D(w)X ]−1.

Because the D(w) matrix is diagonal, it is very simple to modify a computer
program for standard regression to allow the analysis of models like (1). Of course,
to make a prediction, a weight must now be specified for the new observation. Es-
sentially the same idea of rewriting model (1) as the standard regression model (2)
works even when D(w) is not a diagonal matrix, cf. PA, Sections 2.7 and 3.8).

2.8 Variance-Bias Tradeoff

For a standard linear model the least squares estimates are the best linear unbiased
estimates and for independent normal data they are the best unbiased estimates.
They are best in the sense of having smallest variances. However, it turns out that
you can often get better point estimates by incorporating a little bias. A little bit of
bias can sometimes eliminate a great deal of variance, making for an overall better
estimate.

Suppose the standard linear model
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Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I, (1)

is correct and consider fitting a reduced model

Y = X0γ + e, with C(X0)⊂C(X). (2)

Most often in regression analysis a reduced model is obtained by tossing out some of
the predictor variables in the full model. However, Section 1.9 introduced a variety
of other methods for obtaining interesting reduced models. If E(Y ) ̸= X0γ , using the
reduced linear model to estimate Xβ creates bias. In this section we examine how
even incorrect reduced models can improve estimation if the bias they introduce is
small relative to the variability in the model.

EXAMPLE 2.8.1. Consider fitting a linear model with an intercept and three pre-
dictors. I am going to fit the full model using ordinary least squares. You, however,
think that the regression coefficients for the second and third variable should be the
same and that they should be half of the coefficient for the first variable. You in-
corporate that into your model using the ideas of Section 1.9. If you are correct,
your fitted values will be twice as good as mine! But even if you are wrong, if you
are close to being correct, your fitted values will still be better than mine. We now
explore these claims in some generality. 2

Under the standard linear model (1), the best fitted values one could ever have
are Xβ but we don’t know β . For estimated fitted values, say, F(Y ), their quality
can be measured by looking at

E
{
[F(Y )−Xβ ]′[F(Y )−Xβ ]

}
.

For least squares estimates X β̂ = MY , using Proposition 2.1.1 part 3 gives

E
[
(MY −Xβ )′(MY −Xβ )

]
= E

[
(Y −Xβ )′M(Y −Xβ ]

]
= tr[Mσ

2I] = σ
2r(X).

Now consider the reduced model (2) with M0 the ppo onto C(X0). If we estimate
the fitted values from the reduced model, i.e. X0γ̂ = M0Y , and the reduced model is
true, i.e., Xβ = X0γ ,

E
[
(M0Y −Xβ )′(M0Y −Xβ )

]
= E

[
(Y −X0γ)′M0(Y −X0γ]

]
= tr[M0σ

2I] = σ
2r(X0).

If the reduced model is true, since r(X0)≤ r(X), we are better off using the reduced
model.

In Example 2.8.1, my fitting the full model with X = [J,X1,X2,X3] gives
E [(MY −Xβ )′(MY −Xβ )] = 4σ2. Your reduced model has β2 = β3 = 2β1,
so using ideas from Section 1.9 X0 = [J,2X1 + X2 + X3]. This leads to
E [(M0Y −Xβ )′(M0Y −Xβ )] = 2σ2, and the conclusion that your fitted values are
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twice as good as mine when your model is correct. (One could argue that it would
be more appropriate to look at the square roots, so

√
2 times better?)

What about the claim that you don’t have to be correct to do better than me, you
only have to be close to correct? You being correct is E(Y ) = X0γ . You will be close
to correct if the true E(Y ) is close to X0γ , i.e., if Xβ

.
= X0γ for some γ . In particular,

you will be close to correct if the true mean Xβ is close C(X0), which happens
if Xβ

.
= M0Xβ , i.e., if Xβ is close to its perpendicular projection onto C(X). In

general, because M0Y −Xβ = M0(Y −Xβ )− (I −M0)Xβ where M0(Y −Xβ ) ⊥
(I −M0)Xβ , PA shows

E∥M0Y −Xβ∥2 = E
[
(M0Y −Xβ )′(M0Y −Xβ )

]
= σ

2r(X0)+∥Xβ −M0Xβ∥2.

We have written the expected squared distance as a variance term that is the product
of the observation variance σ2 and the model size r(X0) plus a bias term that mea-
sures the squared distance of how far the reduced model is from being true. If the
reduced model is true, the bias is zero. But even when the reduced model is not true,
if a reduced model with r(X0) substantially smaller than r(X) is close to being true,
specifically if

∥Xβ −M0Xβ∥2 < σ
2[r(X)− r(X0)],

the fitted values of the reduced model will be better estimates than the original least
squares estimates.

In Example 2.8.1, if the squared distance between the truth, Xβ , and the expected
value of your reduced model estimate, M0Xβ , is less than 2σ2, you will do better
than me. Of course we cannot know how close the truth is to the reduced model ex-
pected value, but in Subsection 5.1.3 we will see that Mallow’s Cp statistic estimates
r(X0)+∥Xβ −M0Xβ∥2/σ2, so it gives us an idea about how much better (or worse)
a reduced model is doing than the full model. In the context of variable selection,
dropping predictor variables with regression coefficients close to zero should result
in improved fitted values because the reduced model without those predictors should
have M0Xβ

.
= Xβ .

Most biased estimation methods used in practice are immensely more compli-
cated than this discussion. Variable selection methods are perhaps the most widely
used methods of creating biased estimates. They use the data to determine an appro-
priate reduced model, so X0 is actually a function of Y , say X0(Y ). The computations
made here for a fixed X0 no longer apply.

Most of the alternative estimates discussed later are also biased. If the choice
of components in principal component regression is made without reference to Y ,
then computations similar to those made here are possible. Ridge regression is also
relatively tractable. The lasso and other penalized least squares estimates are harder
to evaluate.

Bayesian methods, when using a proper prior on β , also provide biased estimates.
Whether or not they actually improve the estimates, in the sense discussed here,
depends on how well the prior reflects reality. PA introduces Bayesian regression
while Christensen et al. (2010) go into much more detail.



Chapter 3
Nonparametric Regression I

Abstract If the model you started with does not fit the data very well, an obvious
thing to do is to fit a more complicated model. Nonparametric regression provides
methods for fitting more complicated models. How can you tell if your original
model did not fit very well? You can test it for lack of fit. How do you do that? You
test it against a nonparametric regression model. This chapter illustrates lack-of-fit
testing by fitting a simple linear regression (SLR) and comparing how it fits relative
to some nonparametric regression models.

In analyzing data we often start with an initial model that is relatively compli-
cated, that we hope fits reasonably well, and look for simpler versions that still fit
the data adequately. Lack of fit involves an initial model that does not fit the data
adequately. Most often, we start with a full model and look at reduced models.
When dealing with lack of fit, our initial model is the reduced model, and we look
for more complicated models that fit significantly better than the reduced model. In
this chapter, we introduce methods for creating more complicated models and then
testing lack of fit. The more complicated models constitute nonparametric regres-
sion models. The illustrations are for an initial simple linear regression model. This
chapter provides an introduction. Chapter 7 goes into more detail.

3.1 Simple Linear Regression

We begin by fitting a simple linear regression.

EXAMPLE 3.1.1. Hooker data.
Forbes (1857) reported data on the relationship between atmospheric pressure and
the boiling point of water that were collected in the Himalaya mountains by Joseph
Hooker. Weisberg (1985, p. 28) presented a subset of 31 observations that are repro-
duced in Table 3.1.

A scatter plot of the data is given in Figure 3.1. The data appear to fit a line very
closely. The usual summary tables follow for regressing pressure on temperature.

71
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Table 3.1 Hooker data.

Case Temperature Pressure Case Temperature Pressure
1 180.6 15.376 17 191.1 19.490
2 181.0 15.919 18 191.4 19.758
3 181.9 16.106 19 193.4 20.480
4 181.9 15.928 20 193.6 20.212
5 182.4 16.235 21 195.6 21.605
6 183.2 16.385 22 196.3 21.654
7 184.1 16.959 23 196.4 21.928
8 184.1 16.817 24 197.0 21.892
9 184.6 16.881 25 199.5 23.030

10 185.6 17.062 26 200.1 23.369
11 185.7 17.267 27 200.6 23.726
12 186.0 17.221 28 202.5 24.697
13 188.5 18.507 29 208.4 27.972
14 188.8 18.356 30 210.2 28.559
15 189.5 18.869 31 210.8 29.211
16 190.6 19.386
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Fig. 3.1 Scatter plot of Hooker data.
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Table of Coefficients: Hooker data – SLR.
Predictor β̂k SE(β̂k) t P
Constant −64.413 1.429 −45.07 0.000
Temperature 0.440282 0.007444 59.14 0.000

Analysis of Variance: Hooker data – SLR.
Source df SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
Total 30 447.85

The coefficient of determination is exceptionally large:

R2 =
444.17
447.85

= 99.2%.

The plot of residuals versus predicted values is given in Figure 3.2. A pattern is
very clear; the residuals form something like a parabola. In spite of a very large R2

and a scatter plot that looks quite linear, the residual plot shows that a lack of fit
obviously exists. After seeing the residual plot, you can go back to the scatter plot
and detect suggestions of nonlinearity. These suggestions are even more clear in
Figure 3.3 which displays the data with the least squares fitted line. The simple linear
regression model is clearly inadequate, so we do not bother presenting a normal plot.

2

Section 2 considers extending the simple linear regression model by fitting a
polynomial in the predictor x. Section 3 considers some strange things that can hap-
pen when fitting high-order polynomials. Section 4 introduces the idea of extending
the model by using functions of x other than polynomials. Section 5 looks at fitting
the model to disjoint subsets of the data. Section 6 examines how the partitioning
ideas of Section 5 lead naturally to the idea of fitting “splines.” Section 7 gives a
brief introduction to Fisher’s famous lack-of-fit test.

The ideas of fitting models based on various functions of x and fitting models on
subsets of the data (and then recombining the results) are fundamental in the field of
nonparametric regression. When dealing with several measured predictor variables,
methods for nonparametric regression are subject to a curse of dimensionality. One
approach to removing the hex is discussed in the last two sections. For two predictor
variables, Section 8 contrasts additive models with far more complicated interaction
models. The generalized additive models introduced in Section 9 extend the ideas
of Section 8 to more than two predictor variables. The problem with generalized
additive models is that if the curse of dimensionality keeps you from fitting a full
nonparametric regression model, the data will not be able to tell you whether the
reduced generalized additive model adequately fits the data.
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Fig. 3.2 Standardized residuals versus predicted values for Hooker data.
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Fig. 3.3 Hooker data, linear fit.
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3.2 Polynomial regression

With Hooker’s data, the simple linear regression of pressure on temperature shows
a lack of fit. The residual plot in Figure 3.2 clearly shows nonrandom structure.
One method of dealing with this is to use a power transformation to eliminate the
lack of fit, cf ANREG-II. In this section we introduce an alternative method called
polynomial regression.

With a single predictor variable x, we can try to eliminate lack of fit in the simple
linear regression yi = β0 +β2xi +εi by fitting larger models. In particular, we can fit
the quadratic (parabolic) model

yi = β0 +β1xi +β2x2
i + εi.

We could also try a cubic model

yi = β0 +β1xi +β2x2
i +β3x3

i + εi,

the quartic model

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi,

or higher-degree polynomials. If we view our purpose as finding good, easily in-
terpretable approximate models for the data, high-degree polynomials can behave
poorly. As we will see later, the process of fitting the observed data can cause high-
degree polynomials to give very erratic results in areas very near the observed data.
A good approximate model should work well, not only at the observed data, but also
near it. Thus, we focus on low-degree polynomials. The problem of erratic fits is ad-
dressed in the next section. We now examine issues related to fitting polynomials.

EXAMPLE 3.2.1. We fit a fifth-degree (quintic) polynomial to Hooker’s data,

yi = γ0 + γ1xi + γ2x2
i + γ3x3

i + γ4x4
i + γ5x5

i + εi. (1)

Quite clearly this is a linear regression on the predictor variables x, x2, x3, x4, x5.
Some computer programs on which I tried to fit the model to these data encountered
numerical instability. They refused to fit it due to the collinearity of the predictor
variables. (And possibly to the fact that the R2 is so high.) To help with the numer-
ical instability of the procedure, before computing the powers of the x variable I
subtracted the mean x̄· = 191.787. Thus, I actually fit,

yi = β0 +β1(xi − x̄·)+β2(xi − x̄·)2 +β3(xi − x̄·)3 +β4(xi − x̄·)4 +β5(xi − x̄·)5 + εi.
(2)

These two models are equivalent in that they always give the same fitted values,
residuals, and degrees of freedom. In addition, γ5 ≡ β5 although none of the other
γ js are equivalent to the corresponding β js. (The equivalences are obtained by the
rather ugly process of actually multiplying out the powers of (xi − x̄·) in model (2)
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so that the model can be rewritten in the form of model (1).) The fitted model, (2),
is summarized by the table of coefficients and the ANOVA table.

Table of Coefficients: Model (2).
Predictor β̂k SE(β̂k) t P
Constant 19.7576 0.0581 340.19 0.000
(x− x̄·) 0.41540 0.01216 34.17 0.000
(x− x̄·)2 0.002179 0.002260 0.96 0.344
(x− x̄·)3 0.0000942 0.0001950 0.48 0.633
(x− x̄·)4 0.00001522 0.00001686 0.90 0.375
(x− x̄·)5 −0.00000080 0.00000095 −0.84 0.409

Analysis of Variance: Model (2).
Source df SS MS F P
Regression 5 447.175 89.435 3315.48 0.000
Error 25 0.674 0.027
Total 30 447.850

The most important things here are that we now know the SSE, dfE, and MSE
from the fifth-degree polynomial. The ANOVA table also provides an F test for
comparing the fifth-degree polynomial against the reduced model yi = β0 + εi, not
a terribly interesting test.

Usually, the only interesting t test for a regression coefficient in polynomial re-
gression is the one for the highest term in the polynomial. In this case the t statistic
for the fifth-degree term is −0.84 with a P value of 0.409, so there is little evidence
that we need the fifth-degree term in the polynomial. All the t statistics are com-
puted as if the variable in question was the only variable being dropped from the
fifth-degree polynomial. For example, it usually makes little sense to have a quintic
model that does not include a quadratic term, so there is little point in examining
the t statistic for testing β2 = 0. One reason for this is that simple linear transforma-
tions of the predictor variable change the roles of lower-order terms. For example,
something as simple as subtracting x̄· completely changes the meaning of γ2 from
model (1) to β2 in model (2). Another way to think about this is that the Hooker
data uses temperature measured in Fahrenheit as a predictor variable. The quintic
model, (2), for the Hooker data is consistent with β2 = 0 with a P value of 0.344.
If we changed to measuring temperature in Celsius, there is no reason to believe
that the new quintic model would still be consistent with β2 = 0. When there is a
quintic term in the model, a quadratic term based on Fahrenheit measurements has
a completely different meaning than a quadratic term based on Celsius measure-
ments. The same is true for all the other terms except the highest-order term, here
the quintic term. On the other hand, the Fahrenheit and Celsius quintic models that
include all lower-order terms are equivalent, just as the simple linear regressions
based on Fahrenheit and Celsius are equivalent. Of course these comments apply to
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all polynomial regressions. Exercise 3.7.7 explores the relationships among regres-
sion parameters for quadratic models that have and have not adjusted the predictor
for its sample mean.

A lack-of-fit test is provided by testing the quintic model against the original
simple linear regression model. The F statistic is

Fobs =
(3.68−0.674)/(29−25)

0.027
= 27.83

which is much bigger than 1 and easily significant at the 0.01 level when compared
to an F(4,25) distribution. The test suggests lack of fit (or some other problem with
the assumptions). 2

3.2.1 Picking a polynomial

We now consider the problem of finding a small-order polynomial that fits the data
well.

The table of coefficients for the quintic polynomial on the Hooker data provides
a t test for whether we can drop each variable out of the model, but for the most
part these tests are uninteresting. The only t statistic that is of interest is that for x5.
It makes little sense, when dealing with a fifth-degree polynomial, to worry about
whether you can drop out, say, the quadratic term. The only t statistic of interest is
the one that tests whether you can drop x5 so that you could get by with a quartic
polynomial. If you are then satisfied with a quartic polynomial, it makes sense to
test whether you can get by with a cubic. In other words, what we would really like
to do is fit the sequence of models

yi = β0 + εi, (3)

yi = β0 +β1xi + εi, (4)

yi = β0 +β1xi +β2x2
i + εi, (5)

yi = β0 +β1xi +β2x2
i +β3x3

i + εi, (6)

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi, (7)

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i +β5x5

i + εi, (8)

and find the smallest model that fits the data. It is equivalent to fit the sequence
of polynomials with x adjusted for its mean, x̄·. In subsequent discussion we refer
to SSEs and other statistics for models (3) through (8) as SSE(3) through SSE(8)
with other similar notations that are obvious. Recall that models (1), (2), and (8) are
equivalent.

Since this is just linear regression, many regression programs fit the overall model
by fitting a sequence of models and provide key results from the sequence, namely,
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the sequential sums of squares, which are simply the difference in error sums of
squares for consecutive models in the sequence. Recall that you must specify the
variables to the computer program in the order you want them fitted. For the Hooker
data, sequential fitting of models (3) through (8) gives

Model
Source Comparison df Seq SS F
(x− x̄·) SSE(3)−SSE(4) 1 444.167 16465.9
(x− x̄·)2 SSE(4)−SSE(5) 1 2.986 110.7
(x− x̄·)3 SSE(5)−SSE(6) 1 0.000 0.0
(x− x̄·)4 SSE(6)−SSE(7) 1 0.003 0.1
(x− x̄·)5 SSE(7)−SSE(8) 1 0.019 0.7

Using these and statistics reported in Example 3.2.1, the F statistic for dropping
the fifth-degree term from the polynomial is

Fobs =
SSE(7)−SSE(8)

MSE(8)
=

0.019
0.027

= 0.71 = (−0.84)2.

The corresponding t statistic reported earlier for testing H0 : β5 = 0 in model (2)
was −0.84. The data are consistent with a fourth-degree polynomial.

The F test for dropping to a third-degree polynomial from a fourth-degree poly-
nomial is

Fobs =
SSE(6)−SSE(7)

MSE(8)
=

0.003
0.027

= 0.1161.

In the denominator of the test we again use the MSE from the fifth-degree poly-
nomial. When doing a series of tests on related models one generally uses the
MSE from the largest model in the denominator of all tests, cf. ANREG-II, Sub-
section 3.1.1. The t statistic corresponding to this F statistic is

√
0.1161 .

= 0.341,
not the value 0.90 reported earlier for the fourth-degree term in the table of coeffi-
cients for the fifth-degree model, (2). The t value of 0.341 is a statistic for testing
β4 = 0 in the fourth-degree model. The value tobs = 0.341 is not quite the t statis-
tic (0.343) you would get in the table of coefficients for fitting the fourth-degree
polynomial (7) because the table of coefficients would use the MSE from model (7)
whereas this statistic is using the MSE from model (8). Nonetheless, tobs provides
a test for β4 = 0 in a model that has already specified that β5 = 0 whereas t = 0.90
from the table of coefficients for the fifth-degree model, (2), is testing β4 = 0 without
specifying that β5 = 0. Remember, if you change anything, you change everything.

The other F statistics listed are also computed as Seq SS/MSE(8). From the
list of F statistics, we can clearly drop any of the polynomial terms down to the
quadratic term.
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3.2.2 Exploring the chosen model

We now focus on the polynomial model that fits these data well: the quadratic model

yi = β0 +β1xi +β2x2
i + εi.

We have switched to fitting the polynomial without correcting the predictor for its
mean value. Summary tables for fitting the quadratic model are

Table of Coefficients: Hooker data, quadratic model.
Predictor β̂k SE(β̂k) t P
Constant 88.02 13.93 6.32 0.000
x −1.1295 0.1434 −7.88 0.000
x2 0.0040330 0.0003682 10.95 0.000

Analysis of Variance: Hooker data, quadratic model.
Source df SS MS F P
Regression 2 447.15 223.58 8984.23 0.000
Error 28 0.70 0.02
Total 30 447.85

The MSE, regression parameter estimates, and standard errors are used in the usual
way. The t statistics and P values are for the tests of whether the corresponding β

parameters are 0. The t statistics for β0 and β1 are of little interest. The t statistic
for β2 is 10.95, which is highly significant, so the quadratic model accounts for a
significant amount of the lack of fit displayed by the simple linear regression model.
Figure 3.4 gives the data with the fitted parabola.

We will not discuss the ANOVA table in detail, but note that with two predictors,
x and x2, there are 2 degrees of freedom for regression. In general, if we fit a poly-
nomial of degree a, there will be a degrees of freedom for regression, one degree
of freedom for every term other than the intercept. Correspondingly, when fitting a
polynomial of degree a, there are n−a−1 degrees of freedom for error. The ANOVA
table F statistic provides a test of whether the polynomial (in this case quadratic)
model explains the data better than the model with only an intercept.

The fitted values are obtained by substituting the xi values into

ŷ = 88.02−1.1295x+0.004033x2.

The residuals are ε̂i = yi − ŷi.
The coefficient of determination is computed and interpreted as before. It is the

squared correlation between the pairs (ŷi,yi) and also SSReg divided by the SSTot,
so it measures the amount of the total variability that is explained by the predictor
variables temperature and temperature squared. For these data, R2 = 99.8%, which
is an increase from 99.2% for the simple linear regression model. It is not appro-
priate to compare the R2 for this model to, say, the R2 from the SLR model on



80 3 Nonparametric Regression I

180 185 190 195 200 205 210

16
18

20
22

24
26

28

Temp

Pr
es

Fig. 3.4 Hooker data with quadratic fit.

the log(y) of ANREG-II, Section 7.3 because they are computed from data that use
different scales. However, if we back transform the fitted log values to the origi-
nal scale to give ŷiℓ values and compute R2

ℓ as the squared correlation between the
(ŷiℓ,yi) values, then R2

ℓ and R2 are comparable.
The standardized residual plots for the quadratic model are given in Figures 3.5

and 3.6. The plot against the predicted values looks good, just as it did for the trans-
formed y data examined in ANREG-II, Section 7.3. The normal plot for this model
has a shoulder at the top but it looks much better than the normal plot for the simple
linear regression on the log transformed data.

If we are interested in the mean value of pressure for a temperature of 205◦F, the
quadratic model estimate is (up to a little round-off error)

ŷ = 25.95 = 88.02−1.1295(205)+0.004033(205)2.

The standard error (as reported by the computer program) is 0.0528 and a 95% con-
fidence interval is (25.84,26.06). This compares to a point estimate of 25.95 and a
95% confidence interval of (25.80,26.10) obtained in ANREG-II, Section 7.3 from
regressing the log of pressure on temperature and back transforming. The quadratic
model prediction for a new observation at 205◦F is again 25.95 with a 95% pre-
diction interval of (25.61,26.29). The corresponding back transformed prediction
interval from the log transformed data is (25.49,26.42). In this example, the results
of the two methods for dealing with lack of fit are qualitatively very similar, at least
at 205◦F.
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Fig. 3.5 Standardized residuals versus predicted values, quadratic model.
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Fig. 3.6 Normal plot for quadratic model, W ′ = 0.966.
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Finally, consider testing the quadratic model for lack of fit by comparing it to the
quintic model (2). The F statistic is

Fobs =
(0.70−0.674)/(28−25)

0.027
= 0.321,

which is much smaller than 1 and makes no suggestion of lack of fit.
One thing we have not addressed is why we chose a fifth-degree polynomial

rather than a fourth-degree or a sixth-degree or a twelfth-degree. The simplest an-
swer is just to pick something that clearly turns out to be large enough to catch the
important features of the data. If you start with too small a polynomial, go back and
pick a bigger one. 2

3.3 Overfitting Polynomial Regression

We now present a simple example that illustrates two points: that leverages depend
on the model and that high-order polynomials can fit the data in very strange ways.

EXAMPLE 3.3.1. The data for the example follow. They were constructed to have
most observations far from the middle.

Case 1 2 3 4 5 6 7
y 0.445 1.206 0.100 −2.198 0.536 0.329 −0.689
x 0.0 0.5 1.0 10.0 19.0 19.5 20.0

I selected the x values. The y values are a sample of size 7 from a N(0,1) distribution.
Note that with seven distinct x values, we can fit a polynomial of degree 6.

The data are plotted in Figure 3.7. Just by chance (honest, folks), I observed a
very small y value at x = 10, so the data appear to follow a parabola that opens up.
The small y value at x = 10 totally dominates the impression given by Figure 3.7.
If the y value at x = 10 had been near 3 rather than near −2, the data would appear
to be a parabola that opens down. If the y value had been between 0 and 1, the data
would appear to fit a line with a slightly negative slope. When thinking about fitting
a parabola, the case with x = 10 is an extremely high-leverage point.

Depending on the y value at x = 10, the data suggest a parabola opening up, a
parabola opening down, or that we do not need a parabola to explain the data. Re-
gardless of the y value observed at x = 10, the fitted parabola must go nearly through
the point (10,y). On the other hand, if we think only about fitting a line to these data,
the small y value at x= 10 has much less effect. In fitting a line, the value y=−2.198
will look unusually small (it will have a very noticeable standardized residual), but
it will not force the fitted line to go nearly through the point (10,−2.198).

Table 3.2 gives the leverages for all of the polynomial models that can be fitted
to these data. Note that there are no large leverages for the simple linear regres-
sion model (the linear polynomial). For the quadratic (parabolic) model, all of the
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Fig. 3.7 Plot of y versus x.

leverages are reasonably small except the leverage of 0.96 at x = 10 that very nearly
equals 1. Thus, in the quadratic model, the value of y at x = 10 dominates the fit-
ted polynomial. The cubic model has extremely high leverage at x = 10, but the
leverages are also beginning to get large at x = 0,1,19,20. For the quartic model,
the leverage at x = 10 is 1, to two decimal places; the leverages for x = 0,1,19,20
are also nearly 1. The same pattern continues with the quintic model but the lever-
ages at x = 0.5,19.5 are also becoming large. Finally, with the sixth-degree (hexic)
polynomial, all of the leverages are exactly one. This indicates that the sixth-degree
polynomial has to go through every data point exactly and thus every data point is
extremely influential on the estimate of the sixth-degree polynomial. (It is fortunate
that there are only seven distinct x values. This discussion would really tank if we
had to fit a seventh-degree polynomial. [Think about it: quartic, quintic, hexic, ...
tank.])

As we fit larger polynomials, we get more high-leverage cases (and more nu-
merical instability). Actually, as in our example, this occurs when the size of the
polynomial nears one less than the number of distinct x values and nearly all data
points have distinct x values. The estimated polynomials must go very nearly through
all high-leverage cases. To accomplish this the estimated polynomials may get very
strange. We now give all of the fitted polynomials for these data.
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Table 3.2 Leverages.

Model
x Linear Quadratic Cubic Quartic Quintic Hexic

0.0 0.33 0.40 0.64 0.87 0.94 1.00
0.5 0.31 0.33 0.33 0.34 0.67 1.00
1.0 0.29 0.29 0.55 0.80 0.89 1.00

10.0 0.14 0.96 0.96 1.00 1.00 1.00
19.0 0.29 0.29 0.55 0.80 0.89 1.00
19.5 0.31 0.33 0.33 0.34 0.67 1.00
20.0 0.33 0.40 0.64 0.87 0.94 1.00

Model Estimated polynomial
Linear ŷ = 0.252−0.029x
Quadratic ŷ = 0.822−0.536x+0.0253x2

Cubic ŷ = 1.188−1.395x+0.1487x2 −0.0041x3

Quartic ŷ = 0.713−0.141x−0.1540x2 +0.0199x3

−0.00060x4

Quintic ŷ = 0.623+1.144x−1.7196x2 +0.3011x3

−0.01778x4 +0.000344x5

Hexic ŷ = 0.445+3.936x−5.4316x2 +1.2626x3

−0.11735x4 +0.004876x5

−0.00007554x6

Figures 3.8 and 3.9 contain graphs of these estimated polynomials.
Figure 3.8 contains the estimated linear, quadratic, and cubic polynomials. The

linear and quadratic curves fit about as one would expect from looking at the scatter
plot Figure 3.7. For x values near the range 0 to 20, we could use these curves to
predict y values and get reasonable, if not necessarily good, results. One could not
say the same for the estimated cubic polynomial. The cubic curve takes on ŷ values
near −3 for some x values that are near 6. The y values in the data are between
about −2 and 1.2; nothing in the data suggests that y values near −3 are likely to
occur. Such predicted values are entirely the product of fitting a cubic polynomial.
If we really knew that a cubic polynomial was correct for these data, the estimated
polynomial would be perfectly appropriate. But most often we use polynomials to
approximate the behavior of the data and for these data the cubic polynomial gives
a poor approximation.

Figure 3.9 gives the estimated quartic, quintic, and hexic polynomials. Note that
the scale on the y axis has changed drastically from Figure 3.8. Qualitatively, the
fitted polynomials behave like the cubic except their behavior is even worse. These
polynomials do very strange things everywhere except near the observed data.

It is a theoretical fact that when the degrees of freedom for error get small, the
MSE should be an erratic estimate of σ2. In my experience, another phenomenon
that sometimes occurs when fitting large models to data is that the mean squared
error gets unnaturally small, cf. Section 5.2. Table 3.3 gives the analysis of variance
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tables for all of the polynomial models. Our original data were a sample from a
N(0,1) distribution. The data were constructed with no regression structure so the
best estimate of the variance comes from the total line and is 7.353/6= 1.2255. This
value is a reasonable estimate of the true value 1. The MSE from the simple linear
regression model also provides a reasonable estimate of σ2 = 1. The larger models
do not work as well. Most have variance estimates near 0.5, while the hexic model
does not even allow an estimate of σ2 because it fits every data point perfectly. By
fitting models that are too large it seems that one can often make the MSE artificially
small. For example, the quartic model has a MSE of 0.306 and an F statistic of 5.51;
if it were not for the small value of dfE, such an F value would be highly significant.
If you find a large model that has an unnaturally small MSE with a reasonable
number of degrees of freedom, everything can appear to be significant even though
nothing you look at is really significant.

Table 3.3 Analysis of variance tables.

Simple linear regression Quartic model
Source df SS MS F P Source df SS MS F P
Regression 1 0.457 0.457 0.33 0.59 Regression 4 6.741 1.685 5.51 0.16
Error 5 6.896 1.379 Error 2 0.612 0.306
Total 6 7.353 Total 6 7.353

Quadratic model Quintic model
Source df SS MS F P Source df SS MS F P
Regression 2 5.185 2.593 4.78 0.09 Regression 5 6.856 1.371 2.76 0.43
Error 4 2.168 0.542 Error 1 0.497 0.497
Total 6 7.353 Total 6 7.353

Cubic model Hexic model
Source df SS MS F P Source df SS MS F P
Regression 3 5.735 1.912 3.55 0.16 Regression 6 7.353 1.2255 — —
Error 3 1.618 0.539 Error 0 0.000 —
Total 6 7.353 Total 6 7.353

Just as the mean squared error often gets unnaturally small when fitting large
models, R2 gets unnaturally large. As we have seen, there can be no possible reason
to use a larger model than the quadratic with its R2 of 0.71 for these 7 data points,
but the cubic, quartic, quintic, and hexic models have R2s of 0.78, 0.92, 0.93, and 1,
respectively. 2

3.4 Additional Spanning Functions

In a SLR, one method for testing lack of fit was to fit a larger polynomial model. In
particular, for the Hooker data we fit a fifth-degree polynomial,
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yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i +β5x5

i + εi.

There was no particularly good reason to fit a fifth-degree, rather than a third-degree
or seventh-degree polynomial. We just picked a polynomial that we hoped would be
larger than we needed.

Rather than expanding the SLR model by adding polynomial terms, we can add
other functions of x to the model. Commonly used functions are often simplified if
we rescale x into a new variable taking values between 0 and 1, say, x̃. Commonly
used functions are trig. functions, so we might fit a full model consisting of

yi = β0 +β1xi +β2 cos(π x̃i)+β3 sin(π x̃i)+β4 cos(π2x̃i)+β5 sin(π2x̃i)+ εi (1)

or a full model

yi = β0+β1xi+β2 cos(π x̃i)+β3 cos(π2x̃i)+β4 cos(π3x̃i)+β5 cos(π4x̃i)+εi. (2)

As with the polynomial models, the number of additional predictors to add depends
on how complicated the data are. For the purpose of testing lack of fit, we simply
need the number to be large enough to find any salient aspects of the data that are
not fitted well by the SLR model.

Another approach is to add a number of indicator functions. An indicator func-
tion of a set A is defined as

IA(θ) =

{
1 if θ ∈ A
0 if θ ̸∈ A

. (3)

We can fit models like

yi = β0 +β1xi +β2I[0,.25)(x̃i)+β3I[.25,.5)(x̃i)+β4I[.5,.75)(x̃i)+β5I[.75,1](x̃i)+εi.

Adding indicator functions of length 2− j defined on x̃ is equivalent to adding Haar
wavelets to the model, cf. Chapter 7. Unfortunately, no regression programs will fit
this model because it is no longer a regression model. It is no longer a regression
model because there is a redundancy in the predictor variables. The model includes
an intercept, which corresponds to a predictor variable that always takes on the
value 1. However, if we add together our four indicator functions, their sum is also
a variable that always takes on the value 1. To evade this problem, we need either
to delete one of the indicator functions (doesn’t matter which one) or remove the
intercept from the model. Dropping the last indicator is convenient, so we fit

yi = β0 +β1xi +β2I[0,.25)(x̃i)+β3I[.25,.5)(x̃i)+β4I[.5,.75)(x̃i)+ εi. (4)

Any continuous function defined on an interval [a,b] can be approximated ar-
bitrarily well by a sufficiently large polynomial. Similar statements can be made
about the other classes of functions introduced here. Because of this, these classes
of functions are known as basis functions. (Although they should really be known
as spanning functions.)
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EXAMPLE 3.4.1. We illustrate the methods on the Hooker data. With x the tem-
perature, we defined x̃ = (x−180.5)/30.5. Fitting model (1) gives

Analysis of Variance: Sines and Cosines.
Source df SS MS F P
Regression 5 447.185 89.437 3364.82 0.000
Residual Error 25 0.665 0.0266
Total 30 447.850

A test of whether model (1) fits significantly better than SLR has statistic

Fobs =
(3.68−0.665)/(29−25)

0.0266
= 28.4.

Clearly the reduced model of a simple linear regression fits worse than the model
with two additional sine and cosine terms.

Fitting model (2) gives

Analysis of Variance: Cosines.
Source df SS MS F P
Regression 5 447.208 89.442 3486.60 0.000
Residual Error 25 0.641 0.0257
Total 30 447.850

A test of whether the cosine model fits significantly better than SLR has statistic

Fobs =
(3.68−0.641)/(29−25)

0.0257
= 29.6.

Clearly the reduced model of a simple linear regression fits worse than the model
with four additional cosine terms.

Fitting model (4) gives

Analysis of Variance: Haar Wavelets.
Source df SS MS F P
Regression 4 446.77 111.69 2678.37 0.000
Residual Error 26 1.08 0.0417
Total 30 447.85

A test of whether this Haar wavelet model fits significantly better than SLR has
statistic

Fobs =
(3.68−1.08)/(29−26)

0.0417
= 20.8.

Clearly the reduced model of a simple linear regression fits worse than the model
with three additional indicator functions. 2
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3.4.1 High-order models

For spanning functions that are continuous, like the trig functions, high-order mod-
els can behave as strangely between the data points as polynomials. For example,
Figure 3.10 contains a plot of the 7 data points discussed in Section 3.3 and, using
x̃ = x/20, a fitted cosine model with 5 terms and an intercept,

yi = β0 +β1 cos(π x̃i)+β2 cos(π2x̃i)

+β3 cos(π3x̃i)+β4 cos(π4x̃i)+β5 cos(π5x̃i)+ εi.

The fit away from the data is even worse than for fifth- and sixth-order polynomials.
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Fig. 3.10 Plot of fifth-order cosine model.

3.5 Partitioning

The basic idea of the partitioning method is quite simple. Suppose we are fitting
a simple linear regression but that the actual relationship between x and y is a
quadratic. If you can split the x values into two parts near the maximum or min-
imum of the quadratic, you can get a much better approximate fit using two lines
instead of one. More generally, the idea is that an approximate model should work
better on a smaller set of data that has predictor variables that are more similar. Thus,
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if the original model is wrong, we should get a better approximation to the truth by
fitting the original model on a series of smaller subsets of the data. Of course if the
original model is correct, it should work about the same on each subset as it does on
the complete data. The statistician partitions the data into disjoint subsets, fits the
original model on each subset, and compares the overall fit of the subsets to the fit of
the original model on the entire data. The statistician is free to select the partitions,
including the number of distinct sets, but the subsets need to be chosen based on the
predictor variable(s) alone.

EXAMPLE 3.5.1. We illustrate the partitioning method by splitting the Hooker
data into two parts. Our partition sets are the data with the 16 smallest temperatures
and the data with the 15 largest temperatures. We then fit a separate regression line
to each partition. The two fitted lines are given in Figure 3.11. The ANOVA table is

Analysis of Variance: Partitioned Hooker data.
Source df SS MS F P
Regression 3 446.66 148.89 3385.73 0.000
Error 27 1.19 0.04
Total 30 447.85

A test of whether this partitioning fits significantly better than SLR has statistic

Fobs =
(3.68−1.19)/(29−27)

0.04
= 31.125.

Clearly the reduced model of a simple linear regression fits worse than the model
with two SLRs. Note that this is a simultaneous test of whether the slopes and inter-
cepts are the same in each partition. 2

3.5.1 Fitting the partitioned model

We now consider three different ways to fit this partitioned model. Our computations
will be subject to some round-off error. One way to fit this model is simply to divide
the data into two parts and fit a simple linear regression to each one. Fitting the
lowest 16 x (temperature) values gives

Table of Coefficients: Low x values.
Predictor β̂k SE(β̂k) t P
Constant −50.725 2.596 −19.54 0.000
x-low 0.36670 0.01404 26.13 0.0001
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Fig. 3.11 Hooker data, partition method.

Analysis of Variance: Low x values.
Source df SS MS F P
Regression 2 4687.1 2342.5 81269.77 0.000
Error 14 0.4 0.0
Total 16 4687.5

To get some extra numerical accuracy, from the F statistic we can compute MSE =
2342.5/81269.77 = 0.028836 so SSE = 0.4037. All we really care about in this
ANOVA table is the error line but the table itself is unusual. In order to get this
three-line anova table from most software you would need to tell the software to fit
the model with no intercept but then manually enter an intercept by incorporating
a predictor variable that always takes the value 1. In this anova table the 2 df for
regression are for both the intercept and slope and the 16 degrees of freedom total
are for the 16 observations. The sum of squares total is just the sum of the squares
of the 16 low yi values.

Similarly fitting the highest 15 x values gives

Table of Coefficients: High x values.
Predictor β̂k SE(β̂k) t P
Constant −74.574 2.032 −36.70 0.000
x-high 0.49088 0.01020 48.12 0.000
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Analysis of Variance: High x values.
Source df SS MS F P
Regression 2 8193.9 4096.9 67967.66 0.000
Error 13 0.8 0.1
Total 15 8194.7

Again, from the F statistic MSE = 4096.9/67967.66= 0.060277, so SSE = 0.7836.
The variance estimate for the overall model is obtained by pooling the two Error
terms to give dfE(Full) = 14+13 = 27, SSE(Full) = 0.4037+0.7836 = 1.1873,
with MSE(Full) = 0.044.

A more efficient way to proceed is to fit both simple linear regressions at once.
Construct a variable h that identifies the 15 high values of x. In other words, h is 1 for
the 15 highest temperature values and 0 for the 16 lowest values. Define x1 = h× x,
h2 = 1−h, and x2 = h2 × x. Fitting these four variables in a regression through the
origin, i.e., fitting

yi = β1hi2 +β2xi2 +β3hi +β4xi1 + εi,

gives

Table of Coefficients: Separate lines.
Predictor β̂k SE(β̂k) t P
h2 −50.725 3.205 −15.82 0.000
x2 0.36670 0.01733 21.16 0.000
h −74.574 1.736 −42.97 0.000
x1 0.490875 0.008712 56.34 0.000

Analysis of Variance: Separate lines.
Source df SS MS F P
Regression 4 12881.0 3220.2 73229.01 0.000
Error 27 1.2 0.0
Total 31 12882.2

Note that these regression estimates agree with those obtained from fitting each
set of data separately. The standard errors differ because here we are pooling the
information in the error rather than using separate estimates of σ2 from each subset
of data. Although the ANOVA table reports MSE = 0.0, we can see that it actually
agrees with earlier calculations by noting that MSE = MSReg/F = 0.04397.

The way the model was originally fitted for our discussion was regressing on x,
h, and x1, i.e., fitting

yi = β0 +β1xi +β2hi +β3xi1 + εi. (1)

This is a model that has the low group of temperature values as a baseline and for
the high group incorporates deviations from the baseline. The ANOVA table gives
the same Error as the previous table and the table of regression coefficients is
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Table of Coefficients: Low group baseline.
Predictor β̂k SE(β̂k) t P
Constant −50.725 3.205 −15.82 0.000
x 0.36670 0.01733 21.16 0.000
h −23.849 3.645 −6.54 0.000
x1 0.12418 0.01940 6.40 0.000

The slope for the low group is 0.36670 and for the high group it is 0.36670+
0.12418 = 0.49088. The t test for whether the slopes are different, in a model that
retains separate intercepts, is based on the x1 row of this table and has t = 6.40. The
intercepts also look different. The estimated intercept for the low group is −50.725
and for the high group it is −50.725+(−23.849) =−74.574. The t test for whether
the intercepts are different, in a model that retains separate slopes, is based on the h
row and has t =−6.54.

3.5.2 Output for categorical predictors*

At the beginning of Chapter 1 we discussed the fact that predictor variables can be of
two types: continuous or categorical. Regression analysis and computer programs
for regression analysis consider only continuous variables. Various programs for
fitting linear models (as distinct from fitting regression) handle both types of vari-
ables. Of the packages discussed on my website, R’s command lm and SAS’s PROC
GENMOD treat all (numerical) variables as continuous unless otherwise specified.
In particular, if no variables are specified as categorical, both lm and GENMOD
act as regression programs. Minitab’s glm, on the other hand, treats all variables as
categorical (factors) unless otherwise specified. Not only are the defaults different,
but how the programs deal with categorical variables differs. Since partitioning the
data defines categories, we have cause to introduce these issues here. Categorical
variables are ubiquitous when discussing ANOVA.

In our partitioning example, x is continuous but h is really a categorical variable
indicating which points are in the high group. When a categorical variable has only
two groups, or more specifically, if it is a 0-1 indicator variable like h (or h2), it can
be treated the same way that continuous variables are treated in regression software.
Indeed, we have exploited that fact up to this point. The remainder of this subsection
discusses how various software treat variables that are identified as factors.

As indicated earlier, R’s lm command and SAS’s PROC GENMOD both have
x defaulting to a continuous variable but h can be specified as a factor. Minitab’s
glm output has h defaulting to a factor but x must be specified as a covariate. In all
of them we fit a model that specifies effects for each variable plus we fit an “in-
teraction” between the two variables. To mimic these procedures using regression,
we need to construct and use variables h2, x1, x2 and two new variables h3, x3. One
advantage of specifying h as a factor variable is that you do not have to construct
any new variables.
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R’s lm program with h as a factor, essentially, fits model (1), i.e., a model that
uses the low temperatures as a baseline. The output is the same as the regression
output that we already examined.

SAS’s PROC GENMOD with h as a classification variable (factor), essentially,
fits a model that uses the high group as the baseline, that is, it fits

yi = β0 +β1xi +β2hi2 +β3xi2 + εi.

For the low group, the model incorporates deviations from the baseline. The three-
line ANOVA table does not change from model (1) but the table of regression coef-
ficients is

Table of Coefficients: High group baseline.
Predictor β̂k SE(β̂k) t P
Constant −74.574 1.736 −42.97 0.000
x 0.49088 0.00871 56.34 0.000
h2 23.849 3.645 6.54 0.000
x2 −0.12418 0.01940 −6.40 0.000

The estimated slope for the high group is 0.49088 and for the low group it is
0.49088+(−0.12418) = 0.36670. The t test for whether the slopes are different, in
a model that retains separate intercepts, is based on the x2 row of this table and has
t = −6.40. The intercepts also look different. The estimated intercept for the high
group is −74.574 and for the low group it is −74.574+ 23.849 = −50.725. The t
test for whether the intercepts are different, in a model that retains separate slopes,
is based on the h2 row and has t = 6.54.

The following table is how PROC GENMOD reports these results.

Table of Coefficients: SAS PROC GENMOD.
95%

Predictor df β̂k SEm(β̂k) Conf. Limits t2 P
Intercept 1 −74.5741 1.6198 −77.7489 −71.3993 2119.55 < .0001
h 0 1 23.8490 3.4019 17.1815 30.5166 49.15 < .0001
h 1 0 0.0000 0.0000 0.0000 0.0000 .
x 1 0.4909 0.0081 0.4749 0.5068 3644.94 < .0001
x *h 0 1 −0.1242 0.0181 −0.1597 −0.0887 47.04 < .0001
x *h 1 0 0.0000 0.0000 0.0000 0.0000 .
Scale 1 0.1957 0.0249 0.1526 0.2510

While the parameter estimates agree in obvious ways, the standard errors are dif-
ferent from the regression output. The coefficients for the highest level of the factor
h are forced to be zero (R does this for the lowest level of h) and the correspond-
ing standard errors are 0 because estimates that have been forced to be zero have
no variability. The nonzero standard errors are also different in GENMOD because
they are not based on the MSE but rather the maximum likelihood estimate of the
variance,
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σ̂
2 ≡ SSE

n
.

We used the notation SEm(β̂k) with a subscript of m to indicate this difference. The
relationship between the standard errors is

SE(β̂k) =

√
n√

dfE
SEm(β̂k).

Note also that GENMOD gives t2 rather than t, provides 95% confidence intervals,
and reports very small P values in a more appropriate fashion than merely reporting
0.0000. SAS also has a PROC GLM procedure that will fit the model, but it does
not readily report parameter estimates.

R and SAS use variations on a theme, i.e., fix a baseline group. Minitab takes a
different course. Minitab, essentially, defines variables h3 = h2 −h and x3 = x×h3
and fits

yi = β0 +β1xi +β2hi3 +β3xi3 + εi.

This gives the regression coefficients

Table of Coefficients.
Predictor β̂k SE(β̂k) t P
Constant −62.64962 1.82259 −34.374 0.000
x 0.42879 0.00970 44.206 0.000
h3 11.92452 1.82259 6.543 0.000
x3 −0.06209 0.00970 −6.401 0.000

Minitab’s glm yields the following output for coefficients.

Table of Coefficients: Minitab glm.
Predictor β̂k SE(β̂k) t P
Constant −62.650 1.823 −34.37 0.000
h

0 11.925 1.823 6.54 0.000
x 0.428787 0.009700 44.21 0.000
x*h

0 −0.062089 0.009700 −6.40 0.000

provided you ask Minitab to provide coefficients for all terms. (The default does not
give coefficients associated with h.) The “constant” value of −62.650 is the average
of the two intercept estimates that were reported earlier for the separate lines. The
intercept for the low group (h = 0) is −62.650+ 11.925 and the intercept for the
high group is −62.650− 11.925. Note that the t test for “h 0” is the same 6.54
that was reported earlier for testing whether the intercepts were different. Minitab
is fitting effects for both h = 0 and h = 1 but forcing them to sum to zero, rather
than what R and SAS do, which is picking a level of h and forcing the effect of that
level to be zero (hence making it the baseline). Similarly, the “x” value 0.428787 is
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the average of the two slope estimates reported earlier. The slope for the low group
(h = 0) is 0.428787+(−0.062089) and the slope for the high group is 0.428787−
(−0.062089). The t test for “x*h 0” is the same −6.40 as that reported earlier for
testing whether the slopes were different. Minitab provides coefficient output that
is more traditional than either R or SAS, but is often more difficult to interpret.
However, given the wide variety of software and output that one may be confronted
with, it is important to be able to cope with all of it.

Our discussion used the variable h that partitions the data into the smallest 16
observations and the largest 15 observations. Minitab’s regression program provides
a lack-of-fit test that partitions the data into the 18 observations below x̄· = 191.79
and the 13 observations larger than the mean. Their test gets considerably more
complicated when there is more than one predictor variable. They perform both this
test (in more complicated situations, these tests) and a version of the test described
in the next subsection, and combine the results from the various tests.

3.5.3 Utts’ method

Utts (1982) proposed a lack-of-fit test based on comparing the original (reduced)
model to a full model that consists of fitting the original model on a subset of the
original data. In other words, you fit the model on all the data and test that against
a full model that consists of fitting the model on a subset of the data. The subset is
chosen to contain the points closest to x̄·. Although it seems like fitting the model to
a reduced set of points should create a reduced model, just the opposite is true. To
fit a model to a reduced set of points, we can think of fitting the original model and
then adding a separate parameter for every data point that we want to exclude from
the fitting procedure. In fact, that is what makes this a partitioning method. There
is one subset that consists of the central data and the rest of the partition has every
data point in a separate set.

The central subset is chosen to be a group of points close to x̄·. With only one
predictor variable, it is easy to determine a group of central points. As mentioned
earlier, for models with an intercept the leverages are really measures of distance
from x̄·; cf. PA, so even with more predictor variables, one could choose a group of
points that have the lowest leverages in the original model.

EXAMPLE 3.5.1. We consider first the use of 15 central points with leverages
below 0.05; about half the data. We then consider a group of 6 central points; about
a fifth of the data.

The ANOVA table when fitting a simple linear regression to 15 central points is

Analysis of Variance: 15 central points.
Source df SS MS F P
Regression 1 40.658 40.658 1762.20 0.000
Error 13 0.300 0.023
Total 14 40.958
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The lack-of-fit test against a reduced model of simple linear regression on the entire
data has

Fobs =
(3.68−0.300)/(29−13)

0.023
= 9.18,

which is highly significant. Figure 3.12 illustrates the fitting method.
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Fig. 3.12 Hooker data, Utts’ method with 15 points.

When using 6 central points having leverages below 0.035, the ANOVA table is

Analysis of Variance: 6 central points.
Source df SS MS F P
Regression 1 1.6214 1.6214 75.63 0.001
Error 4 0.0858 0.0214
Total 5 1.7072

and the F statistic is

Fobs =
(3.68−0.0858)/(29−4)

0.0214
= 6.72.

This is much bigger than 1 and easily significant at the 0.05 level. Both tests suggest
lack of fit. Figure 3.13 illustrates the fitting method. 2

My experience is that Utt’s test tends to work better with relatively small groups
of central points. (Even though the F statistic here was smaller for the smaller
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Fig. 3.13 Hooker data, Utts’ method with 6 points.

group.) Minitab’s regression program incorporates a version of Utt’s test that de-
fines the central region as those points with leverages less than 1.1p/n where p is
the number of regression coefficients in the model, so for a simple linear regres-
sion p = 2. For these data, their central region consists of the 22 observations with
temperature between 183.2 and 200.6.

3.6 Splines

When fitting a polynomial to a single predictor variable, the partitioning method is
extremely similar to the nonparametric regression method known as fitting splines.
When using partitioning to test for lack of fit, our fitting of the model on each subset
was merely a device to see whether the original fitted model gave better approxi-
mations on smaller subsets of the data than it did overall. The only difference when
fitting splines is that we take the results obtained from fitting on the partition sets
seriously as a model for the regression function. As such, we typically do not want
to allow discontinuities in the regression function at the partition points (known as
“knots” in spline theory), so we include conditions that force continuity. Typically
when fitting splines one uses a large number of partition sets, so there are a large
number of conditions to force continuity. We illustrate the ideas on the Hooker data
with only two partition sets and go into more detail in Chapter 7. Generalizations
are available for more than one predictor variable; see Chapter 7 and Wahba (1990).
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EXAMPLE 3.6.1. Hooker data.
Again, our partition sets are the data with the 16 smallest temperatures and the data
with the 15 largest temperatures. Referring back to Table 3.1 we see that the partition
point must be somewhere between 190.6 and 191.1. For convenience, let’s set the
partition point at 191. We model a separate regression line for each partition,

m(x) =
{

β1 +β2x if x ≤ 191
β3 +β4x if x > 191 .

Fitting two regression lines was discussed in Subsection 3.5.1 where we found the
estimated lines

m̂(x) =
{−50.725+0.36670x if x ≤ 191
−74.574+0.490875x if x > 191 .

The two fitted lines were displayed in Figure 3.11.
To change this into a linear spline model, we need the two lines to match up at

the knot, that is, we need to impose the continuity condition that

β1 +β2191 = β3 +β4191.

The condition can be rewritten in many ways but we will use

β3 = β1 +β2191−β4191.

You can see from Figure 3.11 that the two separate fitted lines are already pretty
close to matching up at the knot.

In Subsection 3.5.1 we fitted the partitioned model as a single linear model in
two ways. The first was more transparent but the second had advantages. The same
is true about the modifications needed to generate linear spline models. To begin,
we constructed a variable h that identifies the 15 high values of x. In other words, h
is 1 for the 15 highest temperature values and 0 for the 16 lowest values. We might
now write

h(x)≡ I(191,∞)(x),

where we again use the indicator function introduced in Section 4. With slightly
different notation for the predictor variables, we first fitted the two separate lines
model as

yi = β1[1−h(xi)]+β2xi[1−h(xi)]+β3h(xi)+β4xih(xi)+ εi.

Imposing the continuity condition by substituting for β3, the model becomes

yi = β1[1−h(xi)]+β2xi[1−h(xi)]+{β1 +β2191−β4191}h(xi)+β4xih(xi)+ εi

or

yi = β1 {[1−h(xi)]+h(xi)}+β2 {xi[1−h(xi)]+191h(xi)}
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+β4 [xih(xi)−191h(xi)]+ εi

or
yi = β1 +β2 {xi[1−h(xi)]+191h(xi)}+β4 (xi −191)h(xi)+ εi, (1)

where now β1 is an overall intercept for the model.
As mentioned earlier, the two-lines model was originally fitted (with different

symbols for the unknown parameters) as

yi = β1 +β2xi + γ1h(xi)+ γ2xih(xi)+ εi.

This is a model that has the low group of temperature values as a baseline and for
the high group incorporates deviations from the baseline, e.g., the slope above 191
is β2 + γ2. For this model the continuity condition is that

β1 +β2191 = β1 +β2191+ γ1 + γ2191

or that
0 = γ1 + γ2191

or that
γ1 =−γ2191.

Imposing this continuity condition, the model becomes

yi = β1 +β2xi − γ2191h(xi)+ γ2xih(xi)+ εi

or
yi = β1 +β2xi + γ2 (xi −191)h(xi)+ εi. (2)

In discussions of splines, the function (xi −191)h(xi) is typically written (xi −
191)+ where for any scalar a,

(x−a)+ ≡
{

x−a if x > a
0 if x ≤ a.

Fitting models (1) and (2) to the Hooker data gives

Table of Coefficients: Model (1).
Predictor Est SE(Est) t P
Constant −48.70931 2.252956 −21.62 0.000
x[1−h(x)]+191h(x) 0.35571 0.012080 29.45 0.000
(x−191)+ 0.48717 0.007619 63.95 0.000

and
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Table of Coefficients: Model (2).
Predictor Est SE(Est) t P
Constant −48.70931 2.25296 −21.620 0.000
x 0.35571 0.01208 29.447 0.000
(x−191)+ 0.13147 0.01751 7.509 0.000

Notice that the slope for x values above 191, β̂4 = 0.48717, equals the slope below
191 plus the change in slopes, β̂2 + γ̂2 = 0.35571+0.13147, there being round-off
error in the last digit.
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Fig. 3.14 Hooker data, linear spline with one knot at 191.

Both models give dfE = 28, SSE = 1.2220, and MSE = 0.04364. We can even
use the linear spline model as the basis for a lack-of-fit test of the simple linear
regression on the Hooker data,

Fobs =
(3.6825−1.2220)/(29−28)

0.04364
= 56.38.

Obviously, fitting different lines on each partition set is a more general model than
fitting the same line on each partition set. But since fitting a single line to all the data
gives continuity at each knot, fitting different lines on each partition set and forcing
them to be continuous is still a more general model than fitting the same line on all
the data. 2
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In general, to fit a linear spline model, you need to decide on a group of knots at
which the slope will change. Call these x̃ j, j = 1, . . . ,r. The linear spline model then
becomes

yi = β0 +β1xi +
r

∑
j=1

γ j(xi − x̃ j)++ εi.

Similar ideas work with higher-degree polynomials. The most popular polynomial
to use is cubic; see Exercise 3.7.8. The general cubic spline model is

yi = β0 +β1xi +β2x2
i +β3x3 +

r

∑
j=1

γ j[(xi − x̃ j)+]
3 + εi.

See Chapter 7 for details.

3.7 Fisher’s Lack-of-Fit Test

We now introduce Fisher’s lack-of-fit test for the Hooker data. For now, notice that
the predictor variable includes two replicate temperatures: x = 181.9 with y values
15.106 and 15.928, and x = 184.1 with y values 16.959 and 16.817. In this case,
the computation for Fisher’s lack-of-fit test is quite simple. We use the replicated
x values to obtain a measure of pure error. First, compute the sample variance of
the yis at each replicated x value. There are 2 observations at each replicated x,
so the sample variance computed at each x has 1 degree of freedom. Since there
are two replicated xs each with one degree of freedom for the variance estimate, the
pure error has 1+1 = 2 degrees of freedom. To compute the sum of squares for pure
error, observe that when x= 181.9, the mean y is 15.517. The contribution to the sum
of squares pure error from this x value is (15.106−15.517)2 +(15.928−15.517)2.
A similar contribution is computed for x = 184.1 and they are added to get the sum
of squares pure error. The degrees of freedom and sum of squares for lack of fit are
found by taking the values from the original error and subtracting the values for the
pure error. The F test for lack of fit examines the mean square lack of fit divided by
the mean square pure error.

Analysis of Variance.
Source df SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
(Lack of Fit) 27 3.66 0.14 10.45 0.091
(Pure Error) 2 0.03 0.01
Total 30 447.85

The F statistic for lack of fit, 10.45, seems substantially larger than 1, but because
there are only 2 degrees of freedom in the denominator, the P value is a relatively
large 0.09. This method is closely related to one-way analysis of variance and is
discussed in more detain in both ANREG and PA.
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3.8 Additive Effects Versus Interaction

For the Coleman Report data, one of the viable models had two predictors: x3, so-
cioeconomic status, and x4, teacher’s verbal score. If the model displayed lack of fit,
there are a number of ways that we could expand the model.

In general, the simplest multiple regression model for E(y) based on two predic-
tors is

m(x) = β0 +β1x1 +β2x2. (1)

This model displays additive effects. The relative effect of changing the value of
variable x1 into, say, x̃1 is the same, regardless of the value of x2. Specifically,

[β0 +β1x̃1 +β2x2]− [β0 +β1x1 +β2x2] = β2(x̃1 − x1).

This effect does not depend on x2, which allows us to speak about an effect for x1.
If the effect of x1 depends on x2, no single effect for x1 exists and we would always
need to specify the value of x2 before discussing the effect of x1. An exactly similar
argument shows that in model (1) the effect of changing x2 does not depend on the
value of x1.

Generally, for any two predictors x1 and x2, an additive effects (no-interaction)
model takes the form

m(x) = h1(x1)+h2(x2) (2)

where x=(x1,x2) and h1(·) and h2(·) are arbitrary functions. In this case, the relative
effect of changing x1 to x̃1 is the same for any value of x2 because

m(x̃1,x2)−m(x1,x2) = [h1(x̃1)+h2(x2)]− [h1(x1)+h2(x2)] = h1(x̃1)−h1(x1),

which does not depend on x2. An exactly similar argument shows that the effect of
changing x2 does not depend on the value of x1. In an additive model, the effect
as x1 changes can be anything at all; it can be any function h1, and similarly for
x2. However, the combined effect must be the sum of the two individual effects.
Other than model (1), the most common no-interaction models for two measurement
predictors are probably a polynomial in x1 plus a polynomial in x2, say,

m(x) = β0 +
R

∑
r=1

βr0xr
1 +

S

∑
s=1

β0sxs
2. (3)

An interaction model is literally any model that does not display the additive
effects structure of (2). When generalizing no-interaction polynomial models, cross-
product terms are often added to model interaction. For example, model (1) might
be expanded to

m(x) = β0 +β1x1 +β2x2 +β3x1x2.

This is an interaction model because the relative effect of changing x1 to x̃1 depends
on the value of x2. Specifically,
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[β0+β1x̃1+β2x2+β3x̃1x2]−[β0+β1x1+β2x2+β3x1x2] = β2(x̃1−x1)+β3(x̃1−x1)x2,

where the second term depends on the value of x2. To include interaction, the no-
interaction polynomial model (3) might be extended to an interaction polynomial
model

m(x) =
R

∑
r=0

S

∑
s=0

βrsxr
1xs

2. (4)

These devices are easily extended to more than two predictor variables.

EXAMPLE 3.8.1. Using the Coleman Report data, we begin by considering

yh = β0 +β3xh3 +β4xh4 + εh,

which was fitted in Chapter 1. First we fit a simple quadratic additive model

yh = β0 +β10xh3 +β20x2
h3 +β01xh4 +β02x2

h4 + εh.

From the table of coefficients

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 38.0 106.5 0.36 0.726
x3 0.54142 0.05295 10.22 0.000
x2

3 −0.001892 0.006411 −0.30 0.772
x4 −1.124 8.602 −0.13 0.898
x2

4 0.0377 0.1732 0.22 0.831

we see that neither quadratic term is adding anything after the other terms because
both quadratic terms have large P values. To make a simultaneous test of dropping
the quadratic terms, we need to compare the error in the ANOVA table

Analysis of Variance
Source df SS MS F P
Regression 4 571.47 142.87 29.99 0.000
Residual Error 15 71.46 4.76
Total 19 642.92

to the error given in Chapter 1. The F statistic becomes

Fobs =
[72.43−71.46]/[17−15]

71.46/15
=

0.485
4.76

= 0.102,

so together the quadratic terms are contributing virtually nothing.
The simplest interaction model is

yh = β0 +β3xh3 +β4xh4 +β34xh3xh4 + εh.

Fitting gives the table of coefficients.
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Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 10.31 10.48 0.98 0.340
x3 1.900 1.569 1.21 0.244
x4 0.9264 0.4219 2.20 0.043
x3x4 −0.05458 0.06304 −0.87 0.399

This shows no effect for adding the β34xh3xh4 interaction (P = 0.399). Alternatively,
we could compare the error from the ANOVA table

Analysis of Variance
Source df SS MS F P
Regression 3 573.74 191.25 44.23 0.000
Residual Error 16 69.18 4.32
Total 19 642.92

to that given in Chapter 1 to get the F statistic

Fobs =
[72.43−69.18]/[17−16]

69.18/16
=

3.25
4.32

= 0.753 = (−0.87)2,

which also gives the P value 0.399. 2

3.9 Generalized Additive Models

Suppose we wanted to fit a cubic interaction model to the Coleman Report data.
With five predictor variables, the model is

m(x) =
3

∑
r=0

3

∑
s=0

3

∑
t=0

3

∑
u=0

3

∑
v=0

βrstuvxr
1xs

2xt
3xu

4xv
5 (1)

and includes 45 = 1024 mean parameters βrstuv. We might want to think twice about
trying to estimate 1024 parameters from just 20 schools.

This is a common problem with fitting polynomial interaction models. When
we have even a moderate number of predictor variables, the number of parameters
quickly becomes completely unwieldy. And it is not only a problem for polynomial
interaction models. In Section 4 we discussed replacing polynomials with other ba-
sis functions φr(x). The polynomial models happen to have φr(x)= xr. Other choices
of φr include cosines, or both cosines and sines, or indicator functions, or wavelets.
Typically, φ0(x)≡ 1. In the basis function approach, the additive polynomial model
(3.8.3) generalizes to

m(x) = β0 +
R

∑
r=1

βr0φr(x1)+
S

∑
s=1

β0sφs(x2) (2)
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and the polynomial interaction model (3.8.4) generalizes to

m(x) =
R

∑
r=0

S

∑
s=0

βrsφr(x1)φs(x2). (3)

When expanding model (3) to include more predictors, the generalized interaction
model has exactly the same problem as the polynomial interaction model (1) in that
it requires fitting too many parameters.

Generalized additive models provide a means for circumventing the problem.
They do so by restricting the orders of the interactions. In model (1) we have five
variables, all of which can interact with one another. Instead, suppose variables x1
and x4 can interact with one another but with no other variables and that variables
x2, x3, and x5 can interact with one another but with no other variables. We can then
write a generalized additive model

m(x)≡ m(x1,x2,x3,x4,x5) = h1(x1,x4)+h2(x2,x3,x5). (4)

Using the basis function approach to model each of the two terms on the right gives

m(x) =
R

∑
r=0

U

∑
u=0

βruφr(x1)φu(x4)+
S

∑
s=0

T

∑
t=0

V

∑
v=0

γstuφs(x2)φt(x3)φv(x5)− γ000.

We subtracted γ000 from the model because both β00 and γ000 serve as intercept
terms, hence they are redundant parameters. This section started by considering the
cubic interaction model (1) for the Coleman Report data. The model has 3=R= S=
T =U =V and involves 1024 mean parameters. Using similar cubic polynomials to
model the generalized additive model (4) we need only 42+43−1 = 79 parameters.
While that is still far too many parameters to fit to the Coleman Report data, you
can see that fitting generalized additive models are much more feasible than fitting
full interaction models.

Another generalized additive model that we could propose for five variables is

m(x) = h1(x1,x2)+h2(x2,x3)+h3(x4,x5).

A polynomial version of the model is

m(x) =
R

∑
r=0

S

∑
s=0

βrsxr
1xs

2 +
S

∑
s=0

T

∑
t=0

γstxs
2xt

3 +
U

∑
u=0

V

∑
v=0

δuvxu
4xv

5. (5)

In this case, not only are β00, γ00, and δ00 all redundant intercept parameters, but
∑

S
s=0 β0sx0

1xs
2 and ∑

S
s=0 γs0xs

2x0
3 are redundant simple polynomials in x2. In this case

it is more convenient to write model (5) as

m(x) =
R

∑
r=0

S

∑
s=0

βrsxr
1xs

2 +
S

∑
s=0

T

∑
t=1

γstxs
2xt

3 +
U

∑
u=0

V

∑
v=0

δuvxu
4xv

5 −δ00.
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Of course, the catch with generalized additive models is that you need to have
some idea of what variables may interact with one another. And the only obvious
way to check that assumption is to test the assumed generalized additive model
against the full interaction model. But this whole discussion started with the fact
that fitting the full interaction model is frequently infeasible.

3.10 Exercises

EXERCISE 3.10.1. Dixon and Massey (1969) presented data on the relationship
between IQ scores and results on an achievement test in a general science course.
Table 3.4 contains a subset of the data. Fit the simple linear regression model of
achievement on IQ and the quadratic model of achievement on IQ and IQ squared.
Evaluate both models and decide which is the best.

Table 3.4 IQs and achievement scores.

IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev.
100 49 105 50 134 78 107 43 122 66
117 47 89 72 125 39 121 75 130 63
98 69 96 45 140 66 90 40 116 43
87 47 105 47 137 69 132 80 101 44

106 45 95 46 142 68 116 55 92 50
134 55 126 67 130 71 137 73 120 60
77 72 111 66 92 31 113 48 80 31

107 59 121 59 125 53 110 41 117 55
125 27 106 49 120 64 114 29 93 50

EXERCISE 3.10.2. Use two methods other than fitting polynomial models to test
for lack of fit in Exercise 3.10.1

EXERCISE 3.10.3. Based on the height and weight data given in Table 3.5, fit a
simple linear regression of weight on height for these data and check the assump-
tions. Give a 99% confidence interval for the mean weight of people with a 72-inch
height. Test for lack of fit of the simple linear regression model.

EXERCISE 3.10.4. Jensen (1977) and Weisberg (1985, p. 101) considered data on
the outside diameter of crank pins that were produced in an industrial process. The
diameters of batches of crank pins were measured on various days; if the industrial
process is “under control” the diameters should not depend on the day they were
measured. A subset of the data is given in Table 3.6 in a format consistent with
performing a regression analysis on the data. The diameters of the crank pins are
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Table 3.5 Weights for various heights.

Ht. Wt. Ht. Wt.
65 120 63 110
65 140 63 135
65 130 63 120
65 135 72 170
66 150 72 185
66 135 72 160

actually .742+ yi j10−5 inches, where the yi js are reported in Table 3.6. Perform
polynomial regressions on the data. Give two lack-of-fit tests for the simple linear
regression not based on polynomial regression.

Table 3.6 Jensen’s crank pin data.

Day Diameter Day Diameter Day Diameter Day Diameter
4 93 10 93 16 82 22 90
4 100 10 88 16 72 22 92
4 88 10 87 16 80 22 82
4 85 10 87 16 72 22 77
4 89 10 87 16 89 22 89

EXERCISE 3.10.5. Beineke and Suddarth (1979) and Devore (1991, p. 380) con-
sider data on roof supports involving trusses that use light-gauge metal connector
plates. Their dependent variable is an axial stiffness index (ASI) measured in kips
per inch. The predictor variable is the length of the light-gauge metal connector
plates. The data are given in Table 3.7.

Table 3.7 Axial stiffness index data.

Plate ASI Plate ASI Plate ASI Plate ASI Plate ASI
4 309.2 6 402.1 8 392.4 10 346.7 12 407.4
4 409.5 6 347.2 8 366.2 10 452.9 12 441.8
4 311.0 6 361.0 8 351.0 10 461.4 12 419.9
4 326.5 6 404.5 8 357.1 10 433.1 12 410.7
4 316.8 6 331.0 8 409.9 10 410.6 12 473.4
4 349.8 6 348.9 8 367.3 10 384.2 12 441.2
4 309.7 6 381.7 8 382.0 10 362.6 12 465.8

Fit linear, quadratic, cubic, and quartic polynomial regression models using pow-
ers of x, the plate length, and using powers of x− x̄·, the plate length minus the
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average plate length. Compare the results of the two procedures. If your computer
program will not fit some of the models, report on that in addition to comparing
results for the models you could fit.

EXERCISE 3.10.6. Consider fitting quadratic models yi = γ0 + γ1xi + γ2x2
i + εi

and yi = β0+β1(xi− x̄·)+β2(xi− x̄·)2+εi. Show that γ2 = β2, γ1 = β1−2β2x̄·, and
γ0 = β0 −β1x̄·+β2x̄2

· .

EXERCISE 3.10.7. Cubic Splines.
To fit two cubic polynomials on the Hooker partition sets, we can fit the regression
function

m(x) = β0 +β1x+β2x2 +β3x3 + γ0h(x)+ γ1xh(x)+ γ2x2h(x)+ γ3x3h(x)

=
(
β0 +β1x+β2x2 +β3x3)+h(x)

(
γ0 + γ1x+ γ2x2 + γ3x3) ,

where the polynomial coefficients below the knot are the β js and above the knot are
the (β j + γ j)s. Define the change polynomial as

C(x)≡ γ0 + γ1x+ γ2x2 + γ3x3.

To turn the two polynomials into cubic splines, we require that the two cubic poly-
nomials be equal at the knot but also that their first and second derivatives be equal
at the knot. It is not hard to see that this is equivalent to requiring that the change
polynomial have

0 =C(191) =
dC(x)

dx

∣∣∣
x=191

=
d2C(x)

dx2

∣∣∣
x=191

,

where our one knot for the Hooker data is at x = 191. Show that imposing these
three conditions leads to the model

m(x) = β0 +β1x+β2x2 +β3x3 + γ3(x−191)3h(x)

= β0 +β1x+β2x2 +β3x3 + γ3[(x−191)+]3.

(It is easy to show that C(x) = γ3(x−191)3 satisfies the three conditions. It is a little
harder to show that satisfying the three conditions implies that C(x) = γ3(x−191)3.)





Chapter 4
Alternative Estimates I

Abstract In this chapter we introduce three commonly used alternatives to least
squares estimation. The first two of them, principal component regression and clas-
sical ridge regression, have been around for a very long time and were originally
developed to deal with issues of collinearity. Today they are often used to deal with
issues of overfitting. (But then overfitting tends to create collinearity.) The third
commonly used alternative is lasso regression, which was specifically developed to
deal with overfitting. The last section takes a broader view of alternatives to least
squares. Classical ridge regression and the lasso are special cases of penalized esti-
mation (regularization) a subject that is treated in more depth in Chapter 8.

4.1 Principal Component Regression

In Section 1.7 we dealt with the issue of collinearity. Four points were emphasized
as the effects of collinearity.

1. The estimate of any parameter, say β̂2, depends on all the variables that are in-
cluded in the model.

2. The sum of squares for any variable, say x2, depends on all the other variables
that are included in the model. For example, none of SSR(x2), SSR(x2|x1), and
SSR(x2|x3,x4) would typically be equal.

3. In a model such as yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, small t statistics for both
H0 : β1 = 0 and H0 : β2 = 0 are not sufficient to conclude that an appropriate
model is yi = β0 +β3xi3 + εi. To arrive at a reduced model, one must compare
the reduced model to the full model.

4. A moderate amount of collinearity has little effect on predictions and therefore
little effect on SSE, R2, and the explanatory power of the model. Collinearity
increases the variance of the β̂ js, making the estimates of the parameters less
reliable. Depending on circumstances, sometimes a large amount of collinearity
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can have an effect on predictions. Just by chance one may get a better fit to the
data than can be justified scientifically.

At its worst, collinearity involves near redundancies among the predictor vari-
ables. An exact redundancy among the predictor variables occurs when we can find
a p× 1 vector d ̸= 0 so that Xd = 0. When this happens the rank of X is not p, so
we cannot find (X ′X)−1 and we cannot find the estimates of β in Proposition 2.3.1.
Near redundancies occur when we can find a vector d that is not too small, say with
d′d = 1, having Xd .

= 0. Principal components (PC) regression is a method designed
to identify near redundancies among the predictor variables. Having identified near
redundancies, they can be eliminated if we so choose. In Section 1.7 we mentioned
that having small collinearity requires more than having small correlations among
all the predictor variables, it requires all partial correlations among the predictor
variables to be small as well. For this reason, eliminating near redundancies cannot
always be accomplished by simply dropping well-chosen predictor variables from
the model.

The basic idea of principal components is to find new variables that are linear
combinations of the x js and that are best able to (linearly) predict the entire set of
x js; see ALM. Thus the first principal component variable is the one linear com-
bination of the x js that is best able to predict all of the x js. The second principal
component variable is the linear combination of the x js that is best able to predict
all the x js among those linear combinations having a sample correlation of 0 with
the first principal component variable. The third principal component variable is the
best predictor that has sample correlations of 0 with the first two principal com-
ponent variables. The remaining principal components are defined similarly. With
p− 1 predictor variables, there are p− 1 principal component variables. The full
collection of principal component variables always predicts the full collection of
x js perfectly. The last few principal component variables are least able to predict
the original x j variables, so they are the least useful. They are also the aspects of
the predictor variables that are most redundant; see PA. The best (linear) predic-
tors used in defining principal components can be based on either the covariances
between the x js or the correlations between the x js. Unless the x js are measured
on the same scale (with similarly sized measurements), it is generally best to use
principal components defined using the correlations.

For The Coleman Report data, a matrix of sample correlations between the x js
was given in Example 1.8.1. Principal components are derived from the eigenvalues
and eigenvectors of this matrix, cf. Section A.8. An eigenvector corresponding to
the largest eigenvalue determines the first principal component variable.

The eigenvalues are given in Table 4.1 along with proportions and cumulative
proportions. The proportions in Table 4.1 are simply the eigenvalues divided by the
sum of the eigenvalues. The cumulative proportions are the sum of the first group of
eigenvalues divided by the sum of all the eigenvalues. In this example, the sum of
the eigenvalues is

5 = 2.8368+1.3951+0.4966+0.2025+0.0689.
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The sum of the eigenvalues must equal the sum of the diagonal elements of the origi-
nal matrix. The sum of the diagonal elements of a correlation matrix is the number of
variables in the matrix. The third eigenvalue in Table 4.1 is 0.4966. The proportion
is 0.4966/5 = 0.099. The cumulative proportion is (2.8368+1.3951+0.4966)/5 =
0.946. With an eigenvalue proportion of 9.9%, the third principal component vari-
able accounts for 9.9% of the variance associated with predicting the x js. Taken
together, the first three principal components account for 94.6% of the variance as-
sociated with predicting the x js because the third cumulative eigenvalue proportion
is 0.946.

Table 4.1 Eigen analysis of the correlation matrix.

Eigenvalue 2.8368 1.3951 0.4966 0.2025 0.0689
Proportion 0.567 0.279 0.099 0.041 0.014
Cumulative 0.567 0.846 0.946 0.986 1.000

For the school data, the principal component (PC) variables are determined by
the coefficients in Table 4.2. The first principal component variable is
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PC1i =−0.229(xi1 − x̄·1)/s1 −0.555(xi2 − x̄·2)/s2

−0.545(xi3 − x̄·3)/s3 −0.170(xi4 − x̄·5)/s4 −0.559(xi5 − x̄·5)/s5 (1)

for i = 1, . . . ,20 where s1 is the sample standard deviation of the xi1s, etc. The
columns of coefficients given in Table 4.2 are actually eigenvectors for the corre-
lation matrix of the x js. The PC1 coefficients are an eigenvector corresponding to
the largest eigenvalue, the PC2 coefficients are an eigenvector corresponding to the
second largest eigenvalue, etc.

Table 4.2 Principal component variable coefficients.

Variable PC1 PC2 PC3 PC4 PC5
x1 −0.229 −0.651 0.723 0.018 −0.024
x2 −0.555 0.216 0.051 −0.334 0.729
x3 −0.545 0.099 −0.106 0.823 −0.060
x4 −0.170 −0.701 −0.680 −0.110 0.075
x5 −0.559 0.169 −0.037 −0.445 −0.678

We can now perform a regression on the new principal component variables. The
table of coefficients is given in Table 4.3. The analysis of variance is given in Ta-
ble 4.4. The value of R2 is 0.906. The analysis of variance table and R2 are identical
to those for the original predictor variables given in Section 1.1. The plot of stan-
dardized residuals versus predicted values from the principal component regression
is given in Figure 4.1. This is identical to the plot given in Figure 1.6 for the orig-
inal variables. All of the predicted values and all of the standardized residuals are
identical.

Table 4.3 Table of Coefficients: Principal component regression.

Predictor γ̂ SE(γ̂) t P
Constant 35.0825 0.4638 75.64 0.000
PC1 −2.9419 0.2825 −10.41 0.000
PC2 0.0827 0.4029 0.21 0.840
PC3 −2.0457 0.6753 −3.03 0.009
PC4 4.380 1.057 4.14 0.001
PC5 1.433 1.812 0.79 0.442

Since Table 4.4 and Figure 4.1 are unchanged, any usefulness associated with
principal component regression must come from Table 4.3. The principal compo-
nent variables display no collinearity. Thus, contrary to the warnings given earlier
about the effects of collinearity, we can make final conclusions about the impor-
tance of variables directly from Table 4.3. We do not have to worry about fitting one
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Table 4.4 Analysis of Variance: Principal component regression.

Source df SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

model after another or about which variables are included in which models. From
examining Table 4.3, it is clear that the important variables are PC1, PC3, and PC4.
We can construct a reduced model with these three; the estimated regression surface
is simply

ŷ = 35.0825−2.9419(PC1)−2.0457(PC3)+4.380(PC4), (2)

where we merely used the estimated regression coefficients from Table 4.3. Refitting
the reduced model is unnecessary because there is no collinearity.
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Fig. 4.1 Standardized residuals versus predicted values for principal component regression.

To get predictions for a new set of x js, just compute the corresponding PC1,
PC3, and PC4 variables using formulae similar to those in Equation (1) and make
the predictions using the fitted model in Equation (2). When using equations like (1)
to obtain new values of the principal component variables, continue to use the x̄· js
and s js computed from only the original observations.
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As an alternative to this prediction procedure, we could use the definitions of the
principal component variables, e.g., Equation (1), and substitute for PC1, PC3, and
PC4 in Equation (2) to obtain estimated coefficients on the original x j variables.

ŷ = 35.0825+[−2.9419,−2.0457,4.380]

PC1
PC3
PC4


= 35.0825+[−2.9419,−2.0457,4.380]×−0.229 −0.555 −0.545 −0.170 −0.559

0.723 0.051 −0.106 −0.680 −0.037
0.018 −0.334 0.823 −0.110 −0.445



(x1 − x̄·1)/s1
(x2 − x̄·2)/s2
(x3 − x̄·3)/s3
(x4 − x̄·4)/s4
(x5 − x̄·5)/s5


= 35.0825+[−0.72651,0.06550,5.42492,1.40940,−0.22889]×

(x1 −2.731)/0.454
(x2 −40.91)/25.90
(x3 −3.14)/9.63
(x4 −25.069)/1.314
(x5 −6.255)/0.654

 .

Obviously this can be simplified into a form ŷ = β̃0 + β̃1x1 + β̃2x2 + β̃3x3 + β̃4x4 +
β̃5x5, which in turn simplifies the process of making predictions and provides new
estimated regression coefficients for the x js that correspond to the fitted principal
component model. In this case they become ŷ = 12.866−1.598x1 +0.002588x2 +
0.5639x3 +1.0724x4 −0.3484x5. These PC regression estimates of the original β js
can be compared to the least squares estimates. Many computer programs for per-
forming PC regression report these estimates of the β js and their corresponding
standard errors. A similar method is used to obtain lasso estimates when the lasso
procedure is performed on standardized predictor variables, cf. Section 3.

It was mentioned earlier that collinearity tends to increase the variance of re-
gression coefficients. The fact that the later principal component variables are more
nearly redundant is reflected in Table 4.3 by the fact that the standard errors for their
estimated regression coefficients increase (excluding the intercept).

One rationale for using PC regression is that you just don’t believe in using nearly
redundant variables. The exact nature of such variables can be changed radically by
small errors in the x js. For this reason, one might choose to ignore PC5 because
of its small eigenvalue proportion, regardless of any importance it may display in
Table 4.3. If the t statistic for PC5 appeared to be significant, it could be written off
as a chance occurrence or, perhaps more to the point, as something that is unlikely
to be reproducible. If you don’t believe redundant variables, i.e., if you don’t believe
that they are themselves reproducible, any predictive ability due to such variables
will not be reproducible either.

When considering PC5, the case is pretty clear. PC5 accounts for only about
1.5% of the variability involved in predicting the x js. It is a very poorly defined as-
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pect of the predictor variables x j and, anyway, it is not a significant predictor of y.
The case is less clear when considering PC4. This variable has a significant effect
for explaining y, but it accounts for only 4% of the variability in predicting the x js,
so PC4 is reasonably redundant within the x js. If this variable is measuring some re-
producible aspect of the original x j data, it should be included in the regression. If it
is not reproducible, it should not be included. From examining the PC4 coefficients
in Table 4.2, we see that PC4 is roughly the average of the percent white-collar
fathers x2 and the mothers’ education x5 contrasted with the socio- economic vari-
able x3. (Actually, this comparison is between the variables after they have been
adjusted for their means and standard deviation as in Equation (1).) If PC4 strikes
the investigator as a meaningful, reproducible variable, it should be included in the
regression.

In our discussion, we have used PC regression both to eliminate questionable
aspects of the predictor variables and as a method for selecting a reduced model.
We dropped PC5 primarily because it was poorly defined. We dropped PC2 solely
because it was not a significant predictor. Some people might argue against this
second use of PC regression and choose to take a model based on PC1, PC2, PC3,
and possibly PC4.

On occasion, PC regression is based on the sample covariance matrix of the x js
rather than the sample correlation matrix. Again, eigenvalues and eigenvectors are
used, but in using relationships like Equation (1), the s js are deleted. The eigen-
values and eigenvectors for the covariance matrix typically differ from those for
the correlation matrix. The relationship between estimated principal component re-
gression coefficients and original least squares regression coefficient estimates is
somewhat simpler when using the covariance matrix.

It should be noted that PC regression is just as sensitive to violations of the as-
sumptions as regular multiple regression. Outliers and high-leverage points can be
very influential in determining the results of the procedure. Tests and confidence
intervals rely on the independence, homoscedasticity, and normality assumptions.
Recall that in the full principal components regression model, the residuals and pre-
dicted values are identical to those from the regression on the original predictor
variables. Moreover, highly influential points in the original predictor variables typ-
ically have a large influence on the coefficients in the principal component variables.

Mohammad Hattab and Gabriel Huerta have brought to my attention that prin-
cipal component regression is also a viable method for fitting models with n < p.
In that case it is simpler to use the eigenvalues and vectors of XX ′ rather than X ′X .
These matrices have the same positive eigenvalues and if you know the eigenvectors
of one, it is easy to find the eigenvectors of the other.

4.2 Classical Ridge Regression

Ridge regression was originally proposed by Hoerl and Kennard (1970) as a method
to deal with collinearity. Now it is more commonly viewed as a form of penalized
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likelihood estimation, which makes it a form of Bayesian estimation. In this sec-
tion, we consider the traditional view of ridge regression. Chapter 8 relates ridge
regression to the more general issue of penalized estimation.

Hoerl and Kennard (1970) looked at the mean squared error, E[(β̂ −β )′(β̂ −β )],
for estimating β with least squares. This is the expected value of a quadratic form
in (β̂ −β ). E(β̂ −β ) = 0 and Cov(β̂ −β ) = σ2(X ′X)−1; so by Theorem 2.1.1,

E[(β̂ −β )′(β̂ −β )] = tr[σ2(X ′X)−1].

If λ 2
1 , . . . ,λ

2
p are the eigenvalues of (X ′X), we have tr[(X ′X)−1] = ∑

p
j=1 λ

−2
j ; so

E[(β̂ −β )′(β̂ −β )] = σ
2

p

∑
j=1

λ
−2
j .

If some of the values λ 2
j are small (which indicates high collinearity), the mean

squared error will be large. To alleviate this problem, Hoerl and Kennard suggested
using the estimate

β̃ ≡ (X ′X + kI)−1X ′Y, (1)

where k ≥ 0 is some fixed scalar. The choice of k will be discussed briefly later but
note that k = 0 gives least squares estimates.

There exists (cf. PA) something called a canonical regression model which trans-
forms Y = Xβ + e into

Y∗ =
[

L
0

]
γ + e∗,

where L is a diagonal matrix. The consequences of using ridge regression are easily
studied in the canonical regression model. The least squares estimate is

γ̂ = (L′L)−1[L′,0]Y∗.

The ridge regression estimate is

γ̃ = (L′L+ kI)−1[L′,0]Y∗ = (L2 + kI)−1L2
γ̂. (2)

In particular,

γ̃ j =
λ 2

j

λ 2
j + k

γ̂ j.

If λ j is small, γ̃ j will be shrunk toward zero. If λ j is large, γ̃ j will change relatively
little from γ̂ j.

The ridge estimate β̃ has expected mean square

E[(β̃ −β )′(β̃ −β )] = σ
2tr[(X ′X + kI)−1X ′X(X ′X + kI)−1]

+β
′{(X ′X + kI)−1X ′X − I

}′{
(X ′X + kI)−1X ′X − I

}
β .
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As in PA, this can be simplified to something for which the derivative with respect
to k at k = 0 can be shown to be negative. Since k = 0 constitutes least squares esti-
mation, in terms of mean squared error there exists k > 0 that gives better estimates
of β than least squares. Unfortunately, the particular values of such k are not known.

Hoerl and Kennard suggested a ridge trace to determine k. A ridge trace is a
simultaneous plot of the estimated regression coefficients (which are functions of k)
against k. The value of k is chosen so that the regression coefficients change little
for any larger values of k. In addition to providing a good overall review of ridge
regression, Draper and van Nostrand (1979) provide references to criticisms that
have been raised against the ridge trace.

Because the mean squared error, E[(β̃ −β )′(β̃ −β )], puts equal weight on each
regression coefficient, it is often suggested that ridge regression be used after the
predictor variables have been rescaled to have mean zero and a common length
(variance).

4.3 Lasso Regression

An alternative to least squares estimation that has become quite popular is lasso
regression, which was proposed by Tibshirani (1996). “Lasso” stands for least ab-
solute shrinkage and selection operator. The interesting thing about lasso is that it
automatically performs variable selection, i.e. it excludes “unimportant” variables,
while it is estimating the regression parameters.

As discussed in Section 2.3, the least squares estimates β̂ j satisfy

n

∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 −·· ·− β̂p−1xi,p−1

)2
=

min
β0,...,βp−1

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2 .

There are various ways that one can present the lasso criterion for estimation. One
of them is to minimize the least squares criterion

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2

subject to an upper bound on the sum of the absolute values of the regression coeffi-
cients. We define the upper bound in terms of the least squares estimates so that the
lasso estimates must satisfy

p−1

∑
j=1

|β j| ≤ λ

p−1

∑
j=1

|β̂ j| (1)
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for some λ with 0 ≤ λ ≤ 1. The lasso estimates depend on the choice of λ . The least
squares estimates obviously satisfy the inequality when λ = 1, so λ = 1 gives least
squares estimates. When λ = 0, all the regression coefficients in the inequality must
be zero, but notice that the intercept is not subject to the upper bound in (1). Thus,
λ = 0 gives the least squares estimates for the intercept-only model, i.e., it zeros out
all the regression coefficients except the intercept, which it estimates with ȳ·.

EXAMPLE 4.3.1. We examine the effect of lasso regression on The Coleman Re-
port data. Table 4.5 contains results for five values of λ and least squares estimates
for two reduced models. For λ = 1, the estimates are identical to the least squares
estimates for the full model.

Table 4.5 Lasso and least squares estimates: The Coleman Report data.

Lasso λ Reduced Model
Predictor 1 0.6 0.56348 0.5 0 Least Squares
Constant 19.95 18.79306 20.39486 26.51564 35.0825 12.1195 14.58327
x1 −1.793 −0.33591 0.00000 0.00000 0.0000 −1.7358 0.00000
x2 0.04360 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000
x3 0.55576 0.51872 0.51045 0.47768 0.0000 0.5532 0.54156
x4 1.1102 0.62140 0.52194 0.28189 0.0000 1.0358 0.74989
x5 −1.811 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000

R’s lasso2 package has a default value of λ = 0.5, which zeros out the coef-
ficients for x1, x2, and x5. The reduced model that only includes x3 and x4 is the
model that we liked in Section 1.5. The lasso estimates of β3 and β4 are noticeably
smaller than the least squares estimates from the reduced model given in the last col-
umn of Table 4.5. I also found the largest value of λ that zeros out the coefficients
for x1, x2, and x5. That value is λ = 0.56348. With this larger value of λ , the lasso
estimates are closer to the reduced model least squares estimates but still noticeably
different.

For λ ≥ 0.56349, lasso produces a nonzero coefficient for x1. From Section 1.5,
if we were going to add another variable to the model containing only x3 and x4, the
best choice is to add x1. Table 4.5 includes results for λ = 0.6 and least squares on
the three-variable model. λ = 0.6 still has the coefficients for x2 and x5 zeroed out.
Again, the nonzero lasso estimates for β1, β3, and β4 are all closer to zero than the
least squares estimates from the model with just x1, x3, and x4. 2

Lasso seems to do a good job of identifying the important variables and it does
it pretty automatically. That can be both a blessing and a curse. It is far less obvious
how well lasso is estimating the regression coefficients. The least squares estimates
seem more stable across reduced models than do the lasso estimates. And there is
the whole issue of choosing λ .

Notice that the inequality (1) uses the same weight λ on all of the regression
coefficients. That is not an obviously reasonable thing to do when the predictor
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variables are measured in different units, so lasso is often applied to standardized
predictor variables, i.e., variables that have their sample mean subtracted and are
then divided by their standard deviation. (This is the default in R’s lasso2 package.)
The regression estimates can then be transformed back to their original scales to be
comparable to the least squares estimates. Section 1 illustrated this standardization
procedure for principal components regression. Lasso applied to the unstandardized
Coleman Report data gives very different, and less appealing, results.

4.4 Robust Estimation and Alternative Distances

Robust estimates of β have less sensitivity to outlying yi values than least squares
estimates, see, for example, Huber and Ronchetti (2009). Robust estimates work
better when the distribution of the yis has fatter tails than the normal distribution,
e.g. Laplace, logistic, t(df ). Optimal estimates for such distributions tend to be non-
linear. In standard linear models least squares estimates are BLUEs, so they should
be reasonable, if not optimal, for most errors that are i.i.d. (independent identically
distributed). The robust estimates discussed here are still sensitive to high leverage
xi vectors.

Write the n× p model matrix as

X =

x′1
...

x′n


so that the linear model Y = Xβ + e also takes the form

yi = x′iβ + εi, i = 1, . . . ,n.

As in Section 2.3 (and reusing notation from Section 2.6), least squares estimates
minimize

∥Y −Xβ∥2 ≡
n

∑
i=1

(yi − x′iβ )
2. (1)

Least squares is a geometric estimation criterion, not a statistical one, but PA shows
that for a standard linear model with Cov(Y ) = σ2I the least squares estimates are
BLUEs and if Y also has a multivariate normal distribution the least squares esti-
mates have other optimal statistical properties. Because the squared distance in (1)
is always nonnegative, it is equivalent (but less convenient) to minimize

∥Y −Xβ∥=

√
n

∑
i=1

(yi − x′iβ )2.

In Section 2.7 we discussed the simplest form of generalized least squares es-
timation, weighted least squares estimation, in which the weights are defined by a
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diagonal matrix D(w) for a vector w = (w1, . . . ,wn)
′ with wi > 0. Weighted least

squares estimates minimize

∥Y −Xβ∥2
D(w) ≡ (Y −Xβ )′D(w)(Y −Xβ ) =

n

∑
i=1

wi(yi − x′iβ )
2. (2)

When Cov(Y ) = σ2D(vi), the optimal weights in (2) are wi = 1/vi.
For an arbitrary n vector v, the measures ∥v∥ and ∥v∥D(W ) provide alternative def-

initions for the length of a vector. A wide variety of estimates for β can be obtained
by defining yet other concepts of the length of a vector. One of the most common
concepts of length used in mathematics is Lp length in which, for p ≥ 1,

∥v∥p ≡

[
n

∑
i=1

|vi|p
]1/p

.

There is also
∥v∥∞ ≡ max

i
{|v1|, . . . , |vn|}.

Relative to the notation defined in Section 2.6 we have

∥ · ∥ ≡ ∥ · ∥2.

A minimum Lp estimate of β minimizes the distance ∥Y −Xβ∥p or, equivalently,
minimizes (∥Y −Xβ∥p)

p. Not that I have ever seen anyone do it, but one could even
estimate β by minimizing ∥Y −Xβ∥∞. When 1 ≤ p < 2, minimum Lp estimates are
robust to unusual yi values. Taking p > 2 makes the estimates more sensitive to
unusual yi values, something statisticians rarely want. (Hence my never seeing any-
one use minimum L∞ estimation. However, according to Nievergelt (2000), Laplace
used p = 1,2,∞ around 1800.) Recall that when estimating the mean of a thin tailed
distribution, like the uniform, it is the most extreme observations that provide the
most information. Minimum Lp estimation provides an immediate analogy to find-
ing weighted least squares estimates: just minimize ∑

n
i=1 wi|yi − x′iβ |p for positive

wis.
In the search for good robust estimates, people have gone well past the use of

minimum weighted Lp estimation with 1 ≤ p < 2. M-estimates involve choosing a
nonnegative loss function L (y,u) and weights and then picking β̃ to minimize the
weighted sum of the losses, i.e.,

n

∑
i=1

wiL (yi,x′iβ̃ ) = min
β

n

∑
i=1

wiL (yi,x′iβ ). (3)

Whether this gives robust estimation or not depends on the choice of loss function.
The M in M-estimation is an allusion to maximum likelihood type estimates.

The loss function L (y,u) = (y−u)2, with equal weights, leads to least squares and
thus to maximum likelihood estimates for standard linear models with multivariate
normal data. In generalized linear models for binomial data, wherein yi denotes the
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proportion of successes, maximum likelihood estimates of β can typically be cast as
minimizing a weighted sum of losses where the weights equal the binomial sample
sizes, cf. Section 9.1. Even Support Vector Machines can be cast as estimating β in
x′β by minimizing a sum of losses, cf. Section 9.5.

In linear models, loss functions typically take the form

L (y,u) = L (y−u).

If L (ξ ) is differentiable everywhere, Newton-Raphson can be used to find the min-
imizing value. One of the more famous families of robust loss functions is Tukey’s
biweight which is typically defined by its derivative:

dξ Lc(ξ )≡

{
ξ

(
1− ξ 2

c2

)
if |ξ |< c

0 if |ξ | ≥ c

for some scale factor c.
Another popular loss function leads to quantile regression. For 0 < τ < 1 define

the loss function,

Lτ(y−u)≡
{

τ(y−u) if y−u > 0
(τ −1)(y−u) if y−u ≤ 0 .

If τ = 0.5 this is median regression and is equivalent to using L1 loss. In general,
the value of u that will minimize this loss function is the τ quantile of the random
variable y. This loss function can be minimized using linear programming.





Chapter 5
Variable Selection

Abstract This chapter addresses the question of which predictor variables should
be included in a linear model. The easiest version of the problem is, given a linear
model, which variables should be excluded. To that end we examine the question of
selecting the best subset of predictor variables from amongst the original variables.
To do this requires us to define a best model and we examine several competing
measures. We also examine a greedy algorithm for this problem known as backward
elimination. The more difficult problem of deciding which variables to place into
a linear model is addressed by the greedy algorithm of forward selection. (These
algorithms are greedy in the sense of always wanting the best thing right now, rather
than seeking a global sense of what is best.) We examine traditional forward se-
lection as well as the modern adaptations of forward selection known as boosting,
bagging, and random forests. We continue to illustrate techniques on the data from
the Coleman Report given in Section 1.1 (Table 1.1)

In general suppose we have a set of variables y,x1, . . . ,xs and observations on
these variables yi,xi1, . . . ,xis, i = 1, . . . ,n. We want to identify which of the predictor
variables x j are important for a regression on y. There are several methods available
for doing this. Recall from Section 2.8 that models with fewer predictors, sometimes
even when the models are incorrect, can provide better estimates than a full model.
Reduced models are also of interest because, when a good reduced model provides
an adequate explanation of the current data, the reduced model is typically more
understandable because it is more succinct.

Tests for the adequacy of various reduced models can be performed, assuming
that the full model

yi = β0 +β1xi1 + · · ·+βsxis + ei (1)

is an adequate model for the data. This largest model will be written Y = Xβ +e. (In
this chapter X is n× (s+1) rather than n× p.) In this chapter a candidate (reduced)
model with p < s predictor variables will be written

yi = γ0 + γ1xi1 + · · ·+ γpxip + ei, (2)

125
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or as Y = X0γ + e. In another notational change for this chapter, to eliminate any
possible confusion about the term “mean squared error” we will refer to SSE/dfE
as the residual mean square (RMS).

Difficulties with predictions can arise when a good reduced model is used with
new cases that are not similar to those on which the reduced model was fitted and
evaluated. In particular, a good fitted reduced model should not be used for predic-
tion of a new case unless all of the predictor variables in the new case are similar
to those in the original data. It is not enough that new cases be similar on just the
variables in the reduced model. In fact it is not even sufficient that they be similar
on all of the variables in the full model because some important variable may not
have been measured for the full model, yet a new case with a very different value of
this unmeasured variable can act very differently. The new cases really need to be a
sample from the same population as the original data.

In the era of big data, we conveniently cause new cases to be sampled from the
same population when evaluating models. The gold standard for evaluating predic-
tive models seems to be randomly dividing the data into a set of training data and a
set of test data. A predictive model is constructed on the training data and its pre-
dictive accuracy is evaluated on the test data. In this scenario, the full data comprise
the population, the training data constitutes one random sample from the popula-
tion, and the test data constitutes another. Any relationships that actually exist in
this population should exist in both the training and test data. But in truth, the com-
plete data are unlikely to be our real target population since the real target of our
predictions is likely to be behavior conducted in the future. By construction the test
data has the same structure as the training data, so predicting the test data is an eas-
ier problem than predicting actual future behavior, which is not guaranteed to have
the same structure as the current data.

Section 1 discusses best subset selection and introduces six approaches for rank-
ing (identifying the best) candidate models. Section 2 considers three methods for
making sequential selections of variables: backward elimination, forward selec-
tion, and stepwise methods. Obviously, it is better to consider all reduced models,
whenever feasible, rather than making sequential selections. Sequential methods are
flawed but they are cheap and easy. Section 3 illustrates how model selection results
can depend on outliers. (If you change anything, you change everything.) Section 4
contains a discussion of the ideas presented to that point. Section 5 presents some
modern alternatives to of forward selection.

5.1 Best Subset Selection

The most sure way to find the best reduced model is to look at all of them. If you
have a criterion for deciding on the best model, fit all of the possible candidate
models and select the best ones. For regression equations involving x1, . . . ,xs, there
are 2s candidate models. (Last time I checked, both R and Minitab required s ≤ 31.)
Even if one has the time and money to compute all of the models, it may be difficult
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to assimilate that much information, hence the need to specify a criterion for ranking
the best models.

The efficient computation of all possible regressions is due to Schatzoff, Tsao,
and Fienberg (1968). Their algorithm was a major advance. Further advances have
made this method obsolete. It is a waste of money to compute all possible regres-
sions. One should only compute those regressions that consist of the best subsets of
the predictor variables. The efficient computation of the best regressions is due to
Furnival and Wilson (1974).

“Best” is defined by ranking models on the basis of some measure of how well
they fit or predict. The most commonly used of these measures were R2, adjusted R2,
and Mallows’s Cp. In recent years AIC and BIC have become increasingly popular
measures. Except for R2, all of these criteria introduce a penalty for fitting more
parameters. Cost complexity pruning determines the best model by using cross-
validation to determine the most appropriate penalty. All of these criteria are dis-
cussed in the subsections that follow. Although nominally discussed for regression
models, all of these measures are trivially adapted to general linear models by re-
placing the number of columns in model matrices by their ranks.

Although the criteria for identifying best models are traditionally used in the
context of finding the best subsets among all possible regression models, they can be
used to identify the best within any collection of linear or generalized linear models.
For example, Christensen (2015) uses the Cp statistic to identify best unbalanced
ANOVA models, Christensen (1997) used AIC to identify best ANOVA-like log-
linear models for categorical data, and in the next section we mention using them
on the sequences of models created by stepwise regression procedures.

5.1.1 R2 statistic

The fundamental statistic in comparing all possible reduced models is the R2 statis-
tic. This is appropriate but we should recall some of the weaknesses of R2. The nu-
merical size of R2 is more related to predictive ability than to model adequacy. The
perfect model can have small predictive ability and thus a small R2, while demon-
strably inadequate models can still have substantial predictive ability and thus a
high R2. Fortunately, we are typically more interested in prediction than in finding
the perfect model, especially since our models are typically empirical approxima-
tions for which no perfect model exists. Moreover, although the absolute size of
R2 does not address model fit, the relative sizes of R2 does. The model with the
higher R2 typically fits better (has a smaller SSE), regardless of whether it is actu-
ally a good fit. Finally, when considering transformations of the dependent variable,
the R2 values for different models are not comparable (unless predictions are back
transformed to the original scale and correlated with the original data to obtain R2).

In the present context, the most serious drawback of R2 is that it typically goes
up when more predictor variables are added to a model. (It cannot go down.) Thus
it is not really appropriate to compare the R2 values of two models with different
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numbers of predictors. However, we can use R2 to compare models with the same
number of predictor variables. In fact, for models with the same number of pre-
dictors, we can use R2 to order them from best to worse; the largest R2 value then
corresponds to the best model. R2 is the fundamental model comparison statistic for
best subset methods in that, for comparing models with the same number of predic-
tors, the other methods considered give the same relative orderings for models as
R2. The essence of the other methods is to develop a criterion for comparing models
that have different numbers of predictors, i.e., the methods incorporate penalties for
adding more regression parameters.

Table 5.1 contains the two best models for the Coleman Report data based on the
R2 statistic for each number of predictor variables. The best single variable is x3;
the second best is x2. This information could be obtained from the correlations be-
tween y and the predictor variables given in Section 1.1. Note the drastic difference
between the R2 for using x3 and that for x2. The best pair of variables for predicting
y is x3 and x4, while the second best pair is x3 and x5. The best three-variable model
contains x1, x3, and x4. Note that the largest R2 values go up very little when a forth
or fifth variable is added. Moreover, all the models in Table 5.1 that contain three or
more variables include x3 and x4. We could conduct F tests to compare models with
different numbers of predictor variables, as long as the smaller models are contained
in the larger ones.

Table 5.1 Best subset regression: R2 statistic.

Included variables
Vars. R2

√
RMS x1 x2 x3 x4 x5

1 86.0 2.2392 X
1 56.8 3.9299 X
2 88.7 2.0641 X X
2 86.2 2.2866 X X
3 90.1 1.9974 X X X
3 88.9 2.1137 X X X
4 90.2 2.0514 X X X X
4 90.1 2.0603 X X X X
5 90.6 2.0743 X X X X X

Any models that we think are good candidates should be examined for influential
and outlying observations, consistency with assumptions, and subject matter impli-
cations. Any model that makes particularly good sense to a subject matter specialist
warrants special consideration. Models that make particularly poor sense to subject
matter specialists may be dumb luck but they may also be the springboard for new
insights into the process generating the data. We will examine the role of observa-
tions that are influential or outlying in the original (full) model in more detail later.
Finally, recall that when making predictions based on reduced models, the point at
which we are making the prediction generally needs to be consistent with the origi-
nal data on all variables, not just the variables in the reduced model. When we drop
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a variable, we do not conclude that the variable is not important, we conclude that
it is not important for this set of data. For different data, a dropped variable may
become important. We cannot presume to make predictions from a reduced model
for new cases that are substantially different from the original data.

5.1.2 Adjusted R2 statistic

The adjusted R2 statistic is simply an adjustment of R2 that allows comparisons to
be made between models with different numbers of predictor variables. Let p be the
number of predictor variables in a candidate model (excluding the intercept), then
the adjusted R2 is defined to be

Adj R2 ≡ 1− n−1
n− p−1

(
1−R2) .

For the Coleman Report example with all predictor variables, this becomes

0.873 = 1− 20−1
20−6

(1−0.9063) ,

or, as it is commonly written, 87.3%.
It is not too difficult to see that

Adj R2 = 1− RMS
s2

y

where RMS is the residual mean square of the candidate model and s2
y is the sam-

ple variance of the yis, i.e., s2
y = SSTot/(n− 1). This is a much simpler statement

than the defining relationship. For the Coleman Report example with all predictor
variables, this is

0.873 = 1− 4.30
(642.92)/19

.

Note that when comparing two models, the model with the smaller RMS has the
larger adjusted R2.

R2 is always between 0 and 1, but while the adjusted R2 cannot get above 1, it
can get below 0. It is possible to find models that have RMS > s2

y . In these cases, the
adjusted R2 is actually less than 0.

Models with large adjusted R2s are precisely models with small residual mean
squares. At first glance, this seems like a reasonable way to choose models, but
upon closer inspection the idea seems flawed. The problem is that when comparing
some model with a reduced model, the adjusted R2 is greater for the larger model
whenever the residual mean square of the larger model is less than the numerator
mean square for testing the adequacy of the smaller model. In other words, the
adjusted R2 is greater for the larger model whenever the F statistic for comparing the
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models is greater than 1. Typically, we want the F statistic to be substantially larger
than 1 before concluding that the extra variables in the larger model are important.

To see that the adjusted R2 is larger for the larger model whenever F > 1, consider
the simplest example, that of comparing the full model to the model that contains
just an intercept. For the Coleman Report data, the residual mean square for the
intercept model is

SSTot/19 = 642.92/19 = (SSReg+SSE)/19

= (5MSReg+14RMS)/19 =
5

19
116.54+

14
19

4.30.

Thus SSTot/19 is a weighted average of MSReg and RMS. The MSReg is greater
than the RMS (F > 1), so the weighted average of the terms must be greater than the
smaller term, RMS. The weighted average is SSTot/19, which is the residual mean
square for the intercept model, while RMS is the residual mean square for the full
model. Thus F > 1 implies that the residual mean square for the smaller model is
greater than the residual mean square for the larger model and the model with the
smaller residual mean square has the higher adjusted R2.

In general, the residual mean square for the smaller model is a weighted average
of the mean square for the variables being added and the residual mean square of
the larger model. If the mean square for the variables being added is greater than the
residual mean square of the larger model, i.e., if F > 1, the residual mean square
for the smaller model must be greater than that for the larger model. If we add
variables to a model whenever the F statistic is greater than 1, we will include a lot
of unnecessary variables.

Table 5.2 contains the six best-fitting models as judged by the adjusted R2 cri-
terion. As advertised, the ordering of the models from best to worst is consistent
whether one maximizes the adjusted R2 or minimizes the RMS (or equivalently,√

RMS). The best model based on the adjusted R2 is the model with variables x1,
x3, and x4, but a number of the best models are given. Presenting a number of the
best models reinforces the idea that selection of one or more final models should
be based on many more considerations than just the value of one model selection
statistic. Moreover, the best model as determined by the adjusted R2 often contains
too many variables.

Table 5.2 Best subset regression: Adjusted R2 statistic.

Adj. Included variables
Vars. R2

√
RMS x1 x2 x3 x4 x5

3 88.2 1.9974 X X X
4 87.6 2.0514 X X X X
4 87.5 2.0603 X X X X
2 87.4 2.0641 X X
5 87.3 2.0743 X X X X X
3 86.8 2.1137 X X X
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Note also that the two models in Table 5.2 with three variables are precisely the
two three-variable models with the highest R2 values from Table 5.1. The same is
true about the two four-variable models that made this list. As indicated earlier,
when the number of variables is fixed, ordering models by their R2s is equivalent
to ordering models by their adjusted R2s. The comments about model checking and
prediction made in the previous subsection continue to apply.

5.1.3 Mallows’s Cp statistic

Mallows’s Cp statistic estimates a measure of the difference between the fitted re-
gression surface from a reduced model and the actual regression surface. The idea
is to compare the points

zi = β0 +β1xi1 +β2xi2 +β3xi3 + . . .+βsxi,s

on the actual regression surface of the full model (Full) to the corresponding pre-
dictions ŷiR from some candidate model (Red.) that has, say, p predictor variables
(excluding the constant). The comparisons are made at the locations of the original
data. The model comparison is based on the sum of standardized squared differ-
ences,

κ ≡
n

∑
i=1

(ŷiR − zi)
2/

σ
2.

The term σ2 serves only to provide some standardization. Small values of κ indicate
good reduced models. Note that κ is not directly useful because it is unknown. It
depends on the zi values and they depend on the unknown full model regression
parameters. However, if we think of the ŷiRs as functions of the random variables yi,
the comparison value κ is a function of the yis and thus is a random variable with
an expected value. Mallows’s Cp statistic is an estimate of the expected value of κ .
In particular, Mallows’s Cp statistic is

Cp =
SSE(Red.)
RMS(Full)

− (n−2p−2).

A derivation of this statistic is given later. The smaller the Cp value, the better the
model (up to the variability of the estimation). If the Cp statistic is computed for the
full model, the result is always s+ 1, the number of predictor variables including
the intercept. For general linear models the Cp for a candidate model Y = X0γ + e
replaces n−2p−2 with n−2r(X0) .

In multiple regression, estimated regression surfaces are identical to prediction
surfaces, so models with Mallows’s Cp statistics that are substantially less than s+1
can be viewed as reduced models that are estimated to be better at prediction than
the full model. Of course this comparison between predictions from the full and
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reduced models is restricted to the actual combinations of predictor variables in the
observed data.

For the Coleman Report data, Table 5.3 contains the best six models based on
the Cp statistic. The best model is the one with variables x3 and x4, but the model
including x1, x3, and x4 has essentially the same value of Cp. There is a substantial
increase in Cp for any of the other four models. Clearly, we would focus attention
on the two best models to see if they are adequate in terms of outliers, influential
observations, agreement with assumptions, and subject matter implications. As al-
ways, predictions can only be made with safety from the reduced models when the
new cases are to be obtained in a similar fashion to the original data. In particular,
new cases must have similar values to those in the original data for all of the pre-
dictor variables, not just those in the reduced model. Note that the ranking of the
best models is different here than for the adjusted R2. The full model is not included
here, while it was in the adjusted R2 table. Conversely, the model with x2, x3, and
x4 is included here but was not included in the adjusted R2 table. Note also that
among models with three variables, the Cp rankings agree with the R2 rankings and
the same holds for four-variable models.

Table 5.3 Best subset regression: Cp statistic.

Included variables
Vars Cp

√
RMS x1 x2 x3 x4 x5

2 2.8 2.0641 X X
3 2.8 1.9974 X X X
3 4.6 2.1137 X X X
4 4.7 2.0514 X X X X
3 4.8 2.1272 X X X
4 4.8 2.0603 X X X X

It has been my impression that Mallows’s Cp statistic is the most popular method
for selecting a best subset of the predictor variables. It is certainly my favorite.
Mallows’s Cp statistic is closely related to Akaike’s information criterion (AIC),
which is a general criterion for model selection and the model selection criterion
that R seems to default to most often.

It is an exercise in PA-V to show that when you can test two candidate models,
the Cp is smaller for the larger model if and only if an appropriate F test statistic is
larger than 2.

5.1.3.1 Derivation

Assume a correct full model yi = β0 +β1xi1 + · · ·+βsxis + ei, i.e.,

Y = Xβ + e, E(e) = 0, Cov(e) = σ
2I.
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In variable selection the problem nominally being addressed is that some of the β js
may be zero. But it follows from Section 2.8 that when some of the β js are merely
small, we may get better fitted values by eliminating those small β js altogether.
Rather than trying to identify which β js are zero, Mallows suggested that the ap-
propriate criterion for evaluating a reduced candidate model Y = X0γ + e is via its
mean squared error for estimating Xβ , i.e.,

E
[
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

]
.

This equals σ2E(κ) and is the same criterion used in Section 2.8. To distinguish
between this use of the term “mean squared error” and the estimate of the variance
in the full model we write RSS(β )≡Y ′(I−M)Y for the residual sum of squares and
RMS(β )≡Y ′(I−M)Y/r(I−M) for the residual mean square. The statistics RSS(γ)
and RMS(γ) are the corresponding quantities for the model Y = X0γ + e.

The quantity
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

is a quadratic form in the vector (X0γ̂ −Xβ ). Writing the perpendicular projection
operator onto C(X0) as

M0 = X0(X ′
0X0)

−X ′
0

so that X0γ̂ = M0Y , recalling that M0 must be idempotent and symmetric, and ap-
plying the first two parts of Proposition 2.1.1 gives

(X0γ̂ −Xβ ) = M0Y −Xβ ,

E(X0γ̂ −Xβ ) = M0Xβ −Xβ =−(I −M0)Xβ ,

Cov(X0γ̂ −Xβ ) = σ
2M0.

From Proposition 2.1.1 part 3,

E
[
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

]
= σ

2tr(M0)+β
′X ′(I −M0)Xβ . (1)

We do not know σ2 or β but we can estimate the right-hand side of equation (1).
We know that E[RMS(β )] = σ2 and note that

E[RSS(γ)] = E
[
Y ′(I −M0)Y

]
= σ

2tr(I −M0)+β
′X ′(I −M0)Xβ ,

so

E
[
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

]
= σ

2tr(M0)+E
[
Y ′(I −M0)Y

]
−σ

2tr(I −M0)

= σ
2 [2tr(M0)−n]+E

[
Y ′(I −M0)Y

]
.

With p+1 = tr(M0) = r(X0), an unbiased estimate of the mean squared error is

RMS(β )[2(p+1)−n]+RSS(γ).
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Mallows’s Cp statistic simply rescales the estimated mean squared error,

Cp ≡
RSS(γ)

RMS(β )
− [n−2(p+1)].

The models with the smallest values of Cp have the smallest estimated mean squared
error and should be among the best models for the data.

5.1.4 A combined subset selection table

For the Coleman Report data, Table 5.4 lists the three best models based on R2 for
each number of predictor variables. In addition, the adjusted R2 and Cp values for
each model are listed in the table. It is easy to identify the best models based on
any of the model selection criteria. The output is extensive enough to include a few
notably bad models. Rather than asking for the best 3, one might ask for the best 4,
or 5, or 6 models for each number of predictor variables but it is difficult to imagine
a need for any more extensive summary of the models when beginning a search for
good reduced models.

Table 5.4 Best subset regression.

Adj. Included variables
Vars. R2 R2 Cp

√
RMS x1 x2 x3 x4 x5

1 86.0 85.2 5.0 2.2392 X
1 56.8 54.4 48.6 3.9299 X
1 53.7 51.2 53.1 4.0654 X
2 88.7 87.4 2.8 2.0641 X X
2 86.2 84.5 6.7 2.2866 X X
2 86.0 84.4 6.9 2.2993 X X
3 90.1 88.2 2.8 1.9974 X X X
3 88.9 86.8 4.6 2.1137 X X X
3 88.7 86.6 4.8 2.1272 X X X
4 90.2 87.6 4.7 2.0514 X X X X
4 90.1 87.5 4.8 2.0603 X X X X
4 89.2 86.3 6.1 2.1499 X X X X
5 90.6 87.3 6.0 2.0743 X X X X X

Note that the model with x1, x3, and x4 is the best model as judged by adjusted
R2 and is nearly the best model as judged by the Cp statistic. (The model with x3
and x4 has a slightly smaller Cp value.) The model with x2, x3, x4 has essentially the
same Cp statistic as the model with x1, x2, x3, x4 but the latter model has a larger
adjusted R2.
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5.1.5 Information Criteria: AIC, BIC

Unlike the previous criteria that depend only on second moment assumptions
(means, variances, and covariances), information criteria depend on the likelihood
of the data. The log-likelihood for a standard linear model under normal theory is

ℓ(β ,σ2) =
−n
2

log(2π)− n
2

log[σ2]− (Y −Xβ )′(Y −Xβ )/2σ
2,

e.g. PA, Chapter 2 or the nonlinear regression chapter of ANREG. The log-likelihood
is just the log of the probability density function for a random Y given the fixed pa-
rameters β and σ2. What makes the density function into a likelihood function is
thinking of Y as a fixed observation and viewing β and σ2 as unknown variables.
The maximum likelihood estimates (MLEs) of β and σ2 are the values that max-
imize the likelihood. Maximizing the log-likelihood is equivalent and easier. It is
not too hard to see that the MLEs are the least squares β̂ and σ̂2 ≡ RSS/n. After
simplification, the maximum value of −2 times the log-likelihood function is

−2ℓ(β̂ , σ̂2) = n log(2π)+n log(RSS)−n log(n)+n.

The Akaike Information Criterion (AIC) is −2 times the maximum of the log-
likelihood plus 2 times the number of parameters in the model. Better models have
smaller AIC values. For a candidate regression model with p predictors plus an
intercept plus an unknown variance, the MLEs are γ̂ , σ̂2

γ = RSS(γ)/n, so

AIC = −2ℓ(γ̂, σ̂2
γ )+2(p+2)

= n log(2π)+n log[RSS(γ)]−n log(n)+n+2(p+2).
= {n log(2π)−n log(n)+n+4}+n log[RSS(γ)]+2p.

Everything in the first term of the last line is a constant that does not depend on the
particular model, so, for comparing candidate models with intercepts, effectively

AIC = n log[RSS(γ)]+2p.

If you want to use AIC to compare models with different data distributions, the
constant term needs to be included.

It is an exercise in PA-V to find the AIC for a linear model in which the variance
is known. It turns out to be a monotone function of

RSS(γ)
σ2 − [n−2(p+1)],

which is Cp except that RMS(β ) has been replaced with the known value σ2.
While it is somewhat advantageous that AIC can be computed without worrying

about the existence of a largest model, it is of interest to compare how AIC and
Cp work when both are applicable. Using the notation introduced for deriving Cp
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statistics, AIC picks candidate models with small values of

RSS(γ)e2p/n = exp(AIC/n),

whereas Cp picks models with small values of

RSS(γ)+2pRMS(β ).

In particular, a full model is preferred to a reduced model if AIC(β ) < AIC(γ) but
PA-V shows that for large samples n, this is approximately the same condition as

F > 2,

where F is the standard model testing statistic. This is similar to the condition men-
tioned earlier for Cp but there are some differences related to how the denominators
of the F statistics are defined.

For small to moderate samples, many prefer to use a bias corrected form of AIC
for evaluating candidate models, namely,

AICc ≡ AIC+
2(p+2)(p+3)

n− p−3
.

cf. Sugiura (1978), Hurvich and Tsai (1989), Bedrick and Tsai (1994), and Ca-
vanaugh (1997). It is commonly suggested to use AICc when any of the candidate
models have n/(p+2)< 40.

Schwarz (1978) presented an asymptotic Bayesian information criterion (BIC)
which is −2 times the maximum of the log-likelihood plus log(n) times the number
of model parameters. For a standard normal theory regression candidate model with
an intercept,

BIC = −2ℓ(γ̂, σ̂2
γ )+(p+2) log(n)

= {n log(2π)− (n−2) log(n)+n}+n logRSS+ p log(n),

or effectively,
BIC = n logRSS+ p log(n).

The derivation of BIC from Bayesian principals is described in Christensen et
al. (2010).

BIC places much greater demands on variables to be included. When comparing
nested models with p and s predictors, it chooses the larger model when, approxi-
mately,

log(n)< F.

This approximation requires much larger sample sizes to be effective than the AIC
approximation requires, cf. PA-V.

It is also an exercise in PA-V to show that, for a given value of p, the R2, Adj R2,
Cp, AIC, AICc, and BIC criteria all induce the same rankings of candidate models.
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5.1.6 Cost complexity pruning

Cost complexity pruning is a related, but more complicated, way of determining the
best model within a collection of candidate models. The collection of models can
be all possible models or just the sequences of models determined by a stepwise
regression method as discussed in the next section. For a given value of α , pick the
model from the collection that minimizes RSS+α p. The complexity comes because
the value of α is chosen by cross-validation. Find the best model for a large number
of α values and then choose a final α , and thus a final model, by cross-validation.

Specifically, randomly divide the data into K equal sized subgroups of observa-
tions, leave out one subgroup and apply the procedure to the other K − 1. Using
the K − 1 subgroups as data, find the model within the collection that minimizes
RSS+α p, fit the model, predict the results in the omitted subgroup, and find the
mean of the squared prediction errors, i.e., MSPE. (Mean Squared Prediction Error;
not the Mean Squared Pure Error associated with Fisher’s lack of fit test.) In cost
complexity pruning you do this for a large number of different α values to get a
MSPE for each α , i.e., MSPE(α). Cycle through, leaving out a different subgroup
each time, to get K different means of squared prediction errors, i.e., MSPEk(α),
k = 1, . . . ,K. Pick α̂ to minimize ∑

K
k=1 MSPEk(α). The best model is the model that

minimizes RSS+ α̂ p when fitted to all the data.
James et al. (2013) discuss cost complexity pruning in the context of fitting the

regression trees introduced in Chapter 7. The term “pruning” originates from lop-
ping off tree limbs, not from devoring desiccated plums.

5.2 Stepwise Variable Selection

Best subset selection methods evaluate all the possible subsets of variables from a
full model and identify the best reduced regression models based on some criterion.
Evaluating all possible models is the most reasonable way to proceed in variable se-
lection but the computational demands of evaluating every model can be staggering.
Every additional variable in a model doubles the number of reduced models that can
be constructed. In our example with five variables, there are 25 = 32 reduced models
to be considered; in an example with 8 variables there are 28 = 256 reduced models
to be fitted. Years ago, when computation was slow and expensive, fitting large num-
bers of models was not practical, and even now, when one has a very large number
of predictor variables, fitting all models can easily overwhelm a computer. (Actu-
ally, improved computer algorithms allow us to avoid fitting all models, but even
with the improved algorithms, computational limits can be exceeded.) As alluded
to earlier, R and Minitab currently seem willing to consider up to 231 .

= 200,000
reduced models.

An alternative to fitting all models is to evaluate the variables one at a time and
look at a sequence of models. Stepwise variable selection methods do this. The best
of these methods begin with a full model and sequentially identify variables that
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can be eliminated. In some procedures, variables that have been eliminated may
be put back into the model if they meet certain criteria. The virtue of starting with
the full model is that if you start with an adequate model and only do reasonable
things, you should end up with an adequate model. A less satisfactory procedure is
to begin with no variables and see which ones can be added into the model. This
begins with an inadequate model and there is no guarantee that an adequate model
will ever be achieved. We consider three methods: backwards elimination in which
variables are deleted from the full model, forward selection in which variables are
added to a model (typically the model that includes only the intercept), and stepwise
methods in which variables can be both added and deleted. Because these methods
only consider the deletion or addition of one variable at a time, they may never find
the best models as determined by best subset selection methods.

5.2.1 Forward selection

Forward selection begins with an initial model and adds variables to the model one at
a time. Most often, the initial model contains only the intercept, but many computer
programs have options for including other variables in the initial model. Another
reasonable starting point is to include all variables with large t statistics when fitting
a full model containing all predictors. Logically, variables that are important in the
full model should never lose their importance in reduced models.

To determine which variable to add at any step in the process, a candidate vari-
able is added to the current model and the t statistic is computed for the candidate
variable. This is done for each candidate variable and the candidate variable with
the largest |t| statistic is added to the model. The procedure stops when none of the
absolute t statistics is greater than a predetermined level. The predetermined level
can be a fixed number for all steps or it can change with the step. When allowing it
to change depending on the step, we could set the process so that it stops when none
of the P values for the candidate variables is below a fixed level.

EXAMPLE 5.2.1. Coleman Report.
Table 5.5 gives an abbreviated summary of the procedure for the Coleman Report
data using 2 as the predetermined |t| level for stopping the process and starting
with the intercept-only model. At the first step, the five models yi = γ0 j + γ jxi j + εi,
j = 1, . . . ,5 are fitted to the data. The variable x j with the largest absolute t statistic
for testing γ j = 0 is added to the model. Table 5.5 indicates that this was variable
x3. At step 2, the four models yi = β0 j +β3 jxi3 +β jxi j + εi, j = 1,2,4,5 are fitted
to the data and the variable x j with the largest absolute t statistic for testing β j = 0
is added to the model. In the example, the largest absolute t statistic belongs to
x4. At this point, the table stops, indicating that when the three models yi = η0 j +
η3 jxi3 +η4 jxi4 +η jxi j +εi, j = 1,2,5 were fitted to the model, none of the absolute
t statistics for testing η j = 0 were greater than 2.
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Table 5.5 Forward selection on Coleman Report data.

Step Const. x1 x2 x3 x4 x5 R2
√

RMS
1 β̂ 33.32 0.560 85.96 2.24

tobs 10.50
2 β̂ 14.58 0.542 0.75 88.73 2.06

tobs 10.82 2.05

The final model selected is the model with predictor variables x3 and x4. This is
the same model that will be obtained from backwards elimination and the model that
has the smallest Cp statistic. This is a fortuitous circumstance. There is no assurance
that such agreement between methods will occur. 2

Traditional forward selection sequentially adds variables to the model. Since this
is a sequential procedure, the model in question is constantly changing. At any stage
in the selection process, forward selection adds the variable that when added:

1. gives the largest absolute t statistic,
2. gives the largest F statistic,
3. gives the smallest P value,
4. increases R2 the most,
5. decreases RSS the most,
6. gives the smallest Cp,
7. gives the smallest AIC,
8. gives the smallest BIC,
9. has the highest absolute partial correlation with y given the variables in the cur-

rent model.

It is an exercise in PA-V to show that these criteria are equivalent when only consid-
ering the addition of one new variable.

Traditional forward selection stops adding variables when one of three things
happens:

1. p∗ variables have been added,
2. all absolute t statistics for adding variables not in the model are less than t∗,
3. the tolerance is too small for all variables not in the model.

The user (or programmer) picks the values of p∗ and t∗ and the tolerance limit. The
tolerance condition is a limit on the collinearity allowed among of the predictors
variables. Tolerance is discussed in the PA chapter on collinearity. No variable is
ever added if its tolerance is too small, regardless of its absolute t statistic. Tradi-
tionally, one just uses the model that stopped the process. Alternatively, one could
use a model selection criterion to pick the best among the sequence of models that
forward selection has produced.

Although the nine criteria for adding variables are equivalent, stopping rules get
tricky. For example, a stopping rule based on having all P values above some fixed
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number is not equivalent to any stopping rule based on having all |t| statistics below
some fixed number because the P values depend on the residual degrees of free-
dom which keep changing. Reasonable stopping rules based on AIC or BIC might
be when these no longer decrease or one can stop when Adj. R2 fails to increase.
Unfortunately, such stopping rules remove the flexibility that a self-selected stop-
ping rule has to control the extent to which forward selection explores the set of all
models. A stopping rule for forward selection based on Cp is rarely appropriate be-
cause there is rarely a largest model under consideration. (I would never use forward
selection if I could fit a reasonable full model.)

The author has a hard time imagining any situation where forward selection from
the intercept-only model is a reasonable thing to do, except possibly as a screening
device when there are more predictor variables than there are observations. In such
a case, the full model cannot be fitted meaningfully, so best subset methods and
backwards elimination do not work.

EXAMPLE 5.2.2. Big Data. The data involve 1000 observations on a dependent
variable and 100 predictor variables. By big data standards, this is a small set of big
data. I performed forward selection with a stopping rule that the P value to enter the
model must be below α = 0.05. The table of parameters follows.

Table of Coefficients: Forward Selection, α = 0.05.
Predictor γ̂i SE(γ̂i) t P
Constant 501.14 9.05 55.39 0.000
x24 −21.84 9.03 −2.42 0.016
x56 21.42 9.05 2.37 0.018
x72 −26.34 8.91 −2.96 0.003
x75 20.51 8.73 2.35 0.019
x82 −18.08 8.79 −2.06 0.040

The model has a horrible R2 of 0.0287 but it seems that there are several variables
that help explain the data.

None of these variables has any actual effect! With two exceptions, all the
101,000 observations are i.i.d. standard normal. The first exception is that the y
observations have a signal added to them. The other exception is that x49 consists of
a small multiple of the signal buried within (the negative of) the white noise in x100.
The signal in x49 is almost hopelessly lost within that white noise, except for the fact
that x49 + x100 is precisely the small multiple of the signal. If you have both x49 and
x100 in the model, you can extract the signal, but neither x49 nor x100 by itself helps.
Any model that contains the two important variables will have R2 = 1.0000.

I also ran the forward selection stopping when, to get a variable added, its P value
must be below α = 0.25 (the Minitab default). The idea of the higher cutoff value
is to try to get important combinations of variables, like x49 and x100, into the model
so that their joint effect can be seen. It did not work here. The final model included
the 5 predictors from α = 0.05 plus 17 additional worthless predictors. Again, the
model gives poor prediction with R2 = 0.0717. When using a large α value, it seems
inappropriate to blindly use the final model produced, since it will include a lot of
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variables with little predictive power. A far better procedure would be to select the
best among the sequence of models produced or the best subset of the final model.
While these are better procedures, in this example they are better procedures for
producing garbage.

Even with α = 0.75 and a final model that includes 79 of the 100 predictors,
forward selection still did not manage to pick up both of the predictors necessary
for getting a good model. Using a large α increases our chances of picking up the
two good predictors, but it picks up a lot of junk predictors also. If we are lucky
enough to pick up our two worthwhile predictors, clearly we would want to go back
and eliminate the obvious junk. Of course α = 1 will always find the two important
variables because it will always fit the full model at the end of the sequence. But if
you can fit the full model, you should be doing backward elimination or, better yet,
best subset selection.

The way this example was constructed, α is pretty much the probability of find-
ing a good prediction model using forward selection. I did not go looking for a large
P value, but the P value associated with x100 was particularly large. (Recall that,
by itself, x100 is unrelated to y and independent of all the predictors except x49, so
it’s P remains pretty stable in any model that excludes x49. Moreover, because the
signal is buried in x49, the same is true about x49 in any model that excludes x100.) If
the P value for x100 is below α , forward selection should find a good model in this
example. 2

The problem of finding “important” effects that are actually meaningless is ubiq-
uitous with big data. It is no accident that with α = 0.05 we found about 5% of
the meaningless predictors to be significant. It is no accident that with α = 0.25 we
found about 25% of the meaningless predictors in our model. The more tests you
perform, the more meaningless things will look statistically significant. With any
big data where nothing is related, you can always find something that looks related.
In exploring big data, the usual standards of statistical significance do not apply,
cf. Chapter 6.

As mentioned earlier, stopping rules based on AIC or BIC failing to decrease
or Adj. R2 failing to increase, lack the flexibility in exploring the space of possible
models that one gets by selecting a P value or an absolute t statistic for inclusion.

5.2.2 Backwards elimination

Backwards elimination begins with the full model and sequentially eliminates from
the model the least important variable. The importance of a variable is judged by the
size of the t (or equivalent F) statistic for dropping the variable from the model, i.e.,
the t statistic for testing whether the corresponding regression coefficient is 0. After
the variable with the smallest absolute t statistic is dropped, the model is refitted and
the t statistics recalculated. Again, the variable with the smallest absolute t statistic
is dropped. The process ends when all of the absolute values of the t statistics are
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greater than some predetermined level. The predetermined level can be a fixed num-
ber for all steps or it can change depending on the step. When allowing it to change
depending on the step, we could set up the process so that it stops when all of the P
values are below a fixed level.

EXAMPLE 5.2.3. Coleman Report.
Table 5.6 illustrates backwards elimination for the Coleman Report data. In this
example, the predetermined level for stopping the procedure is 2. If all |t| statistics
are greater than 2, elimination of variables halts. Step 1 includes all 5 predictor
variables. The table gives estimated regression coefficients, t statistics, the R2 value,
and the square root of the RMS. In step 1, the smallest absolute t statistic is 0.82, so
variable x2 is eliminated from the model. The statistics in step 2 are similar to those
in step 1 but now the model includes only variables x1, x3, x4, and x5. In step 2, the
smallest absolute t statistic is |−0.41|, so variable x5 is eliminated from the model.
Step 3 is based on the model with x1, x3, and x4. The smallest absolute t statistic is
the | − 1.47| for variable x1, so x1 is dropped. Step 4 uses the model with only x3
and x4. At this step, the t statistics are both greater than 2, so the process halts. Note
that the intercept is not considered for elimination.

Table 5.6 Backwards elimination on Coleman Report data.

Step Const. x1 x2 x3 x4 x5 R2
√

RMS

1 β̂ 19.95 −1.8 0.044 0.556 1.11 −1.8 90.63 2.07
tobs −1.45 0.82 5.98 2.56 −0.89

2 β̂ 15.47 −1.7 0.582 1.03 −0.5 90.18 2.05
tobs −1.41 6.75 2.46 −0.41

3 β̂ 12.12 −1.7 0.553 1.04 90.07 2.00
tobs −1.47 11.27 2.56

4 β̂ 14.58 0.542 0.75 88.73 2.06
10.82 2.05

The final model given in Table 5.6 happens to be the best model as determined by
the Cp statistic and the model at stage 3 is the second-best model as determined by
the Cp statistic. This is a fortuitous event; there is no reason that this should happen
other than these data being particularly clear about the most important variables. 2

Backward elimination sequentially deletes variables from the model. At any
stage in the selection process, it deletes the variable with the smallest absolute
t statistic or F statistic or equivalent criterion. Backward elimination often stops
deleting variables when:

1. p∗ variables have been eliminated,
2. the smallest absolute t statistic for eliminating a variable is greater than t∗.
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The user can usually specify p∗ and t∗ in a computer program. Often, the process
is stopped when the P value associated with |t| is too small. Stopping rules are also
based on AIC or BIC failing to decrease or Adj. R2 failing to increase. Tradition-
ally, one just uses the model that stopped the process. Alternatively, one could use a
model selection criterion to pick the best among the sequence of models that back-
ward elimination produced.

The initial model in the backward elimination procedure is the model with all of
the predictor variables included,

yi = β0 +β1xi1 + · · ·+βsxis + ei.

Backward elimination should give an adequate model. We assume that the pro-
cess is started with an adequate model, and only variables that add nothing are elim-
inated. The model arrived at may, however, be far from the most succinct. On the
other hand, there is no reason to believe that forward selection gives even an ade-
quate model.

Since we are starting with an adequate model, unlike forward selection, there is
little reason to choose a stopping rule that helps us to explore the space of possible
models.

EXAMPLE 5.2.4. Big Data.
I applied backward selection to the data with a P value cutoff of (the Minitab default)
α = 0.10

Table of Coefficients: Backward Elimination, α = 0.10.
Predictor γ̂i SE(γ̂i) t P
Constant 0.0458 0.0604 0.76 0.449
x2 0.0669 0.0306 2.19 0.029
x34 −0.0577 0.0302 −1.91 0.057
x48 0.0632 0.0308 2.05 0.040
x49 999879 104 9572.43 0.000
x59 −0.0572 0.0311 −1.84 0.066
x66 0.0680 0.0299 2.27 0.023
x95 −0.0546 0.0293 −1.86 0.063
x98 −0.0752 0.0303 −2.49 0.013
x100 999879 104 9572.41 0.000

This is an extreme example so the |t| statistics for the two important variables
leap out. (Their P values do not!) But the point of this example is not that backward
elimination found and kept the important variables. The point of this example is that
backward elimination still finds 4 worthless variables that look significant by tradi-
tional standards and another 3 worthless variables that one would normally consider
to be of marginal significance.

Unlike forward selection, backward elimination gives a good predictive model,
one with R2 = 1.00. The data were simulated with a variance of 1 but the residual
mean square is RMS = 0.906, which is disturbingly below the correct value despite
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having many degrees of freedom in the estimate (dfE = 990). (Based on the asymp-
totic normal approximation to the χ2, RMS is more than two standard deviations
below the true value.) Fitting the full model there are 899 degrees of freedom for er-
ror. From the 98 worthless predictor variables there are another 98 sums of squares
with 1 degree of freedom that could all go into the error. The seven largest of those
98 sums of squares have been assigned to the model and the 91 smallest have been
assigned to the error. Even when starting with 899 degrees of freedom for error from
the full model that truly estimate the error, adding in the 91 smallest and leaving out
the 7 biggest sums for squares biases the estimated error downward in the fitted
backward elimination model. 2

If the final model from backward elimination is sufficiently small, one could
apply best subset selection to the variables in the final model. But that is unlikely to
accomplish anything that changing the α level could not accomplish and it is highly
unlikely to eliminate all of the worthless predictor variables. The bigger the data set,
the more stringent our requirements for significance should be.

5.2.3 Other Methods

Stepwise methods alternate between forward selection and backwards elimination.
Suppose you have just arrived at a model by dropping a variable. A stepwise method
will then check to see if any variable can be added to the model. If you have just
arrived at a model by adding a variable, a stepwise method then checks to see if any
variable can be dropped. The value of the absolute t statistic required for dropping
a variable is allowed to be different from the value required for adding a variable.
Stepwise methods often start with an initial model that contains only an intercept,
but many computer programs allow starting the process with the full model. In the
Coleman Report example, the stepwise method beginning with the intercept model
gives the same results as forward selection and the stepwise method beginning with
the full model gives the same results as backwards elimination. (The absolute t
statistics for both entering and removing were set at 2.) Other initial models can
also be used.

Four alternative rules for adding, deleting, and exchanging variables follow.

1. Add the variable with the largest absolute t value if that value is greater than t∗.
2. Delete the variable with the smallest absolute t value if that value is less than t∗.
3. A variable not in the model is exchanged for a variable in the model if the ex-

change increases R2.
4. The largest R2 for each size model considered so far is saved. Delete a variable if

the deletion gives a model with R2 larger than any other model of the same size.

These rules can be used in combination. For example, 1 then 2, 1 then 2 then 3,
1 then 4, or 1 then 4 then 3. Again, no variable is ever added if its tolerance is too
small.
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Basically, these rules are just an attempt to get forward selection to look at a
broader collection of models and it would be wise to select the best among the
sequence of models generated.

EXAMPLE 5.2.5. Big Data.
Minitab’s default stepwise procedure began with the intercept model, concluded
with 17 variables, none of which were the important two. 2

5.3 Variable Selection and Case Deletion

In this section we examine how the results of the previous two sections change when
influential cases are deleted. Before beginning, we make a crucial point. Both vari-
able selection and the elimination of outliers cause the resulting model to appear
better than it probably should. Both tend to give RMSs that are unrealistically small.
It follows that confidence and prediction intervals are unrealistically narrow and
test statistics are unrealistically large. Outliers tend to be cases with large residuals;
any policy of eliminating the largest residuals obviously makes the SSE, which is
the sum of the squared residuals, and the RMS smaller. Some large residuals occur
by chance even when the model is correct. Systematically eliminating these large
residuals makes the estimate of the variance too small. Variable selection methods
tend to identify as good reduced models those with small RMSs. The most extreme
case is that of using the adjusted R2 criterion, which identifies as the best model the
one with the smallest RMS. Confidence and prediction intervals based on models
that are arrived at after variable selection or outlier deletion should be viewed as the
smallest reasonable intervals available, with the understanding that more appropri-
ate intervals would probably be wider. Tests performed after variable selection or
outlier deletion should be viewed as giving the greatest reasonable evidence against
the null hypothesis, with the understanding that more appropriate tests would prob-
ably display a lower level of significance.

Recall that in Section 1.10, case 18 was identified as an influential point in the
Coleman Report data and then case 3 was identified as highly influential. Table 5.7
gives the results of a best subset selection when case 18 has been eliminated. The
full model is the best model as measured by either the Cp statistic or the adjusted
R2 value. This is a far cry from the full data analysis in which the models with x3,
x4 and with x1, x3, x4 had the smallest Cp statistics. These two models are only the
seventh and fifth best models in Table 5.7. The two closest competitors to the full
model in Table 5.7 involve dropping one of variables x1 and x2. The fourth and fifth
best models involve dropping x2 and one of variables x1 and x5. In this case, the
adjusted R2 ordering of the five best models agrees with the Cp ordering.

Table 5.8 gives the best subset summary when cases 3 and 18 have both been
eliminated. Once again, the best model as judged by either Cp or adjusted R2 is
the full model. The second best model drops x1 and the third best model drops x2.
However, the subsequent ordering changes substantially.
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Table 5.7 Best subset regression: Case 18 deleted.

Adj. Included variables
Vars R2 R2 Cp

√
RMS x1 x2 x3 x4 x5

1 89.6 89.0 21.9 1.9653 X
1 56.0 53.4 140.8 4.0397 X
1 53.4 50.6 150.2 4.1595 X
2 92.3 91.3 14.3 1.7414 X X
2 91.2 90.1 18.2 1.8635 X X
2 89.8 88.6 23.0 2.0020 X X
3 93.7 92.4 11.4 1.6293 X X X
3 93.5 92.2 12.1 1.6573 X X X
3 92.3 90.8 16.1 1.7942 X X X
4 95.2 93.8 8.1 1.4766 X X X X
4 94.7 93.2 9.8 1.5464 X X X X
4 93.5 91.6 14.1 1.7143 X X X X
5 96.3 94.9 6.0 1.3343 X X X X X

Table 5.8 Best subset regression: Cases 3 and 18 deleted.

Adj. Included variables
Vars R2 R2 Cp

√
RMS x1 x2 x3 x4 x5

1 92.2 91.7 66.5 1.7548 X
1 57.9 55.3 418.8 4.0688 X
1 55.8 53.0 440.4 4.1693 X
2 95.3 94.7 36.1 1.4004 X X
2 93.2 92.2 58.3 1.6939 X X
2 92.3 91.2 67.6 1.8023 X X
3 96.6 95.8 25.2 1.2412 X X X
3 96.1 95.2 30.3 1.3269 X X X
3 95.3 94.3 38.0 1.4490 X X X
4 97.5 96.8 17.3 1.0911 X X X X
4 97.2 96.3 20.8 1.1636 X X X X
4 96.6 95.6 27.0 1.2830 X X X X
5 98.8 98.3 6.0 0.78236 X X X X X

Now consider backwards elimination and forward selection with influential ob-
servations deleted. In both cases, we continue to use the |t| value 2 as the cutoff to
stop addition and removal of variables.

Table 5.9 gives the results of a backwards elimination when case 18 is deleted
and when cases 3 and 18 are deleted. In both situations, all five of the variables
remain in the model. The regression coefficients are similar in the two models with
the largest difference being in the coefficients for x5. Recall that when all of the
cases were included, the backwards elimination model included only variables x3
and x4, so we see a substantial difference due to the deletion of one or two cases.

The results of forward selection are given in Table 5.10. With case 18 deleted,
the process stops with a model that includes x3 and x4. With case 3 also deleted,
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Table 5.9 Backwards elimination.

Case 18 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
RMS

1 β̂ 34.29 −1.62 0.085 0.674 1.11 −4.6 96.33 1.33
tobs −2.04 2.41 10.34 3.98 −3.18

Cases 18 and 3 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
RMS

1 β̂ 29.76 −1.70 0.085 0.666 1.18 −4.07 98.83 0.782
tobs −3.64 4.09 17.42 7.21 −4.79

the model includes x1, x3, and x4. While these happen to agree quite well with the
results from the complete data, they agree poorly with the results from best subset
selection and from backwards elimination, both of which indicate that all variables
are important. Forward selection gets hung up after a few variables and cannot deal
with the fact that adding several variables (rather than one at a time) improves the
fit of the model substantially.

Table 5.10 Forward selection.

Case 18 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
RMS

1 β̂ 32.92 0.604 89.59 1.97
tobs 12.10

2 β̂ 14.54 0.585 0.74 92.31 1.74
tobs 13.01 2.38

Cases 18 and 3 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
RMS

1 β̂ 33.05 0.627 92.17 1.75
tobs 13.72

2 β̂ 13.23 0.608 0.79 95.32 1.40
tobs 16.48 3.18

3 β̂ 10.86 −1.66 0.619 1.07 96.57 1.24
tobs −2.26 18.72 4.23

What is really going on here is that deleting these odd cases makes the RMS
much smaller, making everything look more significant.
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5.4 Discussion of Traditional Variable Selection Techniques

Stepwise regression methods are fast, easy, cheap, and readily available. When the
number of observations, n, is less than the number of variables, s+ 1, forward se-
lection or a modification of it is the only available method for variable selection.
Backward elimination and best subset regression assume that one can fit the model
that includes all the predictor variables. This is not possible when n < s+1. In fact
the use of t statistics, or anything equivalent to them, is probably unwise unless they
are associated with a reasonable number of residual degrees of freedom.

There are serious problems with stepwise methods. They do not give the best
model (based on any of the criteria we have discussed). In fact, stepwise methods
can give models that contain none of the variables that are in the best regressions.
That is because, as mentioned earlier, they handle variables one at a time. Another
problem is nontechnical. The user of a stepwise regression program will end up with
one model. The user may be inclined to think that this is the model. It probably is
not. In fact, the model probably does not exist. Even though Adjusted R2, Mallows’s
Cp, AIC, AICc, and BIC all define a unique best model, and could be subject to the
same problem, best subset regression programs generally present several of the best
models.

A problem with variable selection methods is that they tend to give models that
appear to be better than they really are. For example, the Adjusted R2 criterion
chooses the model with the smallest RMS. Because one has selected the smallest
RMS, the RMS for that model is biased toward being too small. Almost any measure
of the fit of a model is related to the RMS, so the fit of the model will appear to be
better than it is. If one could sample the data over again and fit the same model, the
RMS would almost certainly be larger, perhaps substantially so.

When using Mallows’s Cp statistic, if one wants to exploit the virtues of biased
estimation, one often picks models with the smallest value of Cp. This can be justi-
fied by the fact that the model with the smallest Cp is the model with the smallest
estimated expected squared error. However, if you are looking for a correct model
the target value of Cp is the number of predictors, so it seems to make little sense to
pick the model with the smallest Cp. It seems that one should pick models for which
Cp is close to the number of predictors. (I pick models with small Cp.)

The result that, for a fixed number of predictor variables. the best regression
criteria are equivalent, is interesting because the various criteria can be viewed as
simply different methods of penalizing models that include more variables. The
penalty is needed because models with more variables necessarily explain as much
or more variation (have as high or higher R2s).

5.4.1 R2

R2 is a good statistic for measuring the predictive ability of a model. R2 is also a good
statistic for comparing models. That is what we used it for here. But the actual value
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of R2 should not be overemphasized when it is being used to identify correct models
(rather than models that are merely useful for prediction). If you have data with a
lot of variability, it is possible to have a very good fit to the underlying regression
model without having a high R2. For example, if the RSS admits a decomposition
into pure error and lack of fit, it is possible to have very little lack of fit while having
a substantial pure error so that R2 is small while the fit is good.

If transformations of the dependent variable y are considered, it is inappropriate
to compare R2 for models based on different transformations. For example, it is
possible for a transformation to increase R2 without really increasing the predictive
ability of the model. One way to check whether this is happening is to compare
the width of confidence intervals for predicted values after transforming them to a
common scale.

To compare models based on different transformations of y, say y1 = f1(y) and
y2 = f2(y), fit models to the transformed data to obtained predicted values ŷ1 and
ŷ2. Return these to the original scale with ỹ1 = f−1

1 (ŷ1) and ỹ2 = f−1
2 (ŷ2). Finally,

define R2
1 as the squared sample correlation between the ys and the ỹ1s and define

R2
2 as the squared sample correlation between the ys and the ỹ2s. These R2 values

are comparable (and particularly so when the number of parameters in the two fitted
models are comparable).

5.4.2 Influential Observations

Influential observations are a problem in any regression analysis. Variable selection
techniques involve fitting lots of models, so the problem of influential observations
is multiplied. Recall that an influential observation in one model is not necessarily
influential in a different model.

Some statisticians think that the magnitude of the problem of influential obser-
vations is so great as to reject all variable selection techniques. They argue that the
models arrived at from variable selection techniques depend almost exclusively on
the influential observations and have little to do with any real world effects. Most
statisticians, however, approve of the judicious use of variable selection techniques.
(But then, by definition, everyone will approve of the judicious use of anything.)

5.4.3 Exploritory Data Analysis

John W. Tukey, among others, has emphasized the difference between exploratory
and confirmatory data analysis. Briefly, exploratory data analysis (EDA) deals with
situations in which you are trying to find out what is going on in a set of data.
Confirmatory data analysis is for proving what you already think is going on. EDA
frequently involves looking at lots of graphs. Confirmatory data analysis looks at
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things like tests and confidence intervals. Strictly speaking, you cannot do both ex-
ploratory data analysis and confirmatory data analysis on the same set of data.

Variable selection is an exploratory technique. If you know what variables are
important, you do not need variable selection and should not use it. When you do
use variable selection, if the model is fitted with the same set of data that determined
the variable selection, then the model you eventually decide on will give biased esti-
mates and invalid tests and confidence intervals. The biased estimates may very well
be better point estimates than a full or correct model gives but tests and confidence
intervals are usually over optimistic. Because you typically pick a candidate model
partially because it has RMS(γ)< RMS(β ), confidence intervals are too narrow and
tests are too significant.

If you can fit the model with all predictor variables and still have a reasonable
dfE, it might be reasonable to perform tests and confidence intervals using least
squares on the full model but use biased methods for point estimation and prediction.
(With many predictors, you still need to use multiple comparison methods.) The
alternative seems to be to use asymptotic or ad hoc methods for inference based
directly on biased estimates. (Bayesians have the best of both worlds in that a proper
Bayesian analysis both uses biased estimation and has exact small sample inference
methods.)

One solution to this problem of selecting variables and fitting parameters with
the same data is to divide the data into two parts. Do an exploratory analysis on
one part and then a confirmatory analysis on the other. To do this well requires a lot
of data. It also demonstrates the problem of influential observations. Depending on
where the influential observations are, you can get pretty strange results.

5.4.4 Multiplicities

Methods of statistical inference were originally developed for situations where data
were collected to investigate one thing. The methods work well on the one thing.
In reality, even the best studies are designed to look at multiple questions, so the
original methods need adjustment. Hence the need for the multiple comparisons
methods discussed in the next chapter.

In an awful lot of studies, people collect data and muck around with it to see
what they can find that is interesting. To paraphrase Seymour Geisser, they ransack
the data. When mucking around with a lot of data, if you see something interest-
ing, there is a good chance it is just random variation. Even if there is something
there, the true effect is probably smaller than it looks. In this context, if you require
a statistical test to show that something is important, it probably isn’t important. We
saw this with the Big Data examples and those were examples with very clear struc-
tures. The general problem in mucking with the data is that to adjust for ransacking
you need to keep track of everything you looked at that could possibly have been
interesting. And we are just not psychologically equipped to do that.



5.4 Discussion of Traditional Variable Selection Techniques 151

5.4.5 Predictive models

Predictive statistical models are based on correlation rather than causation. They
work just fine as long as nothing (important) has changed from when the data were
collected. You wake up, hear the shower on, you know your dad is making breakfast.
Hearing the shower is a good predictor of Dad making breakfast. If you wake up
from a nap and hear the shower at 2 in the afternoon, do you think Dad will be
making breakfast?

What is the causation behind this prediction? Mom showering? It being 7am?
Mom having to be to work at 8?

You cannot figure out what a change does to a system without changing the sys-
tem! Yet everybody wants to do just that. They want to solve problems by collecting
more data on present conditions. The world doesn’t work that way. Without chang-
ing the system, you only have (hopefully intelligent) guesswork. But guesswork has
limited value. Evaluating data from current conditions may provide ideas about what
changes to try but it provides no assurance of what those changes will accomplish.

5.4.6 Overfitting

A big problem with having s large relative to n is the tendency to overfit. Overfitting
is the phenomenon of fitting a model with so many parameters that the model looks
like it fits the data well, e.g. has a high R2, but does a poor job of predicting future
data. Fitting any model with r(X) = n gives R2 = 1, so it is easy to overfit regression
models just by taking an X with r(X)

.
= n. Our discussion of variable selection was

about making X smaller (turning X into a well chosen X0), so as not to overfit the
data. If r(X)

.
= n, forward selection could be applied to try to avoid overfitting.

When fitting regression trees and other multiple nonparametric regression models
(cf. Chapter 7), the set of potential predictor variables is huge and forward selection
is used to pick variables that seem appropriate.

Under normal theory for a standard linear model

E(RMS) = σ
2, Var(RMS) = 2σ

4/dfE,

so the coefficient of variation (CV) is
√

2/dfE. For RMS is to be a decent estimate,
we need CV reasonably small. With dfE = 2,8,18, CV is 1, 1/2, 1/3, so I would like
at least 18 dfE, 8 might be tolerable, and using 2 or less is fraught with danger. (I
don’t want to think about how often I have failed to live up to that prescription.)

Chapter 3 shows how bad predictions can be from overfitted models but it inci-
dentally shows how bad the estimated variances are from those overfitted models.
For everything except the simple linear regression, the estimated variances were
well below the target value of 1. We saw the same thing with backward elimination
on our big data example.
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Some rules I have seen to avoid overfitting require n ≥ 10p, n ≥ 15p, or n ≥
50+8p. These seem like they should work but they seem awfully stringent.

5.5 Modern Forward Selection: Boosting, Bagging, and Random
Forests

For many years, forward selection was dismissed as the poor sibling of variable
selection. Forward selection provides no assurance that it will find anything like the
best models. Backward elimination, since it begins with a presumably reasonable
full model and only does reasonable things to that model, should arrive at a decent
model. Looking at the “best” subsets of variables seems like the best thing to do.
But backward elimination and best subset selection both require being able to fit a
reasonable full model.

If the number of predictor variables s is big enough so that r(X) = n, we have
a saturated full model. Least squares then gives Ŷ = Y , SSE = 0, dfE = 0, and the
model will be over-fitted so that predictions of new observations typically are poor.
Whenever dfE is small, we have probably over-fitted, making our full-model results
dubious. In problems with s .

= n or s > n, forward selection, poor as it is, is about
the only game in town. (At least in the town of Least Squares Estimation. Principal
component regression is another. Penalizing the estimates gets you out of town.)

Boosting, Bagging, and Random Forests are more recently developed methods of
forward selection by which one can use over-fitting of models to improve predic-
tions. Despite all of the difficulties that arose in our Big Data examples given earlier,
by the standards of this section those examples have extremely well behaved data
because s << n. Nonetheless, I do not believe that the improvements presented here
are capable of overcoming the specific foreward selection problem built into the Big
Data examples, namely that the importance of the pair of variables is not detectable
from either variable separately. (Randomly picking variables for a full model could
solve the problem with that example.)

Boosting is a biased estimation technique associated with forward selection. Bag-
ging (bootstrap aggregation) involves use of the bootstrap to get more broad based
estimates. Random forests are a modification of bagging.

Forward selection starts with some relatively small model and defines a sequence
of larger and larger models. The two key features are (1) how to decide which vari-
able gets added next and (2) when to stop adding variables. The traditional method
of forward selection ranks variables based on the absolute value of the t statistic
for adding them to the current model (or some equivalent statistic) and chooses the
highest ranked variable.

If the predictor variables happen to have equal sample variances, forward selec-
tion could use the regression coefficients themselves to rank variables, rather than
their associated t statistics. In general, using regression coefficients rather than |t|
statistics does not seem like a great idea, but in my quite limited experience, the
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procedure works remarkably similar to Tibshirani’s (1996) lasso for standardized
predictors.

My primary references for this section were James et al. (2013), Hastie, Tib-
shirani, and Friedman (2016), and Efron and Hastie (2016). This section is differ-
ent from any other in the book because it contains quite a few of my speculations
(clearly marked as such) about how these or related methods might work. (The first
such speculation occurred in the previous paragragh.)

5.5.1 Boosting

The forward selection method known as boosting involves a sequence of model
matrices X j with ppos M j. The procedure depends on choices for integers d and B
and a scalar k.

Perform a forward selection from among the predictor vectors in X to obtain a
model with d predictors,

Y = X1β1 + e.

From this obtain fitted values and residuals,

Ŷ1 = M1Y ; ê1 = Y − Ŷ1.

Perform another forward selection using ê1 as the dependent variable to obtain
another model with d predictors,

ê1 = X2β2 + e.

From this obtain fitted values

Ỹ2 = M2ê1 = M2(I −M1)Y.

Define overall fitted values
Ŷ2 = Ŷ1 + kỸ2

and residuals,
ê2 = Y − Ŷ2 = (I − kM2)(I −M1)Y.

In general, given residuals ê j perform a forward selection using ê j as the depen-
dent variable to obtain another model with d predictors,

ê j = X j+1β j+1 + e.

From this obtain fitted values

Ỹj+1 = M j+1ê j.

Define overall fitted values
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Ŷj+1 = Ŷj + kỸj+1

and residuals,

ê j+1 = Y − Ŷj+1 = (I − kM j+1) · · ·(I − kM2)(I −M1)Y.

The procedure stops when j reaches the predetermined value B. The accepted wis-
dom seems to be that picking a stopping point B that is too large can still result in
overfitting the model.

If k = 1, so that no shrinkage of the estimates is involved, boosting seems like
just a lousy way of fitting

Y = [X1, . . . ,XB]δ + e.

Next we present two adjusted methods that give least squares estimates when k = 1.

5.5.1.1 Alternatives

Collect all of the possible predictors into the matrix X . We use ideas related to
the sweep operator discussed in Chapter 9. Perform a forward selection from the
columns of X to obtain a model with d predictors,

Y = X1β1 + e.

From this obtain fitted values and residuals,

Ŷ1 = M1Y ; ê1 = Y − Ŷ1.

Adjust all the columns of X into X̃2 = (I − M1)X . Note that X contains the
columns of X1 but these are zeroed out in X̃2 and should not be eligible for fu-
ture selection. This adjustment is not a hideously expensive thing to do. The single
expensive operation is computing (X ′

1X1)
−1. The other operations are numerous but

individually inexpensive.
Perform a forward selection using ê1 as the dependent variable and X̃2 as the

matrix of possible variables to obtain another model with d predictors,

ê1 = X2β2 + e.

Notice that C(X1)⊥C(X2) so M1M2 = 0. From this obtain overall fitted values

Ŷ2 = Ŷ1 + kM2ê1 = (M1 + kM2)Y

and residuals,
ê2 = Y − Ŷ2 = (I −M1 − kM2)Y.

In general, given fitted values Ŷj, residuals ê j and the matrices X j and X̃ j, con-
struct the possible additions X̃ j+1 ≡ (I−M j)X̃ j in which all variables that are already
in the model will have been zeroed out.
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Perform a forward selection using ê j as the dependent variable with the columns
of X̃ j+1 as potential predictors to obtain another model with d predictors,

ê j = X j+1β j+1 + e.

Again, all of the C(Xk)s are orthogonal. From this model obtain overall fitted values

Ŷj+1 = Ŷj + kM j+1ê j = [M1 + k(M2 + · · ·+M j+1)]Y

and residuals
ê j+1 = Y − Ŷj+1 = (I − kM j+1)ê j.

The accepted wisdom that, picking a stopping point B that is too large can still re-
sult in overfitting the model, seems related to the fact that the penalty term k remains
the same for every step after the first. An alternative method, akin to exponential
smoothing, might do better by defining

Ŷj+1 = Ŷj + k jỸj+1 = (M1 + kM2 + · · ·+ k jM j+1)Y.

The alternatives mentioned here are based on the idea that it is the shrinkage of
estimates that is valuable in boosting. Although I don’t see how it could be true, it is
possible that the very awkwardness of adding nonorthogonalized variables could be
of some benefit. Boosting was originally developed for binomial regression prob-
lems and I suspect behaves quite differently there.

5.5.2 Bagging

Bagging is a technique described by Hastie et al. (2016, p.282) as “how to use the
bootstrap to improve the estimate or prediction.” We will see that bagging can be
useful but cannot be a panacea.

The fundamental idea of bagging (as I see it) follows: Suppose you have an algo-
rithm for fitting a model to a set of data with n observations. In bagging this should
be an algorithm that tends to overfit the data. Take a random sample with replace-
ment of size n from your data. Apply your algorithm on this sample of data and
obtain your desired results: predictions or estimates. Do this repeatedly for many
random samples and average your predictions/estimates over these samples. These
averages are the result of bagging. The hope is that these averages will be better pre-
dictions and estimates than the results of the original algorithm applied just once to
the original data. We will see, in a simple example, that the better the algorithm, the
less likely this is to be true. But in situations where we do not know how to create a
good algorithm for the particular data, bagging can provide valuable improvements.

With reasonably large collections of data, the gold standard for determining the
quality of a predictive model seems to be: (1) randomly pull out a set of test data,
(2) use the remaining training data to develop the predictive model, and (3) evaluate
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the predictive model by seeing how well it predicts the test data. This is frequently
used to compare the quality of various methods of developing predictive models.
In this context, overfitting consists of fitting a model that explains the training data
very well but does a poor job of predicting the test data.

If we think of the collection of observed data as the entire population of possible
data, and randomly select the test data, then the training data is also just a random
sample from the population. It should display the same predictive relationships as
the overall population. If the goal is to predict a random sample (the test sample)
from the population, why not use random samples from the population to develop
a predictor? Moreover, we want to use overfitting to help, rather than hinder, the
predictive process.

The idea is to start with a model selection procedure that is capable of modeling
the salient features in the data. In multiple nonparametric regression that oftn in-
volves constructing additional predictor variables that make the number of predictor
variables s very large indeed. Different nonparametric regression procedures have
different modeling capabilities (they create different model matrices X), so the best
choice of a procedure depends on the nature of the data in ways that we will rarely
understand beforehand. But merely having an X matrix with s >> n is not enough.
To develop a prediction model we must have some variable selection scheme, pre-
sumably a form of forward selection, that includes enough predictor variables to
capture the salient features of the data, and to do this consistently seems to require
some overfitting.

Take a random sample from the training data and overfit a model on it. This en-
sures that the salient features that are present in all samples are caught but overfitting
will also include features that are unique to the particular sample being fitted. Do
this for many random samples (say B) and average the results. The hope is that the
salient features will appear in a similar fashion in every sample but that the unique
(random) features that occur from overfitting particular samples will average them-
selves out over the process of repeated sampling.

Bagging is a very complicated procedure. In fact, it is notorious for providing
(good) predictions that are uninterpretable. We now examine an extremely simple
example of bagging to explore how it actually works.

5.5.2.1 A simple example

Consider a random variable y. With no potential predictor variables available, the
best predictor (BP) under squared error prediction loss is E(y) = µy ≡ µ . Now sup-
pose we have a random sample from y, say Yn×1. The best nonparametric estimate
of µ is ȳ· = J′Y/n. We know it is the BLUE but for a class of distributions that in-
cludes nearly all continuous distributions that have a mean, ȳ· is minimum variance
unbiased, cf. Fraser (1957). If the distribution of y is normal, ȳ· is again minimum
variance unbiased but it is much easier to be unbiased for normal distributions than
it is for all continuous distributions. For uniform distributions with unknown limits,
the best unbiased estimate of the expected value is the midrange. For symmetric dis-
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tributions with heavy tails, e.g. Laplace (double exponential), the median tends to be
a good estimate. In this context, ȳ· is always going to be a reasonably good estimate
of the BP. Generally, for light-tailed symmetric distributions, like the uniform with
unknown limits, the midrange can be a good estimate of the BP but the median will
be less good. For heavy-tailed symmetric distributions, the median can be a good
estimate of the BP but the midrange will be less good. Neither the median nor the
midrange are linear functions of the data.

Bagging brings an element of averaging into the estimates that has virtually no
effect on the linear estimate ȳ· and cannot improve an optimal estimate, but bagging
can substantially improve a poor estimate and can even improve good but subopti-
mal estimates.

EXAMPLE 5.5.1. In the spirit of fitting a number of parameters that is a large
proportion of the number of observations (and just to be able to perform the compu-
tations), suppose we have a simple random sample of size n = 3 with order statistics
y(1) < y(2) < y(3). The best predictor is the population mean, which we want to
estimate. The midrange (y(1)+ y(3))/2 is optimal for uniform distributions with un-
known end points. The median y(2) works well for heavy tailed distributions. The
sample mean (y(1) + y(2) + y(3))/3 is optimal for normal data or extremely broad
(nonparametric) families of distributions.

Normally one would not bootstrap a sample this small but the small sample size
allows us to examine what Hastie et al. (2016) refer to as the “true” bagging es-
timate. With only 3 observations, bootstrapping takes samples from a population
that has 27 equally probable outcomes: Three of the outcomes are {y( j),y( j),y( j)}
for j = 1,2,3. Six of the outcomes are reorderings of {y(1),y(2),y(3)}. The other
18 outcomes involve the three reorderings one can get from samples of the form
{y( j),y( j),y(k)}, j = 1,2,3, k ̸= j there being six distinct outcomes of this form.

From each of the 27 outcomes in the bootstrap population we can compute the
sample mean, median, and midrange statistics. The bootstrap procedure actually
provides an estimate (one that we can make arbitrarily good by picking B large) of
the expected value over the 27 equally probable outcomes of these statistics (sample
mean, median and midrange). We want to know what function of the observed data
the bootstrap is estimating, because that is the function of the data that the bootstrap
uses to estimate the BP (as B → ∞).

The expected value of the sample mean is easily seen to be (9y(1) + 9y(2) +
9y(3))/27, so unsurprisingly the bootstrap of the sample mean is estimating the sam-
ple mean of the original data. The bootstrap expected value of the sample median is
(7y(1)+ 13y(2)+ 7y(3))/27, which is a symmetric weighted average of the original
observations; one that puts more weight on the middle observation. The bootstrap
expected value of the midrange is (10y(1)+7y(2)+10y(3))/27, which is again a sym-
metric weighted average of the original observations but one that puts less weight
on the middle observation.

Another way to think about this is that the bagged median is estimating

(14/27)midrange+(13/27)median
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and the bagged midrange is estimating

(20/27)midrange+(7/27)median.

But perhaps more importantly, both of them are closer to the sample mean than they
were originally.

For a uniform distribution, where the midrange is optimal, the bagged midrange
estimate will be less good because it puts too much weight on the middle observa-
tion. However, the bagged median will be better than the median because the bagged
median puts more weight on the midrange.

When the median is good, the bagged median will be less good because it puts
more weight on the extreme observations. However the bagged midrange will be
better than the midrange because the bagged midrange puts more weight on the
median.

Bagging the sample mean is a waste of effort. Because the sample mean is the
best nonparametric estimate, the sample mean is never going to be too bad.

If you don’t know the distribution of the data, which you almost never do, you
might as well use the sample mean and bagging is irrelevant. Bagging would be
useful if for some reason you cannot use the sample mean.

The three estimates we examined were all unbiased for symmetric distributions.
Lets look at a biased estimate of the mean. Consider the estimate (y(2) + y(3))/2
which is clearly biased above the mean for symmetric distributions. The bootstraped
estimate has expected value (4y(1)+10y(2)+13y(3))/27, which, while still heavily
biased above the mean, is considerably less biased than the original estimate.

5.5.2.2 Discussion

The prediction problem is to estimate the best predictor, E(y|x). The more you know
about the conditional distribution of y given x, the easier the problem becomes. By
expanding our definition of x, e.g. incorporating polynomials, we can often ensure
that E(y|x) is approximately linear in x. If we have enough data to fit a full model, we
should. For homoscedastic, uncorrelated data, least squares estimates are BLUEs, so
they are probably about as good as we can do to start, but then we may be able to get
better point estimates by incorporating bias. If s > n, we cannot fit the full model in
any meaningful way, so we need some way of constructing a predictive model and
typically that involves some form of forward selection. We know forward selection
does not work well, so it is unlikely to give good estimates of the best predictor.
When you have poor estimates, bagging seems to be good at improving them by
averaging them over more of the data. (My hope is that the bagging estimates will
move them closer to the least squares estimates from the [unfitable] full model.)
While it is relatively easy to see that bagging has no systematic effect on estimates
that are linear functions of the data, forward selection is a profoundly nonlinear
estimation process.
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5.5.3 Random Forests

The random forest idea modifies the forward selection procedure in conjunction
with bagging. The name derives from applying the idea to regression trees.

Divide the predictor variables into G groups. The modification to forward selec-
tion is that instead of considering all of the variables as candidates for selection,
one randomly chooses m of the G groups as candidates for forward selection. If you
were only fitting one model, that would be a disastrous idea, but in the context of
bagging, all of the important variables should show up often. Typically one takes
m .
= G/3 or m .

=
√

G.

EXAMPLE 5.5.2. Polynomial Regression. Division into G groups occurs natu-
rally in polynomial regression and many other nonparametric regression procedures
that, like polynomial regression, begin with, say Q, measured predictor variables
and define functions of those measured variables. A full polynomial model on Q
measured variables x1, . . . ,xQ is

yi =
d1

∑
j1=0

· · ·
dQ

∑
jQ=0

β j1··· js x j1
i1 · · ·x

jQ
iQ + εi,

so the total number of predictor variables is s = ∏
Q
j=1 d j. The G groups can conve-

niently be taken as x jk
k : jk = 1, . . . ,dk for k = 1, . . . ,Q which makes G = Q. Instead

of considering all of the variables x jk
k , jk = 1, . . . ,dk, k = 1, . . . ,Q as candidates for

selection, one randomly chooses m of the Q groups as candidates for forward se-
lection. (Forward selection typically will not result in a hierarchical polynomial that
contains all the lower order terms for every term in the polynomial. Although good
arguments can be made for using hierarchical polynomials, they seem inconsistent
with the spirit of forward selection.) Alternatively, one could pick d1 = · · ·= dQ ≡G,
and have the group be all of the linear terms, the second group the quadratics, etc.

EXAMPLE 5.5.3. Big Data. Divide the 100 predictors into 9 groups all but one
having 11 predictor variables. Randomly pick 3 groups to be included in the variable
selection. In this example, with almost everything being independent, it is hard to see
how the random forest idea is going to help. Much of the time the two worthwhile
predictors will not even be available for selection in the model. And even when the
two good predictors are both available, nothing has happened that will increase their
chances of being selected. Remember, we have to have an algorithm that randomly
gets one of the two predictors into the model. Once one of them is in the model,
forward selection will find the second variable (if it is available to find). So the
random forest idea (or bagging alone) does not seem to help in this example, but
then forward selection on these data is not a method well suited for finding the
salient characteristics at the expense of some overfitting.

I would be tempted to define subgroups of variables for which a random selection
would give something I consider a plausible full model and rather than averaging
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them all, actually look for good ones. But in the era of big data, there seems to be a
premium on procedures you can run without having to supervise them.

5.6 Exercises

EXERCISE 5.6.1. Reconsider the advertising data of Exercise 1.12.1.

(a) Are there any high-leverage points? Why or why not?
(b) Test whether each case is an outlier using an overall significance level no greater

than α = 0.05. Completely state the appropriate reference distribution.
(c) Discuss the importance of Cook’s distances in regard to these data.
(d) Using only analysis of variance tables, compute R2, the adjusted R2, and the Cp

statistic for yi = β0 +β1xi1 +β2xi2 + εi. Show your work.
(e) In the three-variable model, which if any variable would be deleted by a back-

wards elimination method? Why?

EXERCISE 5.6.2. Consider the information given in Table 5.11 on diagnostic
statistics for the wood data of Exercise 1.12.2.

(a) Are there any outliers in the predictor variables? Why are these considered out-
liers?

(b) Are there any outliers in the dependent variable? If so, why are these considered
outliers?

(c) What are the most influential observations in terms of the predictive ability of the
model?

EXERCISE 5.6.3. Consider the information in Table 5.12 on best subset regres-
sion for the wood data of Exercise 1.12.2.

(a) In order, what are the three best models as measured by the Cp criterion?
(b) What is the residual mean square for the model with variables x1, x3, and x4?
(c) In order, what are the three best models as measured by the adjusted R2 criterion?

(Yes, it is possible to distinguish between the best four!)
(d) What do you think are the best models and what would you do next?

EXERCISE 5.6.4. Consider the information in Table 5.12 on stepwise regression
for the wood data of Exercise 1.12.2.

(a) What is being given in the rows labeled x1, x2, x3, and x4? What is being given in
the rows labeled t?

(b) Is this table for forward selection, backwards elimination, stepwise regression,
or some other procedure?

(c) Describe the results of the procedure.
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Table 5.11 Diagnostics for wood data.

Obs. Leverage r t C Obs. Leverage r t C
1 0.085 −0.25 −0.25 0.001 29 0.069 0.27 0.26 0.001
2 0.055 1.34 1.35 0.021 30 0.029 0.89 0.89 0.005
3 0.021 0.57 0.57 0.001 31 0.204 0.30 0.30 0.005
4 0.031 0.35 0.35 0.001 32 0.057 0.38 0.37 0.002
5 0.032 2.19 2.28 0.032 33 0.057 0.05 0.05 0.000
6 0.131 0.20 0.19 0.001 34 0.085 −2.43 −2.56 0.109
7 0.027 1.75 1.79 0.017 35 0.186 −2.17 −2.26 0.215
8 0.026 1.23 1.24 0.008 36 0.184 1.01 1.01 0.046
9 0.191 0.52 0.52 0.013 37 0.114 0.85 0.85 0.019

10 0.082 0.47 0.46 0.004 38 0.022 0.19 0.19 0.000
11 0.098 −3.39 −3.82 0.250 39 0.022 −0.45 −0.45 0.001
12 0.066 0.32 0.32 0.001 40 0.053 −1.15 −1.15 0.015
13 0.070 −0.09 −0.09 0.000 41 0.053 0.78 0.78 0.007
14 0.059 0.08 0.08 0.000 42 0.136 −0.77 −0.76 0.018
15 0.058 −0.91 −0.91 0.010 43 0.072 −0.78 −0.77 0.009
16 0.085 −0.09 −0.09 0.000 44 0.072 −0.27 −0.26 0.001
17 0.113 1.28 1.29 0.042 45 0.072 −0.40 −0.40 0.002
18 0.077 −1.05 −1.05 0.018 46 0.063 −0.62 −0.62 0.005
19 0.167 0.38 0.38 0.006 47 0.025 0.46 0.46 0.001
20 0.042 0.24 0.23 0.000 48 0.021 0.18 0.18 0.000
21 0.314 −0.19 −0.19 0.003 49 0.050 −0.44 −0.44 0.002
22 0.099 0.56 0.55 0.007 50 0.161 −0.66 −0.66 0.017
23 0.093 0.47 0.46 0.004 51 0.042 −0.44 −0.43 0.002
24 0.039 −0.60 −0.60 0.003 52 0.123 −0.26 −0.26 0.002
25 0.098 −1.07 −1.07 0.025 53 0.460 1.81 1.86 0.558
26 0.033 0.14 0.13 0.000 54 0.055 0.50 0.50 0.003
27 0.042 1.19 1.19 0.012 55 0.093 −1.03 −1.03 0.022
28 0.185 −1.41 −1.42 0.090

Table 5.12 Best subset regression of wood data.

Adj. Included variables
Vars R2 R2 Cp

√
RMS x1 x2 x3 x4

1 97.9 97.9 12.9 18.881 X
1 63.5 62.8 1064.9 78.889 X
1 32.7 31.5 2003.3 107.04 X
2 98.3 98.2 3.5 17.278 X X
2 97.9 97.8 14.3 18.969 X X
2 97.9 97.8 14.9 19.061 X X
3 98.3 98.2 5.3 17.419 X X X
3 98.3 98.2 5.4 17.430 X X X
3 98.0 97.9 13.7 18.763 X X X
4 98.4 98.2 5.0 17.193 X X X X
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Table 5.13 Stepwise regression on wood data.

STEP 1 2 3
Constant 23.45 41.87 43.85
x1 0.932 1.057 1.063
t 10.84 38.15 44.52
x2 0.73 0.09
t 1.56 0.40
x3 −0.50 −0.50 −0.51
t −3.28 −3.27 −3.36
x4 3.5
t 1.53√

RMS 17.2 17.4 17.3
R2 98.36 98.29 98.28

EXERCISE 5.6.5. Reanalyze the Prater data of Atkinson (1985) and Hader and
Grandage (1958) from Exercise 1.12.3. Examine residuals and influential observa-
tions. Explore the use of the various model selection methods.

EXERCISE 5.6.6. Reanalyze the Chapman data of Exercise 1.12.4. Examine
residuals and influential observations. Explore the use of the various model selection
methods.

EXERCISE 5.6.7. Reanalyze the pollution data of Exercise 1.12.5. Examine
residuals and influential observations. Explore the use of various model selection
methods.

EXERCISE 5.6.8. Repeat Exercise 1.12.6 on the body fat data with special em-
phasis on diagnostics and model selection.

EXERCISE 5.6.9. Compare the results of using the modern forward selection
techniques on the Coleman Report data.



Chapter 6
Multiple Comparison Methods

Abstract This chapter presents three methods of adjusting statistical tests to deal
with the problem, illustrated in the previous chapter, of claiming that garbage is
important.

There has been a great deal of controversy in the Statistics community about the
proper use of P values. This has be exacerbated by at least two things: the prevalence
of big data and widespread misunderstanding of what P values mean. (The second
of these is by no means new.)

To compute an appropriate P value requires one to know an appropriate reference
distribution for the test statistic. Finding an appropriate reference distribution can
be difficult or even impossible. One thing that is difficult is finding an appropriate
distribution when you are trying to test several distinct things simultaneously. This
chapter deals with three widely applicable adjustments that can be used when an
appropriate reference distribution is not readily available for multiple tests. (When
dealing with balanced ANOVA, many more adjustment methods are available.)

As discussed in ANREG, Chapter 3 and PA, Appendix E, most statistical tests
and confidence intervals are based on identifying

1. Par, a parameter of interest;
2. Est, an estimate of Par (that is usually easy to find);
3. SE(Est), a standard error for Est (that involves computing the variance of Est

and often requires estimating a variance parameter σ2);
4. an appropriate reference distribution for

Est −Par
SE(Est)

.

For a single test or confidence interval, the appropriate reference distribution is typ-
ically a t(df ) distribution where df denotes the degrees of freedom of the variance
parameter estimate. (df can be thought of as the equivalent number of observations
going into the variance estimate). When making multiple tests, the appropriate ref-
erence distribution changes and may be unknowable.

163
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6.1 Bonferroni Corrections

The Bonferroni method is very simple. If you have r tests to perform and you want
to keep an overall error rate of α for the entire collection of tests, perform each test
at the α/r level. We already used this technique in Section 1.10 without explaining
it. There we tested whether a standardized deleted (t) residual was far enough from
zero to call in question the inclusion of that case in the data. Typically you only think
about testing a particular case because you see that |ti| is large but the t(dfE − 1)
reference distribution is no longer appropriate for the largest |ti| among i = 1, . . . ,n.
Instead of looking at the P value, we looked at P/n.

Before addressing the justification for the Bonferroni method, we apply the idea
to the big data examples of the previous chapter.

EXAMPLE 6.1.1. Big Data.
Our tiny little “big data” example in the previous chapter involved n = 1000 and
s = 100. When looking for significant predictors in a model with 100 predictor vari-
ables, instead of looking at variables whose regression coefficient P values have,
say, P ≤ 0.05, perhaps we should be looking for P < 0.0005 = 0.05/100. Moreover,
when performing variable selection, it may be a good idea to retain this requirement,
i.e., base the Bonferroni adjustment on s = 100, the total number of variables con-
sidered, rather than p, the final number of variables in the selected candidate model.
In Example 5.2.2 on forward selection, none of the variables achieved a P value
below 0.0005. In Example 5.2.4 on backward elimination, the only candidates for
achieving a level of significance of 0.0005 are the two important variables, but the
rounding off of the P values to three digits leaves us unsure. (They are Bonferroni
significant.) 2

Unfortunately, we will see in the next chapter that in many problems the choice
of s is often pretty arbitrary. Using r = n for a Bonferroni adjustment might not be
unreasonable if you get into the business of creating predictor variables, e.g., if your
total number of possible predictors has s > n.

The justification for Bonferroni’s method relies on a very simple result from
probability: for two events, the probability that one or the other event occurs is no
more than the sum of the probabilities for the individual events. Thus with two tests,
say A and B, the probability that we reject A or reject B is less than or equal to the
probability of rejecting A plus the probability of rejecting B. In particular, if we fix
the probability of rejecting A at α/2 and the probability of rejecting B at α/2, then
the probability of rejecting A or B is no more than α/2+α/2 = α . More generally,
if we have r tests and control the probability of type I error for each test at α/r, then
the probability of rejecting any of the tests when all r null hypotheses are true is no
more than α/r+ · · ·+α/r = α .

Bonferroni adjustments can also be used to obtain confidence intervals that have
a simultaneous confidence of (1−α)100% for covering all parameters in some set
of r parameters. The endpoints of these intervals are
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Est ± t
(

1− α

2r
,dfE

)
SE(Est) .

In particular, for testing the nonintercept regression parameters this becomes,

β̂ j ± t
(

1− α

2s
,dfE

)
SE
(

β̂ j

)
.

6.2 Scheffé’s method

This is the most conservative method known to Mankind. (Yes, I am being bombas-
tic. No, I am not referring to the knowledge of former professional wrestler Mick
Foley.) Instead of adjusting the P or α levels as Bonferroni does, Scheffé’s method
adjusts the test statistics. When looking for significant predictors in a model with s
predictor variables, instead of looking at the t statistics for the regression variables,
say t j, j = 1, . . . ,s, Scheffé’s method has us look at t j/

√
s. Strictly speaking, for

an α level test, t j/
√

s should be compared to
√

F(1−α,s,dfE) but for dfE > 2,
t
(
1− α

2r ,dfE
)
≥
√

F(1−α,s,dfE), so it is permissible to think about comparing
the modified test statistics to the regular t percentiles.

EXAMPLE 6.2.1. Big Data.
With s = 100, the square root is 10, so before thinking about what variables look
important, divide the t statistics by 10. Again, when performing variable selection, it
may be a good idea to retain this requirement, i.e., base significance judgements for
regression coefficients for a selected candidate model, not on the original t statistic,
or on t/

√
p, but on t/

√
s. In Example 5.2.2 on forward selection, the regression

coefficient t j statistics divided by 10 lose all hope of being interpreted as significant.
In Example 5.2.4 on backward elimination, after dividing by 10 the only variables
whose t j statistics still look important are the two that actually are important. 2

We now run through the justification for Scheffé’s method. The justification is
based on F rather than t statistics. The earlier discussion was based on the fact that
t(df )2 ∼ F(1,df ).

Suppose we have some hierarchy of models that includes a biggest model (Big.),
some full model (Full), a reduced model (Red.), and a smallest model (Sml.). In
most hierarchies of models, there are many choices for Full and Red. but Big. and
Sml. are fixed. Scheffé’s method can be used to perform tests on a fixed set of
choices for Full and Red., or on all possible choices for Full and Red., or on a few
choices determined by the data.

In Chapter 1, we introduced model testing for a full and reduced model using the
F statistic

F =
[SSE(Red.)−SSE(Full)]/[dfE(Red.)−dfE(Full)]

MSE(Full)
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with reference distribution F [dfE(Red.)− dfE(Full),dfE(Full)]. As we got into
hierarchies of models, we preferred the statistic

F =
[SSE(Red.)−SSE(Full)]/[dfE(Red.)−dfE(Full)]

MSE(Big.)

with reference distribution F [dfE(Red.)−dfE(Full),dfE(Big.)]. Scheffé’s method
requires a further modification of the test statistic.

If the smallest model is true, then all of the other models are also true. The exper-
imentwise error rate is the probability of rejecting any reduced model Red. (relative
to a full model Full) when model Sml. is true. Scheffé’s method allows us to com-
pare any and all full and reduced models, those we even pick by looking at the data,
and controls the experimentwise error rate at α by rejecting the reduced model only
when

F =
[SSE(Red.)−SSE(Full)]/[dfE(Sml.)−dfE(Big.)]

MSE(Big.)
> F [1−α,dfE(Sml.)−dfE(Big.),dfE(Big.)].

To justify this procedure, note that the test of the smallest model versus the
biggest model rejects when

F =
[SSE(Sml.)−SSE(Big.)]/[dfE(Sml.)−dfE(Big.)]

MSE(Big.)
> F [1−α,dfE(Sml.)−dfE(Big.),dfE(Big.)]

and when the smallest model is true, this has only an α chance of occurring. Because

SSE(Sml.)≥ SSE(Red.)≥ SSE(Full)≥ SSE(Big.),

we have
[SSE(Sml.)−SSE(Big.)]≥ [SSE(Red.)−SSE(Full)]

and

[SSE(Sml.)−SSE(Big.)]/[dfE(Sml.)−dfE(Big.)]
MSE(Big.)

≥ [SSE(Red.)−SSE(Full)]/[dfE(Sml.)−dfE(Big.)]
MSE(Big.)

.

It follows that you cannot reject Red. relative to Full unless you have already re-
jected Sml. relative to Big., and rejecting Sml. relative to Big. occurs only with
probability α when Sml. is true. In other words, there is no more than an α chance
of rejecting any of the reduced models when they are true.

Scheffé’s method can be extended to examining any and all linear combinations
of the regression coefficients simultaneously. This method is primarily used with
linear combinations that were suggested by the data. In particular, Scheffé’s method
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can be adapted to provide simultaneous (1−α)100% confidence intervals. These
have the endpoints

s

∑
j=0

λiβ̂ j ±
√
(s+1)F(1−α,s+1,dfE) SE

(
s

∑
j=0

β̂ j

)
.

In this case the Sml. model is being taken as yi = εi. If you exclude the intercept
from the linear combinations, the intervals become

s

∑
j=1

λiβ̂ j ±
√

sF(1−α,s,dfE) SE

(
s

∑
j=1

β̂ j

)
.

In particular, for individual regression coefficients they become

β̂ j ±
√

sF(1−α,s,dfE) SE
(

β̂ j

)
.

Here the Sml. model is yi = β0 + εi.

6.3 Least Significant Differences

To apply the Least Significant Difference method, you fit the full model and perform
an α level test for any effect over and above the intercept. If this test is significant,
you perform the rest of your tests in the standard way at the α level. When dealing
with big data, this method is essentially worthless; it provides no useful solution to
the problem of finding far too many things to be significant.

EXAMPLE 6.3.1. Big Data.
Chapter 5 does not report the fit for the full model but, if it did, it would give a
significant result at α = 0.05 for the F(100,899) test of SSReg/RMS. The least
significant difference method applied to the big data example would then claim that
any variable significant at the 0.05 level is important, which we know is not true.





Chapter 7
Nonparametric Regression II

Abstract This chapter deepens our discussion of nonparametric regression. It de-
tails methods for a single predictor variable, discusses the curse of dimensionality
that plagues nonparametric regression with multiple predictor variables, and dis-
cusses the kernel trick and related ideas as methods for overcoming the curse of
dimensionality. The methods considered are all extensions of linear regression.

Suppose we have a dependent variable y and a vector of predictor variables
x. Regression is about estimating E(y|x). In linear regression, we assume that
E(y|x) = x′β for some unknown parameter vector β . Recall that this includes fit-
ting indicator variables and polynomials as special cases. In nonlinear regression
we assume that E(y|x) = f (x;β ), where the function f is known but the vector β is
unknown; see Christensen (1996, Chapter 18 or 2015, Chapter 23). A special case
of nonlinear regression involves linearizable models, including generalized linear
models, that assume E(y|x) = f (x′β ) for f known, cf. Christensen (1997, Chap-
ter 9). The key idea in nonlinear regression is using calculus to linearize the model.
In nonparametric regression, we assume that E(y|x) = f (x), where the function f is
unknown. Note the absence of a vector of parameters β , hence the name nonpara-
metric. Often, f is assumed to be continuous or to have some specified number of
derivatives. In reality, nonparametric regression is exactly the opposite of what its
name suggests. Nonparametric regression involves fitting far more parameters than
either standard linear or nonlinear regression.

EXAMPLE 7.0.1. Table 7.1 presents data from Montgomery and Peck (1982) and
Eubank (1988) on voltage drops y over time t displayed by an electrical battery used
in a guided missile. The 41 times go from 0 to 20. The variable x results from divid-
ing t by 20, thus standardizing the times into the [0,1] interval. The data comprise
a time series (as discussed in ALM-III, Chapters 6 and 7), but the idea here is that
the behavior over time is not a stationary stochastic process but rather a complicated
regression function. An unusual feature of these data is that the ti values are equally
spaced (i.e., the tis are ordered and ti+1 − ti is a constant). This typically occurs
only when the data collection process is very well-controlled. However, when equal
spacing does occur, it considerably simplifies data analysis. 2

169
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Table 7.1 Battery voltage drops versus time.

Case y t x Case y t x
1 8.33 0.0 0.000 22 14.92 10.5 0.525
2 8.23 0.5 0.025 23 14.37 11.0 0.550
3 7.17 1.0 0.050 24 14.63 11.5 0.575
4 7.14 1.5 0.075 25 15.18 12.0 0.600
5 7.31 2.0 0.100 26 14.51 12.5 0.625
6 7.60 2.5 0.125 27 14.34 13.0 0.650
7 7.94 3.0 0.150 28 13.81 13.5 0.675
8 8.30 3.5 0.175 29 13.79 14.0 0.700
9 8.76 4.0 0.200 30 13.05 14.5 0.725

10 8.71 4.5 0.225 31 13.04 15.0 0.750
11 9.71 5.0 0.250 32 12.06 15.5 0.775
12 10.26 5.5 0.275 33 12.05 16.0 0.800
13 10.91 6.0 0.300 34 11.15 16.5 0.825
14 11.67 6.5 0.325 35 11.15 17.0 0.850
15 11.76 7.0 0.350 36 10.14 17.5 0.875
16 12.81 7.5 0.375 37 10.08 18.0 0.900
17 13.30 8.0 0.400 38 9.78 18.5 0.925
18 13.88 8.5 0.425 39 9.80 19.0 0.950
19 14.59 9.0 0.450 40 9.95 19.5 0.975
20 14.05 9.5 0.475 41 9.51 20.0 1.000
21 14.48 10.0 0.500

Section 1 examines the basics of the linear-aproximation approach. This involves
approximating general continuous functions by linear combinations of basis func-
tions, or more properly, spanning functions. Function series whose elements have
small support, i.e. are zero most but not all of the time, seem particularly useful.
These include splines and wavelets. In Section 2 we examine the fact that these
approaches to nonparametric regression involve fitting linear regression models. In
Section 3, we discuss and illustrate least squares estimation. In Section 4, we discuss
variable selection as applied to linear-approximation models. Section 5 discusses
details of splines and introduce kernel estimation and other local polynomial regres-
sion techniques. Section 6 introduces nonparametric multiple regression. Section 7
examines testing lack of fit. Section 8 looks at regression trees. Section 9 introduces
the use of functional predictors. Section 10 provides exercises. (This is pretty much
just a watered down version of ALM-III, Chapter 1.)

7.1 Linear Approximations

The key idea behind linear approximations is that a finite linear combination of some
known functions can approximate a wide variety of functions on a closed bounded
set, cf. the famous Stone-Weierstrass theorem. For convenience, we initially assume
that f is defined on the interval [0,1] and is continuous. There are many ways to
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approximate f including polynomials, sines and cosines, step functions, and also by
things similar to step functions called wavelets. Most often we assume that for some
predictor variable x

f (x) =
∞

∑
j=0

β jφ j(x),

where the φ js are known functions that can be defined in many ways. Later we will
use this characterization with x being a p vector instead of a scalar. In particular,
with p = 1 and functions defined on the unit interval, we can take for j = 0,1,2, . . .

φ j(x) = x j, (1)

or
φ j(x) = cos(π jx), (2)

or
φ2 j(x) = cos(π jx) φ2 j+1(x) = sin(π jx). (3)

When using (2), it should be noted that the derivative of every cos(π jx) function is
0 at x = 0, so the derivative of f (x) should be 0 at x = 0.

In practice we approximate f with a finite number of terms which determines a
linear model in which only the β js are unknown. We need to determine an appro-
priate finite approximation and estimate the corresponding β js

With a single predictor, another obvious approximation uses step functions but
some care must be used. Let IA be the indicator function for the set A, namely

IA(x) =
{1 if x ∈ A

0 otherwise.

Obviously, if we define

φ j(x) = I
( j−1

m , j
m ]
(x), j = 0,1, . . . ,m,

we can approximate any continuous function f , and as m → ∞ we can approximate
f arbitrarily well. Note that φ0(x) is essentially I{0}(x). Technically, rather than the
infinite sum characterization, we are defining a triangular array of functions φ jm,
j = 1, . . . ,m; m = 1,2,3, . . . and assuming that

f (x) = lim
m→∞

m

∑
j=0

β jmφ jm(x). (4)

More generally, we could define the indicator functions using intervals between
knots, x̃−1,m < 0 = x̃0,m < x̃1,m < x̃2,m < · · · < x̃m,m = 1 with the property that
maxi{x̃i+1,m − x̃i,m} goes to zero as m goes to infinity.

Splines are more complicated than indicator functions. Choosing m−1 knots in
the interior of [0,1] is fundamental to the use of splines. Rather than indicators,
we can fit some low dimensional polynomial between the knots. In this context,
indicator functions are 0 degree polynomials. For polynomials of degree greater



172 7 Nonparametric Regression II

than 0, traditional splines force the polynomials above and below each knot in (0,1)
to take the same value at the knot, thus forcing the splines to give a continuous
function on [0,1]. B-splines use functions φ jm that are nonzero only on small but
overlapping subintervals with locations determined by (often centered around) a
collection of knots. As with indicator functions, to get good approximations to an
arbitrary regression function, the distances between consecutive knots must all get
(asymptotically) small. As a practical matter, one tries to find one appropriate set
of knots for the problem at hand. Technically, methods based on knots are not basis
function methods because they do not provide a countable set of functions that are
linearly independent and span the space of continuous functions. (B-spline is short
for “basis spline” but that is something of a misnomer.)

As with basis function approaches based on an infinite sum, any triangular array
satisfying equation (4) allows us to approximate f with a finite linear model in
which only β1m, . . . ,βmm are unknown. Triangular array approximations can also be
used with vector inputs.

Rather than defining a triangular array of indicator functions, we can use the
following device to define a single infinite series :

φ0(x) = 1, φ1(x) = I(0,.5](x), φ2(x) = I(.5,1](x),

φ3(x) = I(0,.25](x), φ4(x) = I(.25,.5](x),

φ5(x) = I(.5,.75](x), φ6(x) = I(.75,1](x),

φ7(x) = I(0,2−3](x), . . . ,φ14(x) = I({23−1}2−3,1](x),

φ15(x) = I(0,2−4](x), . . . .

Technically, these φ js constitute a spanning set of functions but are not basis func-
tions. Except for approximating the point f (0), including the function φ0(x) is irrele-
vant once we include φ1(x) and φ2(x). Similarly, φ1(x) and φ2(x) are made irrelevant
by φ3(x), . . . ,φ6(x).

A sequence of basis functions, one that is equivalent to this spanning set of step
functions, is the Haar wavelet collection

φ0(x) = 1, φ1(x) = I(0,.5](x)−I(.5,1](x),

φ2(x) = I(0,.25](x)−I(.25,.5](x), φ3(x) = I(.5,.75](x)−I(.75,1](x),

φ4(x) = I(0,1/8](x)−I(1/8,2/8](x), . . . ,φ7(x) = I(6/8,7/8](x)−I(7/8,1](x),

φ8(x) = I(0,1/16](x)−I(1/16,2/16](x), . . . .

It is customary to call φ0(x) the father wavelet function and φ1(x) the mother
function. Note that all of the subsequent functions are obtained from the mother
function by changing the location and scale, for example, φ3(x) = φ1(2x − 1),
φ7(x) = φ1(4x − 3), and, in general, if j = 2r + k for k = 0,1, . . . ,2r − 1, then
φ j(x) = φ1(2rx− k).
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Actually, this idea of changing location and scale can be applied to any mother
function φ1 that is 0 outside the unit interval and integrates to 0 over the unit in-
terval, hence generating different families of wavelets to be used as a basis series.
(Rather than integrating to 0, theoretical developments often impose a stronger ad-
missability condition on φ1.) For simplicity we restrict ourselves to looking at Haar
wavelets but my impression is that they are rarely used in practice. The Mexican hat
(Ricker) wavelet seems to be quite popular.

7.2 Simple Nonparametric Regression

The simple nonparametric regression model is

yi = f (xi)+ εi, E(εi) = 0,

i = 1, . . . ,n, where yi is a random variable, xi is a known (scalar) constant, f is an
unknown continuous function, and the εis are unobservable independent errors with
Var(εi) = σ2. Traditionally, the errors are assumed independent, rather than just
uncorrelated, to facilitate asymptotic results. In matrix form, writey1

...
yn

=

 f (x1)
...

f (xn)

+
ε1

...
εn


or

Y = F(X)+ e, E(e) = 0, Cov(e) = σ
2I,

where X ≡ (x1, . . . ,xn)
′ and F(X) ≡ [ f (x1), . . . , f (xn)]

′. Again, for ease of exposi-
tion, we assume that xi ∈ [0,1] for all i.

Using the infinite basis representation

f (x) =
∞

∑
j=0

β jφ j(x),

the nonparametric regression model becomes an infinite linear model,

yi =
∞

∑
j=0

β jφ j(xi)+ εi.

This is not useful because it involves an infinite sum, so we use a finite linear model
approximation,

yi =
s−1

∑
j=0

β jφ j(xi)+ εi. (1)
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Essentially the same approximation results from a triangular array representation of
f . If we define Φ j ≡ [φ j(x1), . . . ,φ j(xn)]

′, in matrix terms model (1) becomes

Y = [Φ0,Φ1, . . . ,Φs−1]


β0
β1
...

βs−1

+ e,

or, defining Φ ≡ [Φ0,Φ1, . . . ,Φs−1], we get

Y = Φβ + e.

The linear model (1) is only an approximation, so in reality the errors will be biased.
For basis functions E(εi) = ∑

∞
j=s β jφ j(xi). It is important to know that for s large,

these bias terms are small; see Efromovich (1999, Section 2.2).
Perhaps the two most important statistical questions are how to estimate the β js

and how to choose an appropriate value of s. These issues are addressed in the next
two sections.

7.3 Estimation

Choose s so that, for all practical purposes,

Y = Φβ + e, E(e) = 0, Cov(e) = σ
2I. (1)

Clearly, in this model, least squares estimates are BLUEs, so

β̂ = (Φ ′
Φ)−1

Φ
′Y.

To construct tests or confidence intervals, we would need to assume independent
normal errors. The regression function is estimated by

f̂ (x) =
s−1

∑
j=0

β̂ jφ j(x).

This methodology requires r(Φ) ≤ n. Often the model will fit the data perfectly
when s= n, but this would not occur if the Φ js are linearly dependent (i.e., if r(Φ)<
s). In the next chapter we consider alternatives to least squares estimation.

For the voltage drop data we now examine the use of several methods of nonpara-
metric regression: fitting polynomials, cosines, Haar wavelets, and cubic splines. We
begin with the most familiar of these methodologies, fitting polynomials.
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7.3.1 Polynomials

Fitting high-order polynomials becomes difficult numerically unless we do some-
thing toward orthogonalizing them. We will only fit a sixth degree polynomial, so
for the battery data we can get by with simply subtracting the mean before defining
the polynomials. The fitted sixth degree regression is

ŷ = 14.6+7.84(x−0.5)−66.3(x−0.5)2 −28.7(x−0.5)3

+199(x−0.5)4 +10.2(x−0.5)5 −92(x−0.5)6

with R2 = 0.991. The regression coefficients, ANOVA table, and sequential sums of
squares are:

Table of Coefficients: 6th Degree Polynomial.
Predictor β̂k SE(β̂k) t P
Constant 14.6156 0.0901 162.24 0.000
(x−0.5) 7.8385 0.6107 12.83 0.000
(x−0.5)2 −66.259 4.182 −15.84 0.000
(x−0.5)3 −28.692 9.190 −3.12 0.004
(x−0.5)4 199.03 43.87 4.54 0.000
(x−0.5)5 10.17 30.84 0.33 0.744
(x−0.5)6 −91.6 121.2 −0.76 0.455

Analysis of Variance: 6th Degree Polynomial
Source df SS MS F P
Regression 6 259.256 43.209 624.77 0.000
Error 34 2.351 0.069
Total 40 261.608

Source df Seq. SS
(x−0.5) 1 47.081
(x−0.5)2 1 170.159
(x−0.5)3 1 11.155
(x−0.5)4 1 30.815
(x−0.5)5 1 0.008
(x−0.5)6 1 0.039

From the sequential sums of squares, the F test for dropping to a fourth degree
polynomial is

F =
[0.039+0.008]/2

0.069
< 1,

so, refitting, we can get by with the regression equation

ŷ = 14.6+7.67(x−0.5)−63.4(x−0.5)2 −25.7(x−0.5)3 +166(x−0.5)4,
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which still has R2 = 0.991. The regression coefficients and ANOVA table are

Table of Coefficients: 4th Degree Polynomial.
Predictor β̂k SE(β̂k) t P
Constant 14.5804 192.64 0.0757 0.000
(x−0.5) 7.6730 22.47 0.3414 0.000
(x−0.5)2 −63.424 −34.99 1.812 0.000
(x−0.5)3 −25.737 −12.94 1.989 0.000
(x−0.5)4 166.418 21.51 7.738 0.000

Analysis of Variance: 4th Degree Polynomial.
Source df SS MS F P
Regression 4 259.209 64.802 972.66 0.000
Error 36 2.398 0.0676
Total 40 261.608

Note that the estimated regression coefficients have changed with the dropping of
the fifth and sixth degree terms. Figure 7.1 displays the data and the fitted curve.

0.0 0.2 0.4 0.6 0.8 1.0
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y

Fig. 7.1 Fourth-degree polynomial fit to battery data.

Polynomials fit these data very well. Other linear approximations may fit the data
better or worse. What fits well depends on the particular data being analyzed.
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7.3.2 Cosines

For fitting cosines, define the variable c j ≡ cos(π jx). I arbitrarily decided to fit
cosines up to j = 30. The fitted regression equation is

ŷ = 11.4−1.63c1 −3.11c2 +0.457c3 +0.216c4 +0.185c5

+0.150c6 +0.0055c7 +0.0734c8 +0.0726c9 +0.141c10

+0.0077c11 +0.0603c12 +0.125c13 +0.120c14 +0.0413c15

+0.0184c16 +0.0223c17 −0.0320c18 +0.0823c19 +0.0409c20

−0.0005c21 +0.0017c22 +0.0908c23 +0.0036c24 −0.0660c25

+0.0104c26 +0.0592c27 −0.0726c28 −0.0760c29 +0.0134c30

with R2 = 0.997 and ANOVA table

Analysis of Variance: 30 Cosines.
Source df SS MS F P
Regression 30 260.7275 8.6909 98.75 0.000
Error 10 0.8801 0.0880
Total 40 261.6076

The table of regression coefficients is Table 7.2 and Figure 7.2 displays the data
and the fitted model. Note that most of the action in Table 7.2 takes place from
j = 0, . . . ,6 with no other terms having P values less than 0.05. However, these all
are tests of effects fitted last and are not generally appropriate for deciding on the
smallest level of j. In this case, the xs are equally spaced, so the c js are very nearly
uncorrelated, so a model based on j = 0, . . . ,6 will probably work well.

The regression equation based on only j = 0, . . . ,6 is

ŷ = 11.4−1.61c1 −3.10c2 +0.473c3 +0.232c4 +0.201c5 +0.166c6

with MSE = 0.094 = 3.195/34 and R2 = 98.8%. Notice the slight changes in the
regression coefficients relative to the first 7 terms in Table 7.2 due to collinearity.
The correlation matrix of c1 to c6 is not quite the identity:

Correlations
c1 c2 c3 c4 c5 c6

c1 1.00 0.00 0.05 0.00 0.05 0.00
c2 0.00 1.00 0.00 0.05 0.00 0.05
c3 0.05 0.00 1.00 0.00 0.05 0.00
c4 0.00 0.05 0.00 1.00 0.00 0.05
c5 0.05 0.00 0.05 0.00 0.00 0.00
c6 0.00 0.05 0.00 0.05 0.00 1.00,

although the real issue is the correlations between these 6 and the other 24 variables.
Figure 7.3 displays the data along with the fitted cosine curve for s−1 = 6. Both the
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Table 7.2 Regression coefficients for fitting cosines with s−1 = 30.

Table of Coefficients
j β̂k SE t P j β̂k SE t P
0 11.3802 0.0466 244.34 0.000 16 0.01844 0.06539 0.28 0.784
1 −1.62549 0.06538 −24.86 0.000 17 0.02225 0.06538 0.34 0.741
2 −3.11216 0.06539 −47.59 0.000 18 −0.03197 0.06539 −0.49 0.635
3 0.45701 0.06538 6.99 0.000 19 0.08235 0.06538 1.26 0.236
4 0.21605 0.06539 3.30 0.008 20 0.04087 0.06539 0.62 0.546
5 0.18491 0.06538 2.83 0.018 21 −0.00048 0.06538 −0.01 0.994
6 0.14984 0.06539 2.29 0.045 22 0.00165 0.06539 0.03 0.980
7 0.00553 0.06538 0.08 0.934 23 0.09076 0.06538 1.39 0.195
8 0.07343 0.06539 1.12 0.288 24 0.00356 0.06539 0.05 0.958
9 0.07262 0.06538 1.11 0.293 25 −0.06597 0.06538 −1.01 0.337
10 0.14136 0.06539 2.16 0.056 26 0.01038 0.06539 0.16 0.877
11 0.00765 0.06538 0.12 0.909 27 0.05924 0.06538 0.91 0.386
12 0.06032 0.06539 0.92 0.378 28 −0.07257 0.06539 −1.11 0.293
13 0.12514 0.06538 1.91 0.085 29 −0.07600 0.06538 −1.16 0.272
14 0.11983 0.06539 1.83 0.097 30 0.01338 0.06539 0.20 0.842
15 0.04128 0.06538 0.63 0.542
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Fig. 7.2 Cosine fit with s−1 = 30 for the battery data.
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figures and the R2 values establish that fitting the 5 parameters in a 4th degree poly-
nomial fits these data better than an intercept and 6 cosine terms. That a polynomial
fits better than cosines is a peculiarity of these data.
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Fig. 7.3 Cosine fit with s−1 = 6 for the battery data.

7.3.3 Haar wavelets

Consider fitting Haar wavelets. We fit 32 functions, the father wavelet φ0(x) ≡
p0(x) ≡ 1, the mother wavelet φ1(x) ≡ m0, and then transformations of the mother
wavelet, φ j(x)≡ mrk where j = 2r +k−1, k = 1, . . . ,2r. The fitted regression equa-
tion is

ŷ = 11.3−1.05m0 −2.31m11 +1.78m12

−0.527m21 −1.36m22 +0.472m23 +0.814m24

+0.190m31 −0.444m32 −0.708m33 −0.430m34

−0.058m35 +0.317m36 +0.567m37 +0.071m38

+0.530m4,1 −0.181m4,2 −0.180m4,3 −0.248m4,4

−0.325m4,5 −0.331m4,6 −0.290m4,7 +0.139m4,8

+0.275m4,9 −0.131m4,10 +0.265m4,11 +0.349m4,12

+0.005m4,13 +0.229m4,14 +0.150m4,15 +0.012m4,16
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with R2 = 0.957 and ANOVA table

Analysis of Variance: 32 Haar Wavelets.
Source df SS MS F P
Regression 31 250.489 8.080 6.54 0.003
Error 9 11.118 1.235
Total 40 261.6076

Based on R2, this fits the data much worse than either the fourth degree poly-
nomial regression or the cosine regression model with s− 1 = 6. Table 7.3 gives
the estimated regression coefficients. This table gives little indication that either the
third- or fourth-order wavelets are contributing to the fit of the model, but again, the
predictor variables are not uncorrelated, so definite conclusions cannot be reached.
For example, the m4,ks are defined so that they are uncorrelated with each other, but
they are not uncorrelated with all of the m3ks. In particular, m4,2 is not uncorrelated
with m31. To see this, note that the first six entries of the 41 dimensional vector
m4,2 are (0,0,0,1,−1,−1), with the rest being 0’s and the first six entries of m31
are (0,1,1,−1,−1,−1), with the rest being 0’s. Clearly, the two vectors are not or-
thogonal. The problem is that, even though the observations are equally spaced, the
wavelets are based on powers of 1/2, whereas the 41 observations occur at intervals
of 1/40.

Table 7.3 Regression coefficients for fitting 32 Haar wavelets.

Table of Coefficients
Var. β̂k SE t P Var. β̂k SE t P
p0 11.3064 0.1813 62.35 0.000 m4,1 0.5300 0.7859 0.67 0.517
m0 −1.0525 0.1838 −5.73 0.000 m4,2 −0.1808 0.6806 −0.27 0.797
m11 −2.3097 0.2599 −8.89 0.000 m4,3 −0.1800 0.7859 −0.23 0.824
m12 1.7784 0.2599 6.84 0.000 m4,4 −0.2483 0.6806 −0.36 0.724
m21 −0.5269 0.3676 −1.43 0.186 m4,5 −0.3250 0.7859 −0.41 0.689
m22 −1.3637 0.3676 −3.71 0.005 m4,6 −0.3308 0.6806 −0.49 0.639
m23 0.4725 0.3676 1.29 0.231 m4,7 −0.2900 0.7859 −0.37 0.721
m24 0.8144 0.3676 2.22 0.054 m4,8 0.1392 0.6806 0.20 0.842
m31 0.1896 0.5198 0.36 0.724 m4,9 0.2750 0.7859 0.35 0.734
m32 −0.4441 0.5198 −0.85 0.415 m4,10 −0.1308 0.6806 −0.19 0.852
m33 −0.7079 0.5198 −1.36 0.206 m4,11 0.2650 0.7859 0.34 0.744
m34 −0.4304 0.5198 −0.83 0.429 m4,12 0.3492 0.6806 0.51 0.620
m35 −0.0579 0.5198 −0.11 0.914 m4,13 0.0050 0.7859 0.01 0.995
m36 0.3171 0.5198 0.61 0.557 m4,14 0.2292 0.6806 0.34 0.744
m37 0.5671 0.5198 1.09 0.304 m4,15 0.1500 0.7859 0.19 0.853
m38 0.0709 0.5198 0.14 0.895 m4,16 0.0117 0.6806 0.02 0.987

Figure 7.4 displays the data along with the fitted Haar wavelets for s = 32. The
figure displays a worse fit than the 4th degree polynomial and the 7 parameter cosine
model despite fitting many more parameters. This is consistent with the relatively
poor Haar wavelet R2. Some kind of curved mother wavelet function would probably
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fit better than the Haar wavelets. Notice the curious behavior of the plot at x= 0. The
way the Haar wavelets have been defined here, if the columns of Φ are uncorrelated,
the estimate of f (0) will always be ȳ. Here, the columns of Φ are not orthogonal,
but they are not ridiculously far from orthogonality, so the estimate of f (0) is close
to ȳ. If we had standardized the data in Table 7.1 so that x1 ̸= 0, this would not have
been a problem. In particular, if we had defined xi = 2(ti + .5)/42 = i/(n+ 1), we
would not have x1 = 0.
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Fig. 7.4 Haar wavelet fit with s = 32 for the battery data.

7.3.4 Cubic splines

Splines are discussed in detail in ALM-III, Section 1.6. Splines are fundamentally
related to fitting a collection of polynomials to disjoint subsets of the data, polyno-
mials that are forced to connect nicely at a collections of knots where the subsets
meet. They can also be related to things called b-splines that are reminiscent of fit-
ting wavelets. But it turns out that a general cubic spline model with m−1 interior
knots x̃ j can be written

yi = β0 +β1xi +β2x2
i +β3x3 +

m−1

∑
j=1

β j+3[(xi − x̃ j)+]
3 + εi
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where for any scalar a

(x−a)+ ≡
{

x−a if x > a
0 if x ≤ a.

We began by fitting 30 equally spaced interior knots, to get

Analysis of Variance: Splines with 30 knots
Source df SS MS F P
Regression 33 261.064 7.9110 101.8 0.0000
Error 7 0.544 0.0777
Total 40 261.6076

with R2 = 0.998 and regression coefficients in Table 7.4. The fitted curve is dis-
played in Figure 7.5. Most of the regression coefficients are quite large because they
are multiplying numbers that are quite small, i.e., the cube of a number in [0,1].
There is little useful information in the table of coefficients for the purpose of pick-
ing a smaller number of knots. We also fitted a model with only 4 equally spaced
knots that fits surprisingly well, having R2 = 0.991, see Figure 7.6

Table 7.4 Regression coefficients for fitting splines with 30 interior knots.

Table of Coefficients
Var. β̂k SE t P Var. β̂k SE t P
Const. 8.330 0.2788 29.881 0.0000 φ17 78360 34500 2.271 0.0574
x 123.6 12.84 0.962 0.3680 φ18 −91100 34620 −2.631 0.0338
x2 −7530 7422 −1.015 0.3441 φ19 85420 34620 2.467 0.0430
x3 97080 103000 0.943 0.3773 φ20 −62290 34500 −1.806 0.1140
φ4 −116300 142700 −0.815 0.4419 φ21 25890 34570 0.749 0.4783
φ5 21860 64770 0.338 0.7456 φ22 5164 34670 0.149 0.8858
φ6 −7743 43780 −0.177 0.8646 φ23 −13920 34560 −0.403 0.6991
φ7 12430 37310 0.333 0.7487 φ24 10190 34520 0.295 0.7765
φ8 −21280 35460 −0.600 0.5674 φ25 −9532 34640 −0.275 0.7911
φ9 36210 34810 1.040 0.3329 φ26 11840 34630 0.342 0.7425
φ10 −45710 34560 −1.323 0.2275 φ27 −9615 34560 −0.278 0.7889
φ11 42350 34630 1.223 0.2608 φ28 1079 34810 0.031 0.9761
φ12 −39120 34640 −1.129 0.2960 φ29 8318 35460 0.235 0.8213
φ13 45090 34520 1.306 0.2328 φ30 −10490 37310 −0.281 0.7868
φ14 −51080 34560 −1.478 0.1829 φ31 8146 43780 0.186 0.8577
φ15 51290 34670 1.479 0.1826 φ32 −8246 64770 −0.127 0.9023
φ16 −58680 34570 −1.697 0.1334 φ33 −10490 142700 −0.074 0.9434



7.3 Estimation 183

0.0 0.2 0.4 0.6 0.8 1.0

8
10

12
14

x

y

Fig. 7.5 Cubic spline fit with 30 interior knots for the battery data.
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Fig. 7.6 Cubic spline fit with 4 interior knots for the battery data.
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7.4 Variable Selection

Variable selection is of key importance in these problems because the linear model
is only an approximation. The problem is to select an appropriate value of s in model
(7.2.1).

For fitting polynomials, or cosines, or any φ js with an obvious ordering, the situa-
tion is analogous to identifying the important features in a 2n factorial design in that
we could take s = n and construct a χ2(1) plot from the sequential sums of squares
to identify the largest important terms; see Christensen (1996, Sections 17.3 and
17.4) or http://www.stat.unm.edu/˜fletcher/TopicsInDesign. If
the 1√

n Φ j vectors are orthonormal, the analogy to a factorial is even closer and we

could construct a normal or half-normal plot of the β̂ js to identify any important φ j
functions. For sines and cosines the pairs of variables are ordered, so χ2(2) plots
are more appropriate. Such a plot is closely related to the periodogram, cf. the ALM
Frequency Domain chapter. For the case against using such graphical methods, see
Lenth (2015).

Another method of choosing s is by cross-validation. For example, one can min-
imize the PRESS statistic; see PA-V Section 12.5 (Christensen, 2011, Section 13.5)
or Hart (1997, Section 4.2.1).

An alternative to variable selection is using a penalized estimation procedure as
discussed in the next chapter.

In the remainder of this section we will assume that we have fitted a model with
s predictors where s was chosen to be so large that it clearly gives a reasonable
approximation. We want to find a reduced model with p predictors that does not
over fit the data.

Hart (1997, Section 4.2.2) and Efromovich (1999, p. 125) implicity suggest se-
lecting p to minimize Cp on the sequence of models defined using the first p cosine
φs for p = 1, . . . ,s. (Actually they suggest maximizing a statistic Ap that is equiv-
alent to minimizing Cp.) The same idea applies whenever the φ js are ordered, e.g.,
polynomials. When using sines and cosines, by pairing terms with equal frequen-
cies, you can cut the length of the sequence in half. Wavelets have a nesting structure
that determines a sequence of models. For splines you would have to determine a se-
quence of models determined by adding additional knots, e.g., you could start with
1 knot, add two more, add four more, etc. much like wavelets.

Selecting p by minimizing Cp on a sequence of models does not allow dropping
lower-order terms if higher ones are included (i.e., it is similar, in polynomial re-
gression, to not allowing x2 to be eliminated if x3 remains in the model). For cosines
Efromovich suggested picking s = 6 p̃, where p̃ is the smallest value of p for which

MSE < 2[1.48median|yi − ŷi|]2.

Based on Hart’s discussion of Hurvich and Tsai (1995), another crude upper bound
might be s =

√
n, although in practice this seems to give too small values of s.

Subsection 5.4.6 suggests that n− s should be at least 8 with values of 18 or more
preferable. In Example 7.4.1, s is chosen by the seat of my pants.

http://www.stat.unm.edu/~fletcher/TopicsInDesign


7.4 Variable Selection 185

EXAMPLE 7.4.1. Using the battery data and fitting cosines with s−1 = 30 gives
MSE = 0.0880 on dfE = 10. Table 7.5 gives sequential sums of squares and values
of −Cp( j+1)+Cp(1). Here we denote the Cp statistic based on r parameters Cp(r).
Because Cp(r) = (s− r)(F − 2) + s where F is the statistic for comparing the r
parameter and s parameter models, the −Cp( j + 1)+Cp(1)s are easily computed
from the sequential sums of squares as partial sums of the (Fk −2) statistics where

Fk ≡
SSR(Φk|Φ0, . . . ,Φk−1)

MSE
.

For example, F5 = 0.8427/0.0880 and −Cp(6) +Cp(1) = (F1 − 2) + · · ·+ (F5 −
2). The Cp statistic is minimized when −Cp(r)+Cp(1) is maximized, so the best
models from the sequence have p−1 = 6,10,13,14. If one were willing to consider
models that do not include a contiguous set of j values, the problem becomes a
traditional variable selection problem. Given the near orthogonality of the predictors
in this example, it is fairly obvious from the sequential sums of squares alone that
the most important predictors are j = 1, . . . ,6,10,13,14. With more collinear data,
such a conclusion could not be made from the sequential sums of squares.

Table 7.5 Selection of s based on the Cp statistic.

j Seq SS −Cp( j+1)+Cp(1) j Seq SS −Cp( j+1)+Cp(1)
1 52.2633 591.90 16 0.0061 2922.20
2 198.6634 2847.44 17 0.0133 2920.35
3 4.8674 2900.75 18 0.0213 2918.59
4 1.2009 2912.40 19 0.1412 2918.19
5 0.8427 2919.97 20 0.0322 2916.56
6 0.5753 2924.51 21 0.0000 2914.56
7 0.0088 2922.61 22 0.0000 2912.56
8 0.1538 2922.36 23 0.1605 2912.38
9 0.1472 2922.03 24 0.0001 2910.39

10 0.4547 2925.20 25 0.0911 2909.42
11 0.0070 2923.28 26 0.0015 2907.44
12 0.0857 2922.25 27 0.0669 2906.20
13 0.3554 2924.29 28 0.1073 2905.42
14 0.2951 2925.64 29 0.1189 2904.77
15 0.0425 2924.13 30 0.0037 2902.81

Figure 7.7 gives fitted cosine curves for s−1 = 6,10,14,30. I suspect that, visu-
ally, s−1 = 14 in the bottom left is the one that would most appeal to practitioners
of nonparametric regression. 2

EXAMPLE 7.4.2. For fitting the Haar wavelets to the battery data, we have obvi-
ous groups of variables that occur in powers of 2. We can consider the highest-order
group that we need, or we could consider including individual terms from any or-
der group. In the first case, we would consider tests based on the ANOVA tables
reported in Table 7.6.
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Fig. 7.7 Cosine fit with s−1 = 6,10,14,30 for the battery data. Read across and down.

Table 7.6 ANOVA tables for Haar wavelets.

Analysis of Variance: Fitting p0 to m4,16.
Source df SS MS F P
Regression 31 250.489 8.080 6.54 0.003
Error 9 11.118 1.235
Total 40 261.6076

Analysis of Variance: Fitting p0 to m3,8.
Source df SS MS F P
Regression 15 248.040 16.536 30.47 0.000
Residual Error 25 13.568 0.543
Total 40 261.608

Analysis of Variance: Fitting p0 to m2,4.
Source df SS MS F P
Regression 7 240.705 34.386 54.29 0.000
Residual Error 33 20.902 0.633
Total 40 261.608
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To test whether we can drop the m4,ks, the test statistic is

F =
[13.568−11.118]/16

1.235
< 1.

To test whether we can drop the m3ks, the test statistic is

F =
[20.902−13.568]/8

0.543
.
= 2

or, using the MSE from the largest model fitted,

F =
[20.902−13.568]/8

1.235
< 1

If we allow elimination of individual variables from any group, the problem be-
comes a traditional variable selection problem. The number of wavelets needed is
related to the smoothness of f , and the smoothness can change on different subsets
of [0,1]. Figure 7.8 gives the fitted Haar wavelet curves for s = 8 and s = 16. Rela-
tive to the s = 16 fit, the s = 8 wavelets work pretty well from 0.5 to 0.625 and also
from 0.875 to 1 but not very well anywhere else. 2
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Fig. 7.8 Haar wavelet fit with s = 8,16 for the battery data.
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7.5 Approximating-Functions with Small Support

The support of a function is where it takes nonzero values. Except for a finite num-
ber of 0s, the support of the polynomials, sines, and cosines is the entire interval
[0,1]. As seen in Chapter 3, this can cause strange behavior when s gets close to n,
especially when the xis are unevenly spaced. As regards polynomials, this strange
behavior is a well-known fact, but it is, perhaps, less well known as regards sines
and cosines. The fundamental idea of polynomial splines, b-splines, and wavelets is
to fit functions that are nonzero only on small subsets of the domain space [0,1].

As discussed in Section 1, splines and b-splines both involve knots. Earlier we
needed a subscript m on the knots to indicate how many knots were being used. In
this section, we will drop m from the subscript when m is not subject to change.

7.5.1 Polynomial Splines

The basic idea behind using polynomial splines is to connect the dots. Suppose
we have simple regression data (xi,yi), i = 1, . . . ,n in which the xis are ordered
from smallest to largest. Linear splines quite simply give, as a regression function,
the function that fits a line segment between the consecutive pairs of points. Cubic
splines fit a cubic polynomial between every pair of points rather than a line. Note
that all of the action here has nothing to do with fitting a model to the data. The data
are being fitted perfectly (at least in this simplest form of spline fitting). The key
issue is how to model what goes on between data points.

In practice, splines often do not actually connect the dots, they create smooth
functions between knots. Section 3.6 illustrates the use of two linear splines,
whereas here we have focused on several cubic splines. The reason for using cu-
bic splines is to make the curve look smooth. With cubic splines we require the
fitted regression function to have continuous second derivatives.

Fitting polynomials between knots with continuity and continuous derivative
constraints at each interior knot is equivalent to the kind of model we fitted for
cubic splines in Section 3 and to the b-spline method that we are about to formally
introduce, cf. ALM-III, Subsection 1.6.1. For fitting dth order polynomial splines
with m−1 interior knots x̃ j, it suffices to fit

yi =
d

∑
k=0

βkxk +
m−1

∑
j=1

β j+d [(xi − x̃ j)+]
d + εi,

which involves m+d parameters. For equally spaced knots, the equivalent b-spline
model is

yi =
m+d−1

∑
j=0

γ j φ j(xi)+ εi

where a dth order mother spline Ψd is transformed into
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φ j(x) =Ψd (mx− j+d) . (1)

7.5.1.1 B-splines

B-splines provide the same fit as regular splines but do so by defining a particular
mother spline and then defining φ j functions by rescaling and relocating the mother.
B-splines are supposed to be basis splines but they do not actually define a mean-
ingful basis in the space of functions. To get good approximations the number of
interior knots m− 1 must get large but the φ j(x) functions all change with m. For
fixed m the φ j(x)≡ φ jm(x) functions define a basis for their spanning space but not
for an interesting function space.

The mother spline is itself a low order polynomial spline. The mother spline of
degree 2 is nonzero over (0,3) and defined as

Ψ2(x) =
x2

2
I[0,1](x)−

{
[x−1.5]2 −0.75

}
I(1,2](x)+

[3− x]2

2
I(2,3](x).

This is a bell-shaped curve, similar to a normal density centered at 1.5, but it is 0
outside the interval [0,3] while still being smooth in that it is differentiable every-
where. Ψ2 is itself a quadratic spline, i.e., quadratics have been pasted together as a
smooth function.

A mother spline Ψd of degree d has support on the interval (0,d + 1). It splices
together (d+1) different d-degree polynomials, each defined on a length 1 interval,
so that the whole function is differentiable d−1 times and looks like a mean-shifted
Gaussian density. Commonly d is either 2 or 3. For d = 3, the cubic mother spline
on [0,4] is

Ψ3(x) =
x3

3
I[0,1](x)+

{
−x3 +4x2 −4x+

4
3

}
I(1,2](x)

+

{
−[4− x]3 +4[4− x]2 −4[4− x]+

4
3

}
I(2,3](x)+

[4− x]3

3
I(3,4](x).

Figure 7.9 shows these b-spline mother functions. Other than the domain on which
they are defined, they look quite unremarkable. There is a body of theory associated
with b-splines that includes defining the d +1 order mother spline recursively from
the d order mother.

The approximating functions φ j(x) are defined by rescaling and relocating the
mother splines. For simplicity, consider d = 2 with m− 1 equally spaced interior
knots. If the knots are equally spaced, the same rescaling of Ψ2 works for all φ j. Ψ2
is defined on [0,3] and pastes together 3 polynomials on three intervals of length one.
To define φ0 we rescale Ψ2 to live on [0,3/m] and then shift it to the left 2/m units
so that only the polynomial originally defined on [2,3] now overlaps the interval
[0,1/m] and φ0 is 0 elsewhere in [0,1]. To define φ1, again rescale Ψ2 to live on
[0,3/m] but now shift it to the left only 1/m units so that the polynomial originally
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Fig. 7.9 B-spline mother functions for d = 2,3.

defined on [2,3] now overlaps the interval [1/m,2/m] and the polynomial originally
defined on [1,2] now overlaps the interval [0/m,1/m]. φ1 is 0 elsewhere in [0,1]. φ2
is just the rescaled version of Ψ2. φ3 is the rescaled Ψ2 shifted to the right by 1/m.
More generally, φ2+ j is the rescaled Ψ2 shifted to the right by j/m.

For arbitrary d, Ψd is rescaled so that its support is (0,{d +1}/m) and φ0 is the
rescaled Ψd shifted to the left d/m units. Each successive φ j is shifted to the right by
an additional 1/m so that φd is the rescaled version of Ψd and φd+ j is the rescaled
Ψd shifted to the right by j/m. The general formula for this was given in equation
(1). A proof that fitting b-splines is equivalent to fitting regular splines is given in
ALM-III, Subsection 1.6.1.

7.5.2 Fitting local functions

In discussing b-splines for equally spaced knots we carefully defined φ j ≡ φ jm func-
tions so that they were equivalent to fitting polynomial splines. But in another sense,
fitting b-splines is just fitting a bunch of bell shaped curves that were rescaled to have
small support and shifted so that the functions had centers that were spread over the
entire unit interval.

Just about any function Ψ that goes to 0 as |x| → ∞ can be used as a “mother”
to define a triangular array φ jm of approximating-functions with small (practical)
support. These include indicator functions, mother splines, mother wavelets, normal
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densities, etc. Given a set of knots x̃ j,m, take s− 1 = m with φ jm a rescaled mother
function with a location tied to (often centered at) x̃ j,m. The success of this enterprize
will depend on the number and placement of the knots and how the mother function
is rescaled. The process becomes a method based on approximating functions with
small support when the mother function is rescaled in such a way that it becomes, for
all practical purposes, 0 outside of a small interval. For example, normal densities
have a support that is the entire real line, but if the variance is small enough the
density is practically zero except for a small region around the mean.

7.5.3 Local Regression

Local (polynomial) regression, often referred to as loess or lowess (local weighted
scatterplot smoothing) provides fitted values by fitting a separate low order polyno-
mial for every prediction. It provides a collection of (x, ŷ) values that can be plotted,
but it does not provide a formula for the estimated regression curve. As with splines,
we assume that in the data (xi,yi), the xis are ordered.

The key to local regression is that it uses weighted regression with weights deter-
mined by the distance between the actual data xi and the location being fitted x. What
makes this “local” regression is that the weights are either zero, or close to zero, out-
side a small region around x. The weights are determined by a kernel function (not
to be confused with the reproducing kernels introduced later in Subsection 6.2).

Originally, this procedure was performed using 0 order polynomials and is known
as kernel smoothing, see Green and Silverman (1994) or Efromovich (1999). The
idea of kernel smoothing is to base estimation on the continuity of f (x). The esti-
mate f̂ (x) is a weighted average of the yi values in a small neighborhood of x. Less
weight is given to a yi for which the corresponding xi is far from x. The weights are
defined by a nonnegative kernel function K(z) that gets small rapidly as z gets away
from 0. The Nadaraya–Watson kernel estimate is

f̂ (x) =
n

∑
i=1

yiK[(x− xi)]

/ n

∑
i=1

K[(x− xi)],

which is just a weighted average, as advertised.
More generally, take a low order polynomial model, say,

Y = Xβ +0, E(e) = 0

on which we perform weighted least squares with a diagonal matrix D(w) having
some vector of weights w. The definition of the weights is all-important. The ith
element of w is

wi ≡ K [(xi − x)/h]

for some scalar tuning parameter h and kernel function K. From fitting this model
we obtain only one thing, the fitted value ŷ for the new data point x. You do this for
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a lot of xs and plot the result. Obviously, fitting a separate linear model for every
fitted value requires modern computing power.

In loess the most commonly used weighting seems to be the tri-weight where the
kernel function is

K(z) =
{
(1−|z|3)3 if |z|< 1
0 if |z| ≥ 1.

In R the default is to fit a quadratic polynomial.
For the battery data the default loess fit in R seems to me to oversmooth the

data. It gives R2 = 0.962.

7.6 Nonparametric Multiple Regression

Nonparametric multiple regression involves using a p vector x as the argument for
φ j(·) in an infinite sum or φ jm(·) in a triangular array. The difficulty is in choosing
which φ functions to use. There are two common approaches. One is to construct
the vector functions φ from the scalar φ functions already discussed. The other
method uses the kernel trick to replace explicit consideration of the φ functions
with evaluation of a reproducing kernel function.

7.6.1 Redefining φ and the Curse of Dimensionality

In nonparametric multiple regression, the scalars xi are replaced by vectors xi =
(xi1,xi2, . . . ,xip)

′. Theoretically, the only real complication is that the φ j functions
have to be redefined as functions of vectors rather than scalars.

In practice, we often construct vector φ functions from scalar φ functions. The
ideas become clear in the case of p = 2. For variables x1 and x2, define

φ jk(x1,x2)≡ φ j(x1)φk(x2),

and the regression function approximation is

f (x1,x2)
.
=

s1−1

∑
j=0

s2−1

∑
k=0

β jkφ jk(x1,x2). (1)

In general, for x = (x1, . . . ,xp)
′,

f (x) .
=

s1−1

∑
k1=0

· · ·
sp−1

∑
kp=0

βk1...kpφk1(x1) · · ·φkp(xp), (2)

where most often φ0 ≡ 1. One practical issue with fitting
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φk1...kp(x)≡ φk1(x1) · · ·φkp(xp)

functions when using component functions φk j(x j) having small support is that
when evaluated at the data vectors xi, you may often get φk1...kp(xi) = 0, i = 1, . . . ,n,
so many of the predictors may be extraneous.

There are a lot of φ functions involved in this process! For example, if we needed
s1 = 10 functions to approximate a function in x1 and s2 = 8 functions to approxi-
mate a function in x2, it takes 80 functions to approximate a function in (x1,x2), and
this is a very simple case. It is not uncommon to have p = 5 or more. If we need
s∗ = 8 for each dimension, we are talking about fitting s = 85 = 32,768 parame-
ters for a very moderately sized problem. Clearly, this approach to nonparametric
multiple regression is only practical for very large data sets if p > 2. However,
nonparametric multiple regression seems to be a reasonable approach for p = 2
with moderately large amounts of data, such as are often found in problems such as
two-dimensional image reconstruction and smoothing two-dimensional spatial data.
Another way to think of the dimensionality problems is that, roughly, if we need n
observations to do a good job of estimation with one predictor, we might expect to
need n2 observations to do a good job with two predictors and np observations to
do a good job with p predictors. For example, if we needed 40 observations to get a
good fit in one dimension, and we have p = 5 predictors, we need about 100 million
observations. (An intercept can be included as either φ0 ≡ 1 or xi1 ≡ 1. In the latter
case, sp−1

∗ or np−1 would be more appropriate.) This curse of dimensionality can
easily make it impractical to fit nonparametric regression models.

One way to deal with having too many parameters is to use generalized addi-
tive models. Sections 3.8 and 3.9 contain some additional details about writing out
generalized additive models but the fundamental idea is an analogy to multifactor
analysis of variance, cf. Christensen (1996 or 2015). Fitting the full model with
p = 5 and, say, s = 85 parameters is analogous to fitting a 5 factor interaction term.
If we fit the model with only the 10 three-factor interaction terms, we could get by
with 10(83)= 5120 parameters. If we fit the model with only the 10 two-factor inter-
action terms, we could get by with 10(82) = 640 parameters. In particular, with the
two-factor interactions, f (x1, . . . ,x5) is modeled as the sum of 10 terms each looking
like equation (1) but with each involving a different pair of predictor variables.

The all three-factor and all two-factor models still seem like a lot of parame-
ters but the decrease is enormous compared to the five-factor model. The price for
this decrease is the simplifying assumptions being made. And if we cannot fit the
5-factor interaction model, we cannot test the validity of those simplifying assump-
tions, e.g., whether it is alright to drop, say, all of the 4-factor interactions. Of course
we don’t have to restrict ourselves to the all 4-factor, all three-factor, all two-factor,
and main-effects only models. We can create models with some three-factor inter-
actions, some two-factors, and some main effects. Like ANOVA, we need to be
concerned about creating linear dependencies in the model matrix Φ .

The most difficult part of computing least squares estimates is that they generally
involve finding the inverse or generalized inverse of the p× p matrix X ′X (or some
similarly sized computation). When p is large, the computation is difficult. When
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applying linear-approximation nonparametric methods the problem is finding the
generalized inverse of the s× s matrix Φ ′Φ , which typically has s much larger than
p. This becomes particularly awkward when s > n. We now consider a device that
gives us a model matrix that is always n×n.

7.6.2 Reproducing Kernel Hilbert Space Regression

We now introduce a simple way to use reproducing kernel Hilbert spaces (RKHSs)
in nonparametric regression. Before doing that we need to discuss some additional
background on general linear models. In Subsection 2.2.3 we introduced the idea of
equivalent linear models. If Y = X1β1 + e1 and Y = X2β2 + e2 are two models for
the same dependent variable vector Y , the models are equivalent if C(X1) =C(X2).
The result that for any X ,

C(X) =C(XX ′) (3)

is proven in PA, Appendix B.4. In particular, this implies that the linear models Y =
Xβ1 + e1 and Y = XX ′β2 + e2 are equivalent. For reasons that I hope will become
obvious, I have jokingly referred to the result in (3) as The Fundamental Theorem
(for Statistics) of Reproducing Kernel Hilbert Spaces.

An RKHS transforms a p vector xi into an s vector φi = [φ0(xi), . . . ,φs−1(xi)]
′,

where not infrequently s = ∞. Just as X has rows made up of the x′is, Φ has rows
made up of the φ ′

i s. Just as XX ′ = [x′ix j] is an n×n matrix of inner products of the
xis, the whole point of RKHSs is that there exists a reproducing kernel (r.k.) function
R(·, ·) with the property that

R̃ ≡ [R(xi,x j)] = [φ ′
i D(η)φ j] = ΦD(η)Φ ′

is an n×n inner product matrix of the φis where D(η) is a positive definite diagonal
matrix. Moreover, for s finite, C[ΦD(η)Φ ′] =C(Φ) (see PA Section B.4), so fitting
the r.k. model

Y = R̃γ + e

is equivalent to fitting the nonparametric model

Y = Φβ + e.

The r.k. model is just a reparameterization with β = D(η)Φ ′γ . In particular, predic-
tions are easy using the r.k. model,

ŷ(x) = [R(x,x1), . . . ,R(x,xn)]γ̂.

This equivalence between fitting a linear structure with Φ and fitting one with the
n×n matrix R̃ is sometimes known as the kernel trick.

A primary advantage of the kernel trick is simply that, for a known function
R(·, ·), it is very easy to construct the matrix R̃. (It is time consuming to specify
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s different φ j(·) functions, as opposed to one R(·, ·) function.) Moreover, the n× s
matrix Φ is awkward to use when s is large. R̃ is always n× n, which limits how
awkward it can become to use, but also prevents the simplifications that arise when
s < n.

When s ≥ n and the xis are distinct, it is to be expected that R̃ will be an n×
n matrix of rank n, so it defines a saturated model. Least squares estimates will
give fitted values that equal the observations and zero degrees of freedom for error.
Nothing interesting will come of fitting a saturated model. We need to deal with
this overfitting. Indeed, the kernel trick is typically used together with a penalized
(regularized) estimation method such as those discussed in Chapter 8.

If the xis are not all distinct, as in the discussion of Fisher’s Lack-of-Fit Test from
Chapter 6 of PA, the row structures of X , Φ , and R̃ (no longer nonsingular) are the
same. Fitting any of Xξ , Φβ , and R̃γ by least squares would give exactly the same
pure error sum of squares (SSPE) and degrees of freedom (df PE). Moreover, fitting
Φβ and R̃γ would give exactly the same lack-of-fit sum of squares and degrees of
freedom but, depending on the size of s, there is a good chance that fitting Φβ and
R̃γ would give SSLF = 0 on 0 df LF . (This is the equivalent of fitting a saturated
model when the xis are not all distinct.)

Different choices of R(·, ·), if they have s ≥ n, typically all give the same C(R̃),
which defines either a saturated model or a model with no lack of fit. Thus different
choices of R(·, ·) typically all give the same model, but they typically are reparam-
eterizations of each other. They give the same least squares fits. But we will see in
the next chapter that if you have two different parameterizations of the same model,
and obtain estimates by penalizing parameters in the same way (i.e. use the same
penalty function for every parameterization), that having the same penalties applied
to different parameters leads to different fitted models. So, even though different
R(·, ·) functions define essentially the same model, applying any standard penalty
like ridge regression or lasso, will lead to different fitted values because the equiva-
lent linear models have different parameters that are being shrunk in the same way.
The process of shrinking is the same but the parameters are different, thus the end
results are different. We saw that different φ js work better or worse on the battery
data and there is no way to tell ahead of time which collection will work best. Simi-
larly, different R(·, ·)s (with the same penalty) work better or worse on different data
and there is no way to tell, ahead of time, which will work best.

If you know what φ j functions you want to use, there is not much mathemati-
cal advantage to using r.k.s. But you can use R functions that are known to be r.k.s
for which it is difficult or, in the case of s = ∞, impossible to write down all the
φ js. ALM-III, Chapter 3 examines r.k.s that correspond to finite polynomial regres-
sion and to fitting splines. But there are a wide variety of potential r.k.s, many that
correspond to s = ∞.

Table 7.7 gives some commonly used r.k.s. Any r.k. that depends only on ∥u−v∥
is a radial basis function r.k.

The hyperbolic tangent in Table 7.7 is not really an r.k. because it can give R̃
matrices that are not nonnegative definite. But any function R(u,v) that is continuous
in u can give plausible answers because it leads to fitting models of the form
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Table 7.7 Some common r.k. functions. b and c are scalars.

Names R(u,v)
Polynomial of degree d (1+u′v)d

Polynomial of degree d b(c+u′v)d

Gaussian (Radial Basis) exp(−b∥u− v∥2)
Sigmoid (Hyperbolic Tangent) tanh(bu′v+ c)
Linear Spline (u, v scalars) min(u,v)
Cubic Spline (u, v scalars) max(u,v)min2(u,v)/2−min3(u,v)/6
Thin Plate Spline (2 dimensions) ∥u− v∥2 log(∥u− v∥)

f (x) =
n

∑
j=1

γ jR(x,x j). (4)

This idea can be viewed as extending the use of approximating functions with small
support, cf. Subsection 7.6.2, from one to higher dimensions in a way that limits the
curse of dimensionality. With local support methods, in one dimension you partition
the line into say s∗ sets and fit a separate one-dimensional wavelet, B spline, or other
function for each partition set. The problem is that in p dimensions the number of
partition sets (obtained by Cartesian products) quickly gets out of control, sp

∗ . The
key idea behind kernel methods is to fit a p-dimensional function, not for each par-
tition set but for each observed data point. The number of functions being fitted is
n, which is large but manageable, rather than sp

∗ which rapidly becomes unmanage-
ably large. The p-dimensional functions used in fitting can be defined as a a product
of p one-dimensional wavelet, spline, or other functions or they can be defined di-
rectly as p-dimensional functions via some kernel function. The tuning values b and
c in Table 7.7 can be viewed as tools for getting the functions centered and scaled
appropriately. Fitting n functions to n data points would typically result in overfit-
ting, so penalizing the coefficients, as discussed in the next chapter, is appropriate.
As mentioned earlier, when R̃ is a nonsingular matrix (or more generally has the
column space associated with finding pure error), it does not matter what function
you used to define R̃ because all such matrices are reparameterizations of each other
and give the same least squares fitted values. But if you penalize the parameters
in a fixed way, the parameterization penalty will have different effects on different
parameterizations.

EXAMPLE 7.6.1. I fitted the battery data with the R language’s lm command using
the polynomial functions R(u,v) = (u′v)4, R(u,v) = (1+u′v)4, R(u,v) = 5(7+u′v)4

and the Gaussian functions R(u,v) = exp(−∥u−v∥2) and R(u,v) = exp(−1000∥u−
v∥2). I defined xi to include the intercept. The three polynomial functions gave fitted
values ŷi identical to those from fitting a fourth degree polynomial. (I fitted the
fourth degree polynomial several ways including using ΦΦ ′ as the model matrix.)
The Gaussian r.k.s have s = ∞. The first Gaussian function gave an R̃ matrix that
was computationally singular and gave fitted values that were (to me) unexplainable
except as a convenient fitting device similar to the hyperbolic tangent discussed later.
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The last function gave an R̃ that was computationally invertible and hence gave
fitted values with ŷi = yi. This has overfit the model so penalizing the regression
coefficients, as discussed in the next chapter, is advisable.

Figure 7.10 contains the fit of the hyperbolic tangent “kernel” to the battery data
using b = 1 and c = 0. It turns out that (at least computationally) R̃ is a rank 8
matrix with R’s lm command including only the 1st, 2nd, 3rd, 4th, 11th, 16th, 29th,
and 41st columns of R̃. For an 8 parameter model this has a remarkably high value
of R2 = 0.9996. Incidentally, this R̃ has negative eigenvalues so is not nonnegative
definite. With b = 5 and c = 0 lm uses columns 1, 2, 3, 6, 12, 22, 37 of R̃ and again
has R2 = 0.9996. With b = 10 and c = 10 lm fits only the first column of R̃ yet
has R2 = 0.9526. In none of these cases has the hyperbolic tangent led to serious
overfitting (although it is quite clear from inspecting the R output that we could drop
at least one of the columns used in each c = 0 example). 2
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Fig. 7.10 Hyperbolic tangent fit to battery data.

7.7 Testing Lack of Fit in Linear Models

Given a linear model
Y = Xβ + e, E(e) = 0, (1)

any form of fitting a nonparametric regression determines a potential lack-of-fit
test procedure. When fitting nonparametric regression via the linear-approximation
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models discussed in this chapter, lack-of-fit tests are easy to specify. Because the
procedure is based on having a linear-approximation model, essentially the same
procedure works regardless of whether one is fitting polynomials, trigonometric
functions, wavelets, or splines. (Local polynomials [lowess], because they do not
fit a single linear model, do not seem to fit into this procedure.)

Suppose we have the linear model (1) based on predictor variables x1, . . . ,xp.
Given enough data, it may be feasible to produce a nonparametric multiple regres-
sion model, say Y = Φγ + e. In practice, this may need to be some generalized
additive model. If C(X) ⊂ C(Φ), we could just test the reduced model against the
full model. Unless Φ is based on polynomials (including polynomial splines), more
often than not C(X) ̸⊂C(Φ). In that case we can test the reduced model (1) against
the partitioned (analysis of covariance) full model

Y = Xβ +Φγ + e. (2)

The F statistic is the standard

F =
[SSE(1)−SSE(2)][dfE(1)−dfE(2)]

MSE(2)

and should be about 1 if the original model is correct. If e ∼ N(0,σ2I) is a good
approximation, the test will have an approximate F distribution.

This procedure does not define a single lack-of-fit test. Every different method
of picking Φ defines a different test. Which test is best? It seems pretty clear that
no best test can possibly exist. If the lack of fit is due to the true model involving
cosine curves that were not included in model (1), picking a Φ based on cosine
curves should work better than picking a Φ based on polynomials or wavelets. If
the lack of fit is due to the true model involving polynomial terms not included in
model (1), picking Φ based on polynomials should work better than picking a Φ

based on sines, cosines, or wavelets.
What works best will depend on the true nature of the lack of fit. Unfortunately,

we do not know the true model. We won’t know which of these tests will work best
unless we have a very good idea about the true lack of fit and how to model it. If we
had those good ideas, we probably wouldn’t be thinking about doing a lack-of-fit
test.

Incidentally, it is clearly impossible for such tests to be sensitive only to lack of fit
in the mean structure. As discussed in ALM-III Chapter 5, it is perfectly reasonable
to assume that γ in (2) is a random vector with mean 0. In such a case, E(Y ) = Xβ ,
so there is no lack of fit. However the F test will still be sensitive to seeing random
values of γ that are very different from 0. Such values of γ will be the result of
some combination of heteroscedasticity or dependence among the observations in
Y . There is no way to tell from the test itself whether lack of fit or heteroscedasticity
or dependence or some combination is causing a large F statistic.

The traditional lack-of-fit tests in Section 3.7 can be viewed through a lens of
performing some kind of nonparametric regression on subsets of the data. Most
traditional lack-of-fit tests rely on partitioning the data and fitting some kind of
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linear model within the partition sets. Fitting models on partitions is nothing more
than fitting approximating-functions with small support. Atwood and Ryan’s idea
for testing lack of fit is just fitting the original model on subsets of the data, so it is
essentially fitting multivariate linear splines without the requirement that the fitted
splines be continuous. Utts’ method relies on fitting the original model on only a
central group of points, so it implicitly puts each point not in the central group into
a separate partition set and fits a separate parameter to each of those noncentral
data points. (As alluded to earlier, the irony is that the more parameters you fit the
more “nonparametric” your procedure.) Fisher’s test fits the biggest model possible
that maintains the row structure of the data, cf. PA-V Subsection 6.7.2, i.e., the data
are partitioned into sets where the predictor variables are identical and a separate
parameter if fitted to each set.

Clearly, this model based approach to performing lack-of-fit tests can be extended
to testing lack of fit in logistic regression and other generalized linear models.

7.8 Regression Trees

Regression trees can be viewed as a form of linear modeling. In fact, they can be
thought of as using forward selection to deal with the dimensionality problems of
nonparametric multiple regression. But, unlike standard forward selection, the vari-
ables considered for inclusion in the model change with each step of the process.
There are a number of different algorithms available for constructing regression
trees, cf. Loh (2011). We merely discuss their general motivation. Constructing trees
is also known as recursive partitioning.

A simple approach to nonparametric regression is to turn the problem into a mul-
tifactor ANOVA. (Appendix B contains an illustration of a 3-factor ANOVA.) With
p predictor variables, partition each predictor variable into s∗ groups. In other words,
define s∗ indicator functions to partition each variable. Construct the predictor func-
tions as in (7.6.2) by multiplying the indicator fuctions. This amounts to partitioning
p dimensional space into sp

∗ subsets. Fitting the regression function (7.6.2) amounts
to fitting an ANOVA with p factors each at s∗ levels, i.e., an sp

∗ ANOVA. Fitting
the ANOVA model that includes the p-factor interaction is equivalent to fitting a
one-way ANOVA with sp

∗ groups. If you want to make a prediction for a new point
x = (x1, . . . ,xp)

′, just figure out which of the sp
∗ partition sets includes x and the

prediction is the sample mean of the y observations that fell into that set. Of course
this does nothing to help with the curse of dimensionality, but fitting generalized
additive models is clearly nothing more than fitting a model that eliminates many of
the interactions in the sp

∗ ANOVA.
How do you pick the partition sets? The more partition sets you have, the more

“nonparametric” the model will be. A reasonable rule of thumb might be to require
that if a partition set includes any data at all, it has to include, say, 5 observations.
The sets with no data we will ignore and never make predictions there. Five ob-
servations in a partition set is not a crazy small number of observations on which
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to base a prediction. Once the partition has be determined, we could use backward
elimination to find partition sets that can be pooled together. (It would probably be
wise to require that partition sets to be pooled must be contiguous in p dimensional
space.)

Fitting regression trees is basically the same idea except that they are based on
forward selection rather than backward elimination. By using forward selection,
the procedure avoids the curse of dimensionality. Usually forward selection can
easily miss important features. A nice feature of regression trees is that they pick
the partition sets as well as deciding which partition sets need further dividing. In
other words, they search through far more than a single set of sp

∗ partition sets. In
practice, regression trees are often used with bagging or random forests as discussed
in Section 5.5.

We now consider two examples. A very simple one to illustrate the ideas and a
slightly more complicated one that examines the process.

EXAMPLE 7.8.1. Consider a simple example with n = 7 observations and two
predictor variables x1,x2, specifically

Y =



y1
y2
y3
y4
y5
y6
y7


[X1,X2] =



1 2
2 4
3 6
4 1
5 5
6 7
7 3


.

The first step is to split the data into two parts based on the size of X1 or X2. For
instance, we can consider a split that consists of the smallest x1 value and the six
largest; or the two smallest x1 values and the five largest; or the smallest three x2
values and the largest four. We consider all such splits and posit an initial regression
tree model Y = Φ (1)β + e, where

Φ
(1) =



1 1 1 1 1 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 0 0 0 1 1 1
1 0 0 1 1 1 1 0 0 0 0 0 1
1 0 0 0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 0 0 0 0 1 1
1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 1


.

The last 12 columns identify all of the possible splits. Columns 2 through 7 are the
splits based on x1 and columns 8 through 13 are the splits based on x2, with, for
example, the tenth column identifying the smallest three x2 values and, by default
since a column of 1’s is included, the largest four. Obviously, this initial model
is overparameterized; it has 13 predictor variables to explain 7 observations. The
first (intercept) column is forced into the model and one other column is chosen by
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forward selection. Suppose that column is the fifth, so at the second stage we have
the columns 

1 1
1 1
1 1
1 1
1 0
1 0
1 0


or equivalently



1 0
1 0
1 0
1 0
0 1
0 1
0 1


forced into the second-stage model matrix. We now consider possible splits within
the two groups that we have already identified. The first four observations can be
split based on the sizes of either x1 or x2 and similarly for the last three. The second
stage model is Y = Φ (2)β + e, where

Φ
(2) =



1 0 1 1 1 0 1 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1


.

Here, columns 3, 4, and 5 are splits of the first group based on the size of x1 and
columns 6, 7, and 8 are splits of the first group based on the size of x2. Columns 9
and 10 are splits of the second group based on x1 and columns 11 and 12 are based
on x2. Again, the model is grossly overparameterized. Columns 1 and 2 are forced
into the model, and one more column is chosen by forward selection. Suppose it is
column 7, so at the third stage we have

1 0 1
1 0 0
1 0 0
1 0 1
0 1 0
0 1 0
0 1 0


or equivalently



0 0 1
1 0 0
1 0 0
0 0 1
0 1 0
0 1 0
0 1 0


forced into the model. We now have three groups, and again we consider splitting
within groups. At the third stage, we have Y = Φ (3)β + e, where

Φ
(3) =



0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 1 0 1
0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 1


.
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Again, we add a column by forward selection. If no column can be added, we return
to the model with the three forced variables,

Y =



0 0 1
1 0 0
1 0 0
0 0 1
0 1 0
0 1 0
0 1 0


β + e.

Note that this is just a one-way ANOVA model, so the parameter estimates are group
means. We can identify the groups as (1) x1 < 4.5, x2 < 2.5; (2) x1 > 4.5; and (3)
x1 < 4.5, x2 > 2.5. Predictions are based on identifying the appropriate group and
use the group mean as a point prediction. Note that this is essentially fitting a step
function to the data.

Going back to the original parameterization of the model (i.e., the original
choices of columns), the model is

Y =



1 1 1
1 1 0
1 1 0
1 1 1
1 0 0
1 0 0
1 0 0


β + e.

With these choices of the columns, the columns are ordered from left to right, and
dropping columns successively from the right still gives a regression tree. 2

As discussed in Chapter 5, forward selection defines a sequence of larger and
larger models with various ways to determine which variable is added next and vari-
ous ways to determine when to stop adding variables. Regression trees typically add
variables based on minimizing the SSE, which is the traditional method employed in
forward selection. Regression trees often employ an unusual stopping rule. Breiman
et al. (1984, Section 8.5) suggest continuing the forward selection until each group
has five or fewer observations. At that point, one can either accept the final model or
pick a best model from the sequence using something like the Cp statistic (assuming
that the final model gives a reasonable MSE).

EXAMPLE 7.8.2. In Chapter 1 we considered The Coleman Report data. We
examine a partitioning created using only two predictor variables, x3 and x5 and
the R package rpart. Details are given in http://www.stat.unm.edu/

˜fletcher/R-SL.pdf. For illustrative purposes, I required that there could be
no fewer than two data points in any partition set. Typically one would do this on
a bigger set of data and perhaps require more observations in every partition set.
Figures 7.11 and 7.12 illustrate the recursive partitioning process. Figure 7.12 is

http://www.stat.unm.edu/~fletcher/R-SL.pdf
http://www.stat.unm.edu/~fletcher/R-SL.pdf
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the tree diagram produced by rpart. The algorithm begins by partitioning x3 four
times before it involves x5. I set up rpart to keep running until it did a partition
based on x5.
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Fig. 7.11 Partition sets for x3, x5.

Table 7.9 contains the statistics that determine the first partitioning of the data.
The values x3(i) are the ordered values x3 with y3(i) the corresponding y values (order
statistics and induced order statistics). x5( j) and y5( j) are the corresponding values
for x5. For i = 3, the partition sets consist of the 3 smallest x3 observations, and
the 17 largest. For i = 18 the partition sets are the 18 smallest x3 observations, and
the 2 largest. For j = 18 the partition sets are the 18 smallest x5 observations, and
the 2 largest. Built in is the requirement that each partition set contain at least 2
observations. The SSEs are from fitting a one-way ANOVA on the two groups. Note
that the smallest SSE corresponds to i = 3, so that is the first partition used. The first
split illustrated in Figures 7.11 and 7.12 is at −11.35 = [x3(3)+ x3(4)]/2 so that the
two partition sets include the 3 smallest x3 observations, and the 17 largest.

For the second split we consider all the splits of each of the two partition sets
from the first stage. Fortunately for our illustration, the partition set x3 < −11.35
has only 3 observations, so we are not allowed to split it further because splitting
it has to create a partition set with less than 2 observations. Thus we only need
to consider all splits of the set x3 ≥ −11.35. In Table 7.10 I have blanked out the
observations with x3 <−11.35 but remember that these three observations are still
included in the SSEs. The minimum SSE occurs when i = 13 so the next partition
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|x3< −11.35

x3< 8.525

x3< 6.235

x5>=5.675

x3< 12.51

24.17

33.13 36.2
37.05

39.07 41.65

Fig. 7.12 Regression tree for x3, x5.

Table 7.8 First tree split.

i x3(i) y3(i) SSE j x5( j) y5( j) SSE
1 −16.04 22.70 1 5.17 26.51
2 −12.86 23.30 318.5 2 5.34 35.20 603.2
3 −11.71 26.51 222.6 3 5.57 37.20 627.2
4 −10.99 31.70 235.2 4 5.62 22.70 533.4
5 −0.96 33.10 255.8 5 5.62 23.30 394.8
6 −0.17 33.40 266.1 6 5.78 33.40 396.3
7 −0.05 37.20 331.1 7 5.80 34.90 412.7
8 0.92 35.20 349.2 8 6.01 31.70 376.7
9 2.66 31.80 306.1 9 6.15 37.10 413.0

10 4.77 34.90 306.5 10 6.19 33.10 387.8
11 6.16 33.90 283.2 11 6.19 37.01 412.3
12 6.31 37.10 306.6 12 6.33 31.80 356.6
13 7.20 37.01 321.3 13 6.41 33.90 321.3
14 9.85 41.01 394.1 14 6.51 41.01 394.1
15 10.62 39.70 438.2 15 6.86 41.80 468.1
16 12.32 36.51 427.1 16 6.94 39.70 505.2
17 12.70 41.80 492.8 17 6.96 41.01 554.0
18 12.77 41.01 539.6 18 7.04 36.51 539.6
19 14.28 40.70 19 7.10 40.70
20 15.03 43.10 20 7.51 43.10
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set goes from −11.35 to 8.525 = [x3(13) + x3(14)]/2, as illustrated in Figures 7.11
and 7.12.

Table 7.9 Second tree split.

i x3(i) y3(i) SSE j x5( j) y5( j) SSE
1 1
2 2 5.34 35.20
3 3 5.57 37.20 221.2
4 −10.99 31.70 4
5 −0.96 33.10 174.5 5
6 −0.17 33.40 156.1 6 5.78 33.40 211.6
7 −0.05 37.20 170.5 7 5.80 34.90 205.1
8 0.92 35.20 163.5 8 6.01 31.70 177.4
9 2.66 31.80 123.2 9 6.15 37.10 182.1

10 4.77 34.90 107.7 10 6.19 33.10 156.8
11 6.16 33.90 76.6 11 6.19 37.01 158.7
12 6.31 37.10 77.7 12 6.33 31.80 111.8
13 7.20 37.01 73.6 13 6.41 33.90 73.6
14 9.85 41.01 111.6 14 6.51 41.01 111.5
15 10.62 39.70 130.0 15 6.86 41.80 150.3
16 12.32 36.51 109.8 16 6.94 39.70 164.9
17 12.70 41.80 145.7 17 6.96 41.01 187.7
18 12.77 41.01 168.4 18 7.04 36.51 168.4
19 14.28 40.70 19 7.10 40.70
20 15.03 43.10 20 7.51 43.10

While rpart created the partition just mentioned, in Table 7.10 the value j = 13
gives the same SSE as i = 13. The alternative partition of the (x3,x5) plane with
x3 ≥−11.35 and x5 divided at 6.46 = [x5(13)+x5(14)]/2 is given in the bottom right
of Figure 7.11. It separates the data into exactly the same three groups as the rpart
partition. I have no idea why rpart chose the partition based on x3 rather than the
alternative partition based on x5. It looks like, after incorporating the alternative par-
tition, the subsequent partitions would continue to divide the data in the same way.
However, the final partition sets would be different, which means that predictions
could be different. There are 6 final partition sets, so there are only 6 distinct values
that will be used to predict, and they will be the same 6 numbers for either parti-
tioning. But the ranges of (x3,x5) values over which those 6 predictions are applied
change with the different partitions.

The set x3 < −11.35 cannot be split further because of our requirement that all
partition sets include two data points. But −11.35 ≤ x3 < 8.525 has 10 data points,
so it can be split 14 = 2×(10−3) ways, and x3 ≥ 8.525 has 7 points, so can be split
8 = 2× (7− 3) ways. That is another 22 ANOVAs to run from which we pick the
one with the smallest SSE. The minimum occurs when splitting x3 between x3(11)
and x3(12), cf. Figures 7.11 and 7.12. We discontinue the detailed illustration.

An advantage of doing one full sp
∗ partition is that you can easily identify empty

cells and cells with little data. Prediction variances will reflect that. With a forward
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selection partition, the algorithms typically create partition sets that restrict the min-
imum number of observations in a partition. However, looking a Figure 7.11, an
observation with, for example, a small value of x3 and a large value of x5 is far
from the other data in its partition set, so it is unlikely to be predicted well by the
mean of the observations in that set. It is not clear to me how one could identify that
troublesome phenomenon when fitting a regression tree in higher dimensions 2

Exercise 7.1. Without a computer, find the predictions for the point (15,6) from
the two partitions. Hint: the rpart prediction is based on the average of four y
values and the alternative partition prediction is based on two.

There is a strong tendency for regression trees to overfit the data, causing poor
predictive performance from tree models. Random forests, bagging, and boosting
may improve the predictive performance of tree models, cf. Section 5.5.

Exercise 7.2. Reanalyze the data in Appendix B by coding the three categorical
predictor variables numerically as indicated in Table B.1 and applying a regression
tree to the data.

7.9 Regression on Functional Predictors

For each dependent variable yi, i = 1, . . . ,n, suppose we observe a function of pre-
dictor variables, say Xi(t), t ∈ T ⊂ Rd . The predictor function might be observed
over time or might result from some sort of medical imaging. For some unknown
function γ(t) of regression coefficients, we assume the model

yi = α +
∫

T
Xi(t)γ(t)dt + ei, E(ei) = 0.

As a practical matter, we incorporate a nonparametric characterization of the regres-
sion coefficient function using a standard spanning set of functions φ j to get

γ(t) .
=

s−1

∑
j=0

β jφ j(t) = φ(t)′β .

where
φ(t)′ ≡ [φ0(t), . . . ,φs−1(t)]′, β ≡ (β0, . . . ,βs−1)

′.

This leads to a standard linear model for the observations

yi = α +
∫

T
Xi(t)γ(t)dt + ei
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.
= α +

∫
T

Xi(t)φ(t)′βdt + ei

= α +

[∫
T

Xi(t)φ(t)′dt
]

β + ei

= α + x′iβ + ei

where
x′i ≡ (xi0, . . . ,xi,s−1), and xi j ≡

∫
T

Xi(t)φ j(t)dt.

See Reiss et al. (2017) for additional discussion.
In reality, it is impossible to observe Xi(t) for every t in an infinite set of points

T . At most we can observe Xi(t) at tik, k = 1, . . . ,Ni where we would expect Ni to
be a very large number. In this case, we would want to use numerical approximations
to the integrals, perhaps even something as simple as

xi j =
1
Ni

Ni

∑
k=1

Xi(tik)φ j(tik).

7.10 Exercises

The first six exercises reexamine the Coleman Report data. The first 5 consider only
two variables: y, the mean verbal test score for sixth graders, and x3, the composite
measure of socioeconomic status.

Exercise 7.10.1. Rescale x3 to make its values lie between 0 and 1. Plot the
data. Using least squares, fit models with s = 10 using polynomials and cosines.
Plot the regression lines along with the data. Which family works better on these
data, cosines or polynomials?

Exercise 7.10.2. Using s = 8, fit the Coleman Report data using Haar wavelets.
How well does this do compared to the cosine and polynomial fits?

Exercise 7.10.3. Based on the s = 10 polynomial and cosine models fitted in
Exercise 7.10.1, use Cp to determine a best submodel for each fit. Plot the regression
lines for the best submodels. Which family works better on these data, cosines or
polynomials? Use Cp to determine the highest frequency needed when fitting sines
and cosines.

Exercise 7.10.4. Investigate whether there is a need to consider heteroscedastic
variances with the Coleman Report data. If appropriate, refit the data.
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Exercise 7.10.5. Fit a cubic spline nonparametric regression to the Coleman
Report data.

Exercise 7.10.6. Fit a regression tree to the Coleman Report data using just
variable x4.

Exercise 7.10.7. In Section 6 we set up the interpolating cubic spline problem as
one of fitting a saturated linear model that is forced be continuous, have continuous
first and second derivatives, and have 0 as the second derivative on the boundaries.
In our discussion, the dots are only connected implicitly because a saturated model
must fit every data point perfectly. Show that you can find the parameters of the
fitted polynomials without using least squares by setting up a system of linear equa-
tions requiring the polynomials to connect the (xi,yi) dots along with satisfying the
derivative conditions.

Exercise 7.10.8. Fit a tree model to the battery data and compare the results to
fitting Haar wavelets.



Chapter 8
Alternative Estimates II

Abstract Nonparametric methods are really highly parametric methods. They suf-
fer from fitting so many parameters to the data that the models lose their ability to
make effective predictions, i.e. they suffer from overfitting. One way to stop overfit-
ting is by using penalized estimation (regularization) methods. Penalized estimation
provides an automated method of keeping the estimates from tracking the data more
closely than is justified.

8.1 Introduction

In applications of linear model theory to situations where the number of model pa-
rameters is large relative to the sample size n, it is not uncommon to replace least
squares estimates with estimates that incorporate a penalty on (some of) the regres-
sion coefficients. Nonparametric regression models are germane examples. Penalty
functions are often used to avoid overfitting a model. (Chapters 3 and 7 contain
plots of overfitted models.) Penalty functions can make it possible to use numbers
of parameters that are similar to the number of observations without overfitting the
model. As a tool to avoid overfitting, penalized estimation constitutes an alternative
to variable selection. Penalized estimation generally results in biased estimates (but
not necessarily so biased as to be a bad thing).

Penalized estimates are determined by adding some multiple of a nonnegative
penalty function to the least squares criterion function and minimizing this new
criterion function. Incorporating a penalty function is sometimes referred to as reg-
ularization. For simplicity we will discuss fitting the standard regression model

yi = β0 +β1xi1 + · · ·βp−1xi,p−1 + εi = x′iβ + εi, i = 1, . . . ,n

or
Y = Xβ + e, E(e) = 0, Cov(e) = σ

2I, (1)

209
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One might then minimize

(Y −Xβ )′(Y −Xβ )+ kP(β ), (2)

where P(β ) is a nonnegative penalty function and k ≥ 0 is a tuning parameter. If
k = 0, the estimates are obviously least squares estimates. Many penalty functions
have minimums at the vector β = 0, so as k gets large, the penalty function domi-
nates the minimization and the procedure, in some fashion, shrinks the least squares
estimate of β towards 0. In reality, the intercept term is almost never penalized, so
some form of partitioned linear model is almost always used.

Many of the commonly used Ps penalize each regression coefficient the same
amount. As a result, it is often suggested that the predictors in the model matrix
X should be standardized onto a common scale. If the height of my doghouse is
a predictor variable, the appropriate regression coefficient depends a great deal on
whether the height is measured in miles or microns. For a penalty function to be
meaningful, it needs to be defined on an appropriate scale for each predictor vari-
able.

Typically we assume that the Xβ portion of the model contains an intercept or its
equivalent. Mathematically that means J, the vector of 1s, satisfies J ∈C(X). We put
the predictor variables x1, . . . ,xp−1, into an n× (p− 1) matrix Z = [xi j] so that the
overall model matrix is X = [J,Z]. The predictor variables are then often recentered
by their sample means. In other words, the observations on the jth predictor, the xi js
i = 1, . . . ,n, are replaced by xi j − x̄· j. In matrix terms this means that Z is replaced
by [I − (1/n)JJ′]Z = Z − Jx̄′· where x̄′· ≡ (x̄·1, . . . , x̄·p−1). Most often the predictors
are also rescaled so that the xi js get replaced by the values (xi j − x̄·, j)/s j where s j
is the sample standard deviation of the xi js, i = 1, . . . ,n. In matrix terms this means
that Z is replaced by [I − (1/n)JJ′]ZD(s j)

−1. Note that

C(X)≡C(J,Z) =C
{

J, [I − (1/n)JJ′]Z
}
=C

{
J, [I − (1/n)JJ′]ZD(s j)

−1} ,
so the recentered model and the recentered, rescaled model are both equivalent to
the original model. The recentered model typically has a different intercept param-
eter from the original model and the recentered, rescaled model typically has all of
its parameters different from the original model. This matters because we are penal-
izing the parameters, so changing what the parameters mean, changes the result we
get. Rather than modifying the penalty function P to be appropriate to our original
model, recentering and rescaling the predictor variables allows us to use an “off the
shelf” penalty function to obtain reasonable results.

Rarely is there an obvious choice for the tuning parameter k. Extending the idea
of Hoerl and Kennard (1970), we can use a trace plot to pick k. Denote the penalized
estimate for given k and the jth predictor variable as β̃k j. The trace plot is, for all
j, a simultaneous plot of the curves defined by (k, β̃k j) as k varies. As mentioned,
for k = 0 the β̃0 js are the least squares estimates and as k increases they typically
all shrink towards 0. For the purpose of dealing with collinearity issues, Hoerl and
Kennard suggested picking a small k for which the estimates settle down, i.e., stop
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varying wildly. Draper and van Nostrand (1979) conclude that for ridge regression
the problems with picking k using trace plots outweigh their benefits. More mod-
ern methods of picking k include cross-validation and generalized cross-validation,
cf. Hastie, Tibshirani, and Friedman (2016) or any number of other sources.

Least squares is a geometric estimation criterion, not a statistical criterion. It
minimizes squared distance and is achieved by projecting Y into C(X). But least
squares has many nice statistical properties. Penalized least squares is also a ge-
ometric criterion, not a statistical one. Unfortunately, it is harder to establish nice
statistical properties for penalized estimates. That is not to say that they don’t have
any. Section 5 illustrates some geometry related to penalized least squares.

If model (1) has multivariate normal errors, the least squares residuals will be
independent of the penalized fitted values, so if (1) provides an adequate number
of degrees of freedom for error, it may be advantageous to use the least squares
residuals, rather than residuals based on the penalized estimates, to estimate the
variance and to check model assumptions. To establish this, we merely need to show
that the penalized estimates are a function of the least squares estimates. Using ideas
similar to the proof that least squares estimates satisfy X β̂ = MY , it is possible to
write

∥Y −Xβ∥2 = (Y −Xβ )′(Y −Xβ )

= (Y −X β̂ )′(Y −X β̂ )+(β − β̂ )′X ′X(β − β̂ ). (3)

The estimation criterion (2) becomes

(Y −X β̂ )′(Y −X β̂ )+(β − β̂ )′X ′X(β − β̂ )+ kP(β )

in which the first term (Y −X β̂ )′(Y −X β̂ ) does not involve β , so is irrelevant to the
minimization, and the other terms depend on Y only through β̂ . Since the residuals
ê = (I −M)Y are independent of β̂ , the residuals are independent of the penalized
estimate which must be a function of β̂ . Moreover, if the penalized estimate is a
linear function of β̂ (e.g. ridge regression), ê is uncorrelated with the penalized esti-
mate even without the assumption of multivariate normality. The decomposition of
the squared distance in (3) will be used again in Subsection 5.1 to facilitate geomet-
ric interpretations.

8.1.1 Reparameterization and RKHS Regression: It’s All About the
Penalty

In traditional linear models it is well know that reparameterizations are irrelevant,
i.e., two models for the same data, say, Y =X1β1+e and Y =X2β2+e are equivalent
if C(X1) = C(X2). In particular, least squares gives the same fitted values Ŷ and
residuals ê for each model. Moreover, the least squares estimates for either β1 or β2
may not be uniquely defined, but we don’t much care. In penalized least squares,
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if you use the same penalty function P(·) for each of two equivalent models, you
typically get different results, i.e., minimizing ∥Y −X1β1∥2 +P(β1) does not give
the same fitted values and residuals as minimizing ∥Y −X2β2∥2+P(β2). Moreover,
incorporating the penalty function typically generates unique estimates, even when
ordinary least squares does not. This reparameterization issue is a substantial one
when using software that provides a default penalty function or even a menu of
penalty functions.

To get equivalent results from equivalent models you need appropriate penalty
functions. In particular, if X1 and X2 are both regression models so that X1 = X2T
for some invertible matrix T , then β2 = T β1 and minimizing ∥Y −X1β1∥2 +P(β1)
clearly gives the same fitted values and residuals as minimizing ∥Y − X2β2∥2 +
P(T−1β2).

This discussion is particularly germane when applying the kernel trick as in Sub-
section 1.7.2. With two different reproducing kernels R1(·, ·) and R2(·, ·), for which
C(R̃1) = C(R̃2), the models Y = R̃1γ1 + e and Y = R̃2γ2 + e are reparameteriza-
tions of each other. Their least squares fits will be identical and with many kernels
Y = Ŷ1 = Ŷ2 (when the xi vectors are distinct). If, to avoid overfitting, we use an off
the shelf penalty function P(·) to estimate the γis, that common penalty function
will be entirely responsible for the differences between the fitted values Ỹ1 ≡ R̃1γ̃1
and Ỹ2 ≡ R̃2γ̃2 as well as any differences in other predictions made with the two
models.

8.1.2 Nonparametric Regression

As discussed in the previous chapter, one approach to nonparametric regression of
y on a scalar predictor x is to fit a linear model, say,

yi = β0 + γ1φ1(xi)+ · · ·+ γsφs(xi)+ εi

for known functions φ j, e.g., polynomial regression. Penalized estimates are used
in nonparametric regression to ensure smoothness. Penalized regression typically
shrinks all regression estimates towards 0, some more than others when applied to
nonparametric regression. Variable selection differs in that it shrinks the estimates
of the eliminated variables to (not towards) 0 but lets least squares decide what
happens to the estimates of the remaining variables.

The functions φ j(x) in nonparametric regression are frequently subjected to some
form of standardization when they are defined, thus obviating a strong need for
further standardization of the vectors Φ j ≡ [φ j(x1), · · · ,φ j(xn)]

′, especially when the
xis are equally spaced. For example, with xis equally spaced from 0 to 1 and φ j(x) =
cos(π jx), there is little need to standardize Z ≡ [Φ1, . . . ,Φs] further. When using
simple polynomials φ j(x) = x j, the model matrix should be standardized. When
using the corresponding Legendre polynomials on equally spaced data, Z need not
be.
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In the context of nonparametric regression, not overfitting the model typically
means ensuring appropriate smoothness. For example, with φ j(x) = cos(π jx), when
j is large the cosine functions oscillate very rapidly, leading to nonsmooth or noisy
behavior. Often, with linear-approximation approaches to nonparametric regression,
large j is indicative of more noisy behavior. We want to allow noisy behavior if the
data require it, but we prefer smooth functions if they seem reasonable. It therefore
makes sense to place larger penalties on the regression coefficients for large j. In
other words, for large values of j we often shrink the least squares estimate β̂ j
towards 0 more than when j is small.

8.2 Ridge Regression

Classical ridge regression provides one application of penalty functions. For the
model

Y = Xβ + e, E(e) = 0,

the simplest version of ridge regression is obtained by minimizing

(Y −Xβ )′(Y −Xβ )+ kβ
′
β . (1)

This involves the penalty function P(β ) = β ′β . To find the ridge regression es-
timates we augment the regression model with p artificial observations in which
0 =

√
kβ j + ε̃n+ j. This leads to the augmented model[

Y
0

]
=

[
X√
kIp

]
β +

[
e
ẽ

]
. (2)

The extra observations are basically saying that we have gotten a look at β j, subject
to some error, and we saw it to be 0. (The tuning parameter k affects the amount of
error involved.) Clearly the extra observations force the estimated regression coef-
ficients closer to 0. It is not difficult to see that the least squares criterion for fitting
model (2) is identical to the ridge regression criterion (1). The ridge regression esti-
mates are just the least squares estimates from model (2), which simplify to

β̃R = (X ′X + kI)−1X ′Y. (3)

This is the simplest form of ridge regression, but nobody actually does this, because
nobody penalizes the intercept term.

A more realistic version is to write the multiple linear regression model with
X = [J,Z] as

Y = Jβ0 +Zβ∗+ e = [J,Z]
[

β0
β∗

]
+ e = Xβ + e.

Here β∗ = (β1, . . . ,βp−1)
′ and Z = [xi j], i = 1, . . . ,n, j = 1, . . . , p−1. Classical ridge

regression obtains estimates β0 and β∗ by minimizing
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(Y − Jβ0 −Zβ∗)
′(Y − Jβ0 −Zβ∗)+ kβ

′
∗β∗ (4)

which amounts to using the penalty function

PR(β )≡ β
′
∗β∗ =

p−1

∑
j=1

β
2
j .

Other than β0, this penalizes each β j the same amount, so it is important that the
columns of Z be standardized to a common length or that they be defined in such a
way that they are already nearly standardized. It is easy to see that the function (4)
is the least squares criterion function for the model[

Y
0

]
=

[
J
0

]
β0 +

[
Z√
kI

]
β∗+

[
e
ẽ

]
. (5)

Fitting model (5) is a little more complicated than fitting model (2).
To fit model (5) it helps to think about replacing the original regression with the

mean adjusted equivalent version, yi = α +∑
p−1
j=1 β j(xi j − x̄· j)+ εi or

Y = Jα +[Z − Jx̄′·]β∗+ e = Jα +[I − (1/n)JJ′]Zβ∗+ e.

The β∗ vector is unchanged but

β0 = α − x̄′·β∗.

The augmented version of this model becomes[
Y
0

]
=

[
J
0

]
α +

[
[I − (1/n)JJ′]Z√

kI

]
β∗+

[
e
ẽ

]
.

Having corrected the predictor variables for their means, the least squares estimates
are now easier to find for this augmented model and become the classical ridge
regression estimates

β̃R∗ =
{

Z′[I − (1/n)JJ′]Z + kI
}−1 Z′[I − (1/n)JJ′]Y

and
α̂ = ȳ·, so β̃R0 = ȳ·− x̄′·β̃R∗.

Again, the augmented regression model shows quite clearly that ridge regression
is shrinking the regression parameters toward 0. The bottom part of the augmented
model specifies

0 =
√

kβ∗+ ẽ,

so we are acting like 0 is an observation with mean vector
√

kβ∗, which will shrink
the estimate of β∗ toward the 0 vector. Note that if

√
k is already a very small num-

ber, then one expects
√

kβ∗ to be small, so the shrinking effect of the artificial ob-
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servations 0 will be small. If
√

k is large, say 1, then we are acting like we have seen
that β∗ is near 0 and the shrinkage will be larger.

8.2.1 Generalized Ridge Regression

Returning to the unpartitioned model (8.1.1), generalized ridge regression takes the
form of a penalty

PGR(β )≡ β
′Qβ ,

where for simplicity we focus on Q ≡ D(q), a diagonal matrix with nonnegative
entries q j. This makes the penalty function PGR(β ) = ∑

p−1
j=1 q j β 2

j . (In general Q
can be a nonnegative definite matrix.)

We can minimize

(Y −Xβ )′(Y −Xβ )+ kβ
′D(q)β (6)

using the least squares fit to the augmented linear model[
Y
0

]
=

[
X√

k D(
√

q)

]
β +

[
e
ẽ

]
(7)

where D(
√

q) has diagonal elements √q j. Note that if q j is 0, β j is not penalized.
The least squares estimates for model (7) minimize the quantity[

Y −Xβ

−
√

k D(
√

q)β

]′ [ Y −Xβ

−
√

k D(
√

q)β

]
= (Y −Xβ )(Y −Xβ )+ kβ

′D(q)β ,

which is (6). It is not difficult to show that

β̃ = [X ′X + k D(q)]−1X ′Y (8)

is the least squares estimate for a regression model (7) and thus is the generalized
ridge estimate. Of course the generalized ridge augmented model (7) becomes the
classical ridge augmented model (2) when D(q) = Ip.

Alternatively, when D(q) is nonsingular, we can minimize (6) using the weighted
least squares fit to the augmented linear model[

Y
0

]
=

[
X
Ip

]
β +

[
e
ẽ

]
, E
[

e
ẽ

]
=

[
0
0

]
, Cov

[
e
ẽ

]
= σ

2
[

In 0
0 (1/k)D(q)−1

]
. (9)

To obtain BLUEs in model (9), the weighted least squares estimates minimize the
quantity[

Y −Xβ

−β

]′ [ In 0
0 k D(q)

][
Y −Xβ

−β

]
= (Y −Xβ )′(Y −Xβ )+ kβ

′D(q)β ,
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which again is the generalized ridge regression criterion (6). The weighted least
squares estimates for the weights vector is w′ = [J′n,k q′] also devolve to (8). If q= Jp
we get classical ridge regression. Almost all regression software fits weighted least
squares. The weighted least squares idea will again be useful in Chapter 9 when we
generalize ridge regression to binomial regression models.

In generalized ridge regression choices for weights generally follow a pattern
of more shrinkage for β js that incorporate noisier behavior into the model. This is
particularly apt in nonparametric regression and is discussed in Subsection 3.

8.2.2 Picking k

As alluded to in Section 8.1, to pick k in (1) for classical ridge regression, Hoerl and
Kennard (1970) suggested plotting a ridge trace. If the classical ridge regression
estimates are denoted β̃k j for the jth predictor variable and tuning parameter k, the
ridge trace is, for all j, a simultaneous plot of the curves defined by (k, β̃k j) as k
varies. For k = 0 the β̃0 js are the least squares estimates and as k increases they all
shrink towards 0 (except βk0 which is not penalized). The idea is to pick k just big
enough to stabilize the regression coefficients. Hoerl and Kennard’s original idea
was using ridge to deal with high collinearity in [I − (1/n)JJ′]Z, rather than using
shrinkage as an alternative to variable selection. As mentioned earlier, the trace plot
idea applies to all penalized regression but Draper and van Nostrand (1979) found
it lacking for ridge regression.

More recently, cross-validation and generalized cross-validation have been used
to pick k, for example see Green and Silverman (1994, Sections 3.1 and 3.2).

8.2.3 Nonparametric Regression

We use the notation from Chapter 7 for simple nonparametric regression but the
ideas extend immediately to multiple nonparametric regression.

Assuming that f (x) = ∑
s−1
j=0 β jφ j(x), the generalized ridge regression estimate

minimizes
(Y −Φβ )′(Y −Φβ )+ kβ

′D(q)β ,

where D(q) is a nonnegative definite matrix of penalties for unsmoothness and k is a
tuning parameter which for many purposes is considered fixed but which ultimately
is estimated. Again, it seems most common not to penalize the intercept parameter
when one exists.

In the special case in which 1√
n Φ has orthonormal columns, it is not difficult to

see that the generalized ridge estimate is

β̃ = [nI + k D(q)]−1
Φ

′Y
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= [D(nJs + kq)]−1
Φ

′Y

= D
(

n
n+ kq j

)
β̂ ,

where β̂ is the least squares estimate. By letting α = k/n, we get

β̃ j =
1

1+αq j
β̂ j,

which shows quite clearly the nature of the shrinkage.
A frequently used nondiagonal penalty matrix Q does not seem to require Φ to

have columns of near equal length. It takes

Q = [qrs], qrs =
∫ 1

0
φ
(2)
r (x)φ (2)

s (x)dx

with φ
(2)
r (x)≡ d2φr(x) is the second derivative of φr(x). This penalty function does

not depend on the data (X ,Y ). Whenever φ0 ≡ 1, φ
(2)
0 ≡ 0, so the first row and

column of the second derivative Q will be 0. This places no penalty on the intercept
and we could choose to think of penalizing a partitioned model.

Clearly, any constant multiple of the matrix Q works equivalently to Q if we
make a corresponding change to k. If we use the cosine basis of (7.1.2), the second
derivative matrix Q is proportional to D(q) with

q = [0,14,24, . . . ,(s−1)4]′.

For the sines and cosines of (7.1.3), Q is proportional to D(q) with

q =
{

0,14,14,24,24, . . . , [(s−1)/2]4, [(s−1)/2]4
}′
.

It is clear that the terms getting the greatest shrinkage are the terms with the largest
values of j in (1.1.2) and (1.1.3), i.e., the highest frequency terms.

EXAMPLE 8.2.1. For the voltage drop data of Chapter 1, using cosines with j =
0, . . . ,10 and least squares, the estimated regression equation is

y = 11.4−1.61c1 −3.11c2 +0.468c3 +0.222c4 +0.196c5

+0.156c6 +0.0170c7 +0.0799c8 +0.0841c9 +0.148c10.

Using the generalized ridge regression augmented model[
Y
0

]
=

[
Φ√

k D(
√

q)

]
β +

[
e
ẽ

]
with

√
k = 0.2 and D(

√
q) =Diag(0,1,4,9, . . . ,100), the estimated regression equa-

tion becomes
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y = 11.4−1.60c1 −3.00c2 +0.413c3 +0.156c4 +0.0925c5

+0.0473c6 +0.0049c7 +0.0102c8 +0.0068c9 +0.0077c10.

Note the shrinkage towards 0 of the coefficients relative to least squares, with more
shrinkage for higher values of j.

Figure 8.1 gives the data along with the generalized ridge regression fitted cosine
curve using j = 0, . . . ,10. With k = 0.04, the plot is very similar to the unpenalized
cosine curve using j = 0, . . . ,6 which is also plotted. Defining R2 as the squared
correlation between the observations and the fitted values, the ridge regression gives
R2 = 0.985 which is less than the value 0.988 from the least squares fit with 6
cosines. 2
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Fig. 8.1 Solid: Generalized ridge regression cosine fit with k = .04, s−1 = 10 and second deriva-
tive weights for the battery data. Dashed: Least squares cosine fit with s−1 = 6.

The second derivative penalty approach is worthless for Haar wavelets because
it gives Q = 0 and thus the least squares estimates. Theoretically, one could use pe-
nalized least squares with other wavelets. The integral of the product of the second
derivatives would be difficult to find for many wavelets. Fitting functions with small
support inherently makes the fitted functions less smooth. Choosing how small to
make the supports, e.g. choosing how many wavelets to fit, is already a choice of
how smooth to make the fitted function. In such cases a smoothing penalty associ-
ated with φ j should increase as the size (length, area, volume) of the support of φ j
gets smaller.
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If x is a vector, the second derivative of φ j(x) is a square matrix as is the product
of the second derivatives for different j. One might use something like the determi-
nant of the integral of the matrix product to define Q.

8.3 Lasso Regression

Currently, a very popular method for fitting model (8.1.1) is Tibshirani’s (1996)
lasso (least absolute shrinkage and selection operator) which uses the penalty func-
tion

PL(β )≡
p−1

∑
j=1

|β j| ≡ ∥β∥1. (1)

The book by Hastie, Tibshirani, and Wainwright (2015) provides a wealth of infor-
mation on this procedure. For applications with p > n see Bühlmann and van de
Geer (2011) or Bühlmann, Kalisch, and Meier (2014).

Because the lasso penalty function is not a quadratic form in β , unlike ridge
regression the estimate cannot be obtained by fitting an augmented linear model
using (weighted) least squares. Lasso estimates can be computed efficiently for a
variety of values k using a modification of the LARS algorithm of Efron et al. (2004).

Less computationally efficient than LARS, but easier to understand, is an algo-
rithm that involves obtaining weighted least squares estimates β̃ h+1 for a partitioned
version of the augmented model (8.2.9), namely,[

Y
0

]
=

[
Jn Z
0 Ip−1

][
β0
β∗

]
+

[
e
ẽ

]
, (2)

E
[

e
ẽ

]
=

[
0
0

]
, Cov

[
e
ẽ

]
= σ

2
[

In 0
0 (1/k)D(q)−1

]
.

The method repeatedly finds BLUEs wherein D(q)−1 = D(|β̃ h
∗ |); taking |β̃ h

∗ | to be
the vector of absolute values from a previous set of weighted least squares estimates
for β∗. This means that the weights on the actual observations are 1 but the (n+ j)th
weight is wn+ j = k/|β̃ h

j | and the penalty function is

P(β ) =
p−1

∑
j=1

β 2
j

|β̃ h
j |

.
=

p−1

∑
j=1

|β j|.

When |β̃ h
j | gets small, β j becomes very highly penalized, thus forcing β̃ h+1

∗ even
closer to 0.

As the actual name (not the acronym) suggests, one of the benefits of the lasso
penalty is that it automates variable selection. Rather than gradually shrinking all
regression coefficients towards 0 like ridge regression, lasso can make some of the
regression coefficients collapse to 0.



220 8 Alternative Estimates II

The lasso penalty (1) treats every coefficient the same, so it would typically be
applied to standardized predictors. An obvious modification of lasso that penalizes
coefficients at different rates has

PGL(β ) =
s

∑
j=0

q j|β j|

with q j ≥ 0 often increasing in j when x j (or more commonly φ j(x)) becomes more
noisy as j increases.

Section 4.3 contains an example of the lasso applied to a 5 predictor regression
problem. (The Coleman Report data.) Here we illustrate its use in nonparametric
regression.

EXAMPLE 8.3.1. For the battery data of Chapter 7, Figure 8.2 shows the least
squares cosine fits for s−1 = 6, 30 and the R package lasso2’s default fit except
that, with equally spaced cosine predictors, the predictors were not standardized.
(I also looked at the standardized version and it made little difference.) The de-
fault lasso fit has k = 12.2133, which is a lot of shrinkage. (The default is actually
δ = 0.5∥β̂∗∥1 where β̂∗ is the p− 1 = 30 least squares estimate vector without the
intercept, ∥β̂∗∥1 ≡ ∑

30
j=1 |β̂ j|, and δ is defined in Section 4.)
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Fig. 8.2 Solid: Lasso cosine fit with k = 12.2133 (δ = 0.5∥β̂∗∥1), p− 1 = 30. Dot-dash: Least
squares cosine fit with p−1 = 30. Dashed: Least squares cosine fit with p−1 = 6.

The default is a shockingly bad fit. It gives R2 = 0.951, which is poor for this
problem. It has zeroed out too many of the cosine terms. A more reasonable lasso
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fit is given in Figure 8.3. The fit in Figure 8.3 has nonzero coefficients on precisely
the first six cosine terms (and the constant) and it gives R2 = 0.981, which cannot
be greater than than the R2 provided by the least squares fit on the six cosine terms.
Unlike our ridge regression example for these data, in neither of the lasso fits have
we put larger penalties on more noisy variables. 2
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Fig. 8.3 Solid: Lasso cosine fit with k = 3.045046 (δ = 0.7∥β̂∗∥1), p− 1 = 30. Dot-dash: Least
squares cosine fit with p−1 = 30. Dashed: Cosine least squares fit with p−1 = 6.

8.4 Geometric Approach

For model (8.1.1) the penalized least squares estimate minimizes

∥Y −Xβ∥2 + kP(β ) (1)

for some tuning parameter k ≥ 0. Alternatively, the procedure can be defined as
choosing β to minimize the least squares criterion

∥Y −Xβ∥2, (2)

subject to a restriction on the regression coefficients,

P(β )≤ δ . (3)
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ALM-III establishes the equivalence of these two procedures. We explore the geom-
etry of the alternative procedure. In penalized regression, we do not have a good
reason for choosing any particular δ in (3), so we look at all possible values of δ or,
more often and equivalently, all possible values of k in (1).

The restricted least squares problem of minimizing (2) subject to the inequality
constraint (3) lends itself to a geometric interpretation. Our discussion is reasonably
general but most illustrations are of the lasso in two dimensions. For simplicity, we
examine a standard linear model Y = Xβ + e but in practice penalized regression is
always applied to some version of the partitioned model Y = Jβ0 +Zβ∗+ e where
β0 is not penalized and the predictors in Z have often been adjusted for their means
or rescaled.

To explore the geometry, we want to facilitate our ability to create contour maps
of the least squares criterion surface as a function of β . Using the decomposition
of ∥Y −Xβ∥2 given in (8.1.3), we rewrite (2) in terms of a quadratic function of β

minimized at the least squares estimate β̂ plus a constant. The first term of the last
line in (8.1.3) is the constant that does not depend on β and the second term, since
it is a quadratic function, has contours that are ellipsoids in β centered at β̂ . The
function minimum is at β̂ , for which the function value is SSE. The contours are
ellipsoids in β for which

SSE +(β − β̂ )′X ′X(β − β̂ ) = D

for some D. As D gets larger, the contours get farther from β̂ . The geometry of
ellipsoids is discussed more in ALM-III, Subsection 14.1.3. The shape of an ellipsoid
is determined by the eigenvalues and eigenvectors of X ′X – the major axis is in the
direction of the eigenvector with the largest eigenvalue and is proportional in length
to the square root of the eigenvalue. Note that, with multivariate normal data, each
ellipsoid is also the confidence region for β corresponding to some confidence level.
The least squares estimate subject to the constraint (3) is a β vector on the smallest
elliptical contour that intersects the region defined by (3). Of course if the least
squares estimates already satisfy (3), there is nothing more to find.

If the least squares estimate does not already satisfy (3), a multiple regression
lasso that penalizes the intercept minimizes

SSE +(β − β̂ )′X ′X(β − β̂ )

subject to
p−1

∑
j=0

|β j|= δ .

We need a β vector on the smallest elliptical contour that intersects the region
∑

p−1
j=0 |β j|= δ . Where that intersection occurs depends on the value of β̂ , the orien-

tation of the ellipsoid, and the size of δ .
For yi = β1xi1+β2xi2+εi, the lasso penalty constraint |β1|+ |β2| ≤ δ is a square

(diamond) centered at (0,0) with diameter 2δ . To find the lasso estimate, grow the
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ellipses centered at β̂ until they just touch the edge of the square. The point of
contact is the lasso estimate, i.e., the point that has the minimum value of the least
squares criterion (2) subject to the penalty constraint (3). The point of contact can
either be on the face of the square, as illustrated in Figure 8.4, or it can be a corner
of the square as in Figure 8.5. When the contact is on a corner, one of the regression
estimates has been zeroed out. In Figure 8.5, δ = 1, the lasso estimate of β1 is 0 and
the lasso estimate of β2 is 1. For classical ridge regression, the diamonds in the two
figures are replaced by circles of radius 1. Using a circle would definitely change
the point of contact in Figure 8.4 and almost certainly change the point of contact in
Figure 8.5.

−1 0 1 2 3

−1
0

1
2

3

 δ = 1

 β1

 β 2

 β̂

Fig. 8.4 Lasso shrinkage without variable selection.

8.4.0.1 More lasso geometry

In two dimensions the lasso estimate feels easy to find. With δ = 1 and β̂ in the first
quadrant like it is in the two figures, the lasso estimate feels like it should be (1,0)′

or (0,1)′ or it should be the least squares estimate subject to the linear constraint
β1+β2 = 1. Finding the least squares estimate subject to a linear equality constraint
is straightforward (although beyond the scope of this book). Figure 8.6 shows that
it is possible for the lasso estimate of β1 to be negative even when the least squares
estimate is positive. And things get much more complicated in higher dimensions.
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Fig. 8.5 Lasso shrinkage and variable selection.
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Fig. 8.6 Lasso sign change.
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Figures 8.7 through 8.9 illustrate the geometry behind a trace plot. Remember
that varying δ is equivalent to varying k, although the exact relationship is not sim-
ple. With both least squares β̂ js positive as in Figure 8.7 and with δ large enough,
the lasso estimate is just the least squares estimate constrained to be on β1+β2 = δ ,
unless δ is big enough that β̂1 + β̂2 ≤ δ in which case least squares is lasso. Fig-
ure 8.8 has smaller δ s than Figure 8.7 but both plots in its top row have the same δ

with the second plot being a closeup. The bottom row of Figure 8.8 shows that as δ

decreases, the penalized estimates remain on β̂1 + β̂2 = δ until β1 becomes 0. The
top row of Figure 8.9 has the lasso estimate of β1 zeroed out for two additional δ s.
The bottom row shows the lasso estimate becoming negative.
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Fig. 8.7 Lasso trace δ = 1.8.

In three dimensions the lasso geometry is that of throwing an American football
(or a rugby ball) at an octohedron. Technically, the football should have someone
sitting on it and, instead of throwing the football, we should blow it up until it hits
the octohedron. The squashed football denotes the ellipsoids of the least squares
criterion. The octohedron, see Figure 8.10, is the lasso penalty region and should be
centered at 0. The octohedron has 8 sides consisting of isosceles triangles, 12 edges
between the sides, and 6 corners. The football can hit any of these 26 features.
If we knew which of the 26 features the ellipsoid was hitting, it would be easy
to find the restricted least squares estimate because it would be the least squares
estimate subject to a set of linear constraints. The problem is knowing which of
the 26 features the ellipsoid is hitting. If the ellipsoid hits a corner, two regression
estimates are zeroed out and the third takes a value ±δ . If it hits an edge, one
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Fig. 8.8 Lasso trace.
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Fig. 8.9 Lasso trace.
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estimate is zeroed out and the other two are shrunk towards but not to 0. If it hits a
surface, no estimates are zeroed but all are shrunk.

Fig. 8.10 Octohedron.

Typically, if you make δ big enough P(β̂ ) ≤ δ , so the penalty function has no
effect on the least squares estimates. As soon as δ < P(β̂ ), penalized least squares
should be different from least squares. For the lasso, if all the elements of β̂ are pos-
itive and δ is below, but sufficiently close to, ∑

p−1
j=0 |β̂ j|, the lasso estimate equals the

least squares estimate subject to the linear constraint ∑
p−1
j=0 β j = δ . More generally,

the pattern of positive and negative values in β̂ determines the pattern of positive and
negative values in the linear constraint, i.e., ∑

p−1
j=0 sign(β̂ j)β j = δ . As you continue

to decrease δ , the penalized least squares estimates β̃ gradually change, continuing
to satisfy the constraint ∑

p−1
j=0 sign(β̂ j)β j = δ until for some δ the estimates satis-

fies an additional linear constraint associated with some ∑
p−1
j=0 ±β̃ j = δ , a constraint

that changes only precisely one coefficient sign from the original constraint, so that
together they cause the coefficient with the sign change to be zero. As δ further
decreases, typically both linear constraints continue to hold for a while and then it
is possible that the first linear constraint is supplanted by the second one.

It is convenient to think about the estimates moving along the surface of the
penalty region (diamond, octahedron, etc.) as δ changes but that is not quite true
because the surface itself changes with δ . Yet it is clear that features of the surface
(diamond:4 edges and 4 corners, octohedron: 26 features) are comparable for all δ .
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8.5 Two Other Penalty Functions

Other approaches to regularization replace k with more flexible options, minimizing

(Y −Xβ )′(Y −Xβ )+Pθ (β ),

where a tuning parameter vector θ helps define the penalty function Pθ (β ).
The elastic net penalty combines the ridge and lasso penalties but incorporates

another tuning parameter α ∈ [0,1],

PEN(β )≡ αPR(β )+(1−α)PL(β ) = α

p−1

∑
j=1

β
2
j +(1−α)

p−1

∑
j=1

|β j|.

Thus Pθ (β ) = kPEN(β ) with θ = (k,α)′.
Fan and Li (2001) suggest the scad (smoothly clipped absolute deviation) penalty.

The advantage of scad is that, like the lasso, it shrinks small estimates to zero but
unlike lasso, it does not shrink large estimates at all. The penalty function is

Pθ (β ) = kPS(β ), PS(β )≡
p−1

∑
j=1

PS(β j),

where for a > 2,

PS(β j)≡


|β j| if |β j| ≤ k,

−
(
|β j |2−2ak|β j |+k2

2(a−1)k

)
if k < |β j| ≤ ak,

(a+1)k
2 |β j|> ak.

The scad penalty function depends on θ = (k,a)′. Fan and Li suggest that a = 3.7
often works well.

When the columns of X are orthonormal, it can be shown that scad results in the
following modifications to the least squares estimates β̂ j,

β̃S j =


0, if |β̂ j| ≤ k,
β̂ j − sign(β̂ j)k, if k < |β̂ j| ≤ 2k,
(a−1)β̂ j−sign(β̂ j)ak

a−2 , if 2k < |β̂ j| ≤ ak,
β̂ j, if |β̂ j|> ak.

A similar result for lasso can be obtained by doubling the lasso tuning parameter,

β̃L j =

{
0, if |β̂ j|< k,
β̂ j − sign(β̂ j)k, if |β̂ j| ≥ k.

The estimates agree for |β̂ j| ≤ 2k but scad does less shrinkage on larger least squares
estimates.



Chapter 9
Classification

Abstract Classification seems to be the statistical learning/machine learning/data
science term for regression when the dependent variable is a 0-1 indicator variable
that denotes inclusion in a group. Traditionally, classification was used as an al-
ternative name for problems that are still referred to as discriminant analysis. The
data collection scheme for discriminant analysis is very different from that of re-
gression analysis and the data collection induces important differences in how the
data should be analyzed. This chapter examines regression on 0-1 data; in particular
binomial/binary regression and support vector machines (SVMs). The next chapter
examines discriminant analysis and how it differs from regression on 0-1 data.

These days introductions to regression typically include not only standard re-
gression but logistic regression as well, e.g., Christensen (2015). It is my expecta-
tion that logistic regression would be covered in a first course in regression, so its
details need not be addressed here. As this book relates to a second course in re-
gression, this chapter discusses the wider topic of binomial regression, introducing
topics such as probit and complimentary log-log regression. But the real reason for
the existence of this chapter is to examine support vector machines.

The general prediction/regression problem (as discussed in PA Section 6.3) con-
siders the problem of predicting a random variable y from, say, a d − 1 dimen-
sional random vector x. Let f (x) be a predictor. Its expected prediction loss is
E{L [y, f (x)]}, where L [·, ·] is some predictive loss function and the expected value
is taken with respect to both y and x. Good predictor functions f have small expected
loss values.

We now focus on the special case in which the dependent variable y takes only
the values 0 and 1. (We will use p to denote the probability of a 1, which is why
we now use d to label the number of predictor variables.) 0-1 random variables are
Bernoulli random variables, which suggests that this be called Bernoulli prediction.
Another reasonable name seems like Boolean prediction. But my friends seem to
like “binary” so I will stick with binary prediction/regression (rather than classifica-
tion).

229
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As shown in PA Section 6.3, when using the squared error prediction loss func-
tion L [y,u] = [y−u]2, the best predictor is

p(x)≡ E(y|x),

which is also the probability of getting a 1 (success) conditional on x. The Ham-
ming loss function is 0 if the prediction equals y and 1 otherwise. Under Hamming
prediction loss the best predictor is 0 when p(x) < 0.5 and 1 when p(x) > 0.5. In
both cases it is incumbent upon us to obtain a good estimate of p(x).

Regression analysis and discrimination involve different data collection schemes.
Regression collects independent observations from the joint distribution of (y,x′).
Aldrich (2005) suggests that it was Fisher who first argued that regression estima-
tion should condition on the predictor variables x. This chapter examines how to es-
timate p(x) from the conditional distribution of y given x. For this we need only as-
sume that the observations are conditionally independent and that y∼Bin[1, p(x)]≡
Bern[p(x)]. The last section of the next chapter considers estimates of p(x) derived
from sampling the conditional distribution of x given y. The end of this chapter
examines support vector machines. These perform Hamming prediction without ex-
plicitly estimating p(x).

Throughout we will explicitly incorporate ideas on penalized estimates. Implicit
throughout is that the models can exploit nonparametric linear structures.

We begin with the binomial regression problem that most generalized linear
model computer programs are written to handle.

9.1 Binomial Regression

Suppose there are a number of independent observations with yh ∼ Bin[1, p(xh)].
Often such data get reported only as the total number of successes for each vector
of predictor variables. In such cases, we implicitly reindex the original data as

(yi j,x′i), i = 1, . . . ,n, j = 1, . . . ,Ni

so that the reported data are

(yi·,x′i), i = 1, . . . ,n, where yi· ≡
Ni

∑
j=1

yi j .

We now have independent binomial random variables

Niȳi· ≡ yi· ∼ Bin[Ni, p(xi)]; i = 1, . . . ,n,

where the binomial proportions ȳi· are between 0 and 1. It is common practice to
write binomial generalized linear model computer programs using the binomial
proportions as the input data and specifying the Nis as weights. Obviously such
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programs can also handle the original binary data (yh,x′h) by writing h = 1, . . . ,n
but with Nh = 1 for all h. In conformance with such programs, we write

yi ≡ ȳi·

for the rest of this section.
The likelihood function for independent data with Niyi ∼ Bin[Ni, p(xi)] is

L[p(·)]≡
n

∏
i=1

(
Ni

Niyi

)
[p(xi)]

Niyi [1− p(xi)]
Ni−Niyi .

The deviance is defined as −2 times the log-likelihood so

D[p(·)]

≡ −2
n

∑
i=1

{Niyi log [p(xi)]+(Ni −Niyi) log [1− p(xi)]}−2
n

∑
i=1

log
[(

Ni

Niyi

)]
=

n

∑
i=1

−2Ni {yi log [p(xi)]+(1− yi) log [1− p(xi)]}−2
n

∑
i=1

log
[(

Ni

Niyi

)]
.

A maximum likelihood estimate of p(·) maximizes the likelihood or, equivalently,
minimizes the deviance. To simplify notation denote the constant term in the de-
viance

K ≡−2
n

∑
i=1

log
[(

Ni

Niyi

)]
.

The constant term has no effect on estimation. For binary regression models in
which Ni ≡ 1 so that yi is 1 or 0, the constant term in the deviance vanishes and
only one of the two terms in the braces actually applies. Either yi or 1− yi has to be
zero, so one of the terms in the braces always gets multiplied by 0.

If the function p(x) is known except for some unknown parameter vector θ ,
write p(x;θ). The maximum likelihood estimate of θ maximizes the parameterized
likelihood

L(θ)≡
n

∏
i=1

(
Ni

Niyi

)
[p(xi;θ)]Niyi [1− p(xi;θ)]Ni−Niyi

or minimizes the parameterized deviance

D(θ)≡
n

∑
i=1

−2Ni {yi log [p(xi;θ)]+(1− yi) log [1− p(xi;θ)]}+K.

Henceforth, we take x to be a d vector that includes all explanatory variables. In
most cases x′ = (1,x′).

Binomial generalized linear models typically specify that the conditional proba-
bility is a known function of x′β . In particular,

p(x)≡ p(x) = F(x′β )
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for some known cumulative distribution function (cdf) F for which the inverse func-
tion F−1 exists. F is a cdf so that the real valued term x′β is transformed into a
number between 0 and 1. The inverse function is called a link function and is used
to isolate the linear structure x′β of the model, i.e.,

F−1[p(x)] = x′β .

The most common choices for F are the standard versions of the logistic, normal,
and Gumbel (minimum) distributions. With Φ(·) denoting the cdf for a N(0,1) ran-
dom variable,

p(x) = F(x′β ) =


ex′β
/[

1+ ex′β
]

Logistic

Φ(x′β ) Normal
1− exp

[
−ex′β

]
Gumbel.

Most often the procedures are referred to by the names of the inverse functions
rather than the names of the original cdfs:

x′β = F−1[p(x)] =

 log
{

p(x)
/
[1− p(x)]

}
Logit

Φ−1[p(x)] Probit
log{− log[1− p(x)]} Complementary log-log.

In the case of logit/logistic models, logit often refers to ANOVA type models and
logistic is often used for regression models. I use the terms interchangeably but pre-
fer calling them logit models. (In this chapter, all references to “generalized linear
models” refer to the subclass of binomial generalized linear models defined using
an inverse cdf link.)

In any case, the likelihood function for such data is

LF(β )≡
n

∏
i=1

(
Ni

Niyi

)
[F(x′iβ )]

Niyi [1−F(x′iβ )]
Ni−Niyi

and the deviance is

DF(β )≡
n

∑
i=1

−2Ni
{

yi log
[
F(x′iβ )

]
+(1− yi) log

[
1−F(x′iβ )

]}
+K. (1)

As always, the constant term K in the deviance is irrelevant to the estimation of β .
Note that minimum deviance (maximum likelihood) estimation fits into the pat-

tern discussed in Section 4.4 of estimating β by defining weights wi > 0 and a loss
function L (y,u) and minimizing

n

∑
i=1

wiL (yi,x′iβ ).

Here the weights are wi = Ni and the loss function is
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L (y,u) =−2{y log [F(u)]+(1− y) log [1−F(u)]} .

In later sections we will see that the loss function is easier to interpret for binary
data and that support vector machines use a very similar procedure to estimate β .

In analogy to penalized least squares estimates, we can form penalized minimum
deviance (penalized maximum likelihood) estimates that minimize

DF(β )+ kP(β ).

Typically, we use the same penalty functions P(β ) as discussed in Chapter 8 for
penalized least squares. For a multiple regression with x′iβ ≡ β0 +∑

d−1
j=1 β jxi j, write

β∗ ≡ (β1, . . . ,βd−1)
′. As with standard regression, we typically would not penalize

the intercept. By choosing

PL(β )≡
d−1

∑
j=1

|β j|= ∥β∗∥1,

we get lasso binomial regression. By choosing

PR(β )≡ β
′
∗β∗ =

d−1

∑
j=1

β
2
j

we get one form of ridge binomial regression. Elastic net binomial regression is
obtained by using

PEN(β )≡ αPR(β )+(1−α)PL(β )

with an additional tuning parameter α ∈ [0,1]. As mentioned in Chapter 8, these
penalty functions penalize each coefficient the same amount, so typically one would
standardize the predictor variables to a common length before applying such a
penalty. (The penalization ideas apply to all generalized linear models, not just these
binomial generalized linear models, and are also fundamental to support vector ma-
chines.)

It is a simple matter to generalize the penalized estimation ideas to a partitioned
model,

F−1[p(xi,zi)] = x′iβ + z′iγ

where xi and zi are known vectors of predictors, β and γ are unknown parameters,
and where we only penalize γ . (ALM-III, Chapter 2 focuses on penalized estimation
for partitioned linear models.)
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9.1.1 Data Augmentation Regression

For linear ridge regression we established in Section 8.2 that the ridge estimates
could be obtained by fitting augmented linear models. We now define an analogous
augmented binomial regression model and infer the penalty function that it implic-
itly incorporates. (The penalty is not the traditional ridge penalty.) Although ridge
regression requires no assumption of normality, the analogies between standard re-
gression and binomial regression will be clearer making it.

Model (8.3.2) is an augmented, partitioned linear model that provides general-
ized ridge estimates. With d predictor variables (rather than the notation p used in
Chapter 8) and q = Jd−1, model (8.3.2) provides standard ridge estimates. In partic-
ular, it treats the augmented observations 0 as observations on independent random
variables ỹ j, j = 1, . . . ,d −1 with the distribution ỹ j ∼ N(γ j,σ

2/k). The model in-
volves finding weighted least squares estimates. The vector of weights becomes
w ≡ [J′n,kJ′d−1]

′.
Data augmentation binomial regression takes d − 1 augmenting observations as

ỹ j = F(0) and treats them as independent with kỹ j ∼ Bin[k,F(β j)]. For logit and
probit models ỹ j = 0.5. To analyze such data you need software that is coded in
enough generality that it permits analysis on binomials with non-integer numbers
of trials. An augmented observation ỹ j = F(0) comes from a case with probability
F(β j) so it forces β j towards 0. The parameter k determines how many Bernoulli
trials ỹ j corresponds to, so it determines how much β j gets forced towards 0. These
augmented data define the same augmented model matrix as in (8.3.2). Model
(8.3.2) augments the data Y with a string of 0s but instead we augment Y into
[Y ′,F(0)J′d−1]

′. The weight vector we need for the augmented binomial model is
exactly the same as the weight vector for model (8.3.2).

The penalty associated with this procedure is defined by what the augmenting
observations add to the deviance function. Ignoring the constant term that the aug-
mented data add to the deviance, it is not hard to see that the penalty function, say,
PR2(β ) is defined via

kPR2(β )≡ k
d−1

∑
j=1

−2
{

F(0) log [F(β j)]+ [1−F(0)] log [1−F(β j)]
}
.

9.2 Binary Prediction

Henceforth we use binary data (Ni = 1) to make binary predictions. Again, in the
machine learning community, binary prediction is called classification, cf. Hastie et
al. (2016). I cannot overemphasize that when performing this activity, there is an
important distinction to be made over how the data were collected. In regression
problems, a sample is taken from a population and individuals randomly fall into a
group: 0 or 1. In the discrimination problems considered in Chapter 10, data are ran-
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domly sampled from each group separately. The term “classification” has tradition-
ally been associated with discrimination problems, but maintaining that distinction
is surely a losing battle.

One of the beauties of using the binomial/binary generalized linear models in
Section 1 for binary prediction of regression data is that they provide estimated prob-
abilities for belonging in the two groups. Having good estimates of p(x) ≡ E(y|x)
helps in making good predictions for any prediction loss: squared error, absolute
error, even Hamming. However, under Hamming prediction loss, what that matters
is estimating whether p(x) > 0.5 or p(x) < 0.5 for all x. Hamming loss only cares
whether cases get assigned to the correct group.

Our binomial regression estimates of p(x) leads to linear prediction rules. A lin-
ear prediction rule amounts to defining a hyperplane of x vectors and predicting that
points on one side of the hyperplane will be a 1 and points on the other side will be a
0. In Section 4 we consider a wider class of linear prediction rules that merely assign
cases to groups without actually estimating the probability function. The motivation
for this will be by analogy to the estimation methods for generalized linear models
discussed in Section 3. These linear prediction rules include the support vector ma-
chines considered in Section 5 and they seem to implicitly assume that the data are
regression data rather than discrimination data. Section 6 looks at how to estimate
p(x) from the best predictor associated with a specific loss function.

EXAMPLE 9.2.1. Aitchison and Dunsmore (1975) present data on Cushing’s
Syndrome, a medical condition characterized by overproduction of cortisol by the
adrenal cortex. Individuals were identified as belonging to one of three types: ade-
noma, bilateral hyperplasia, or carcinoma. The amounts of tetrahydrocortisone and
pregnanetriol excreted in their urine were measured. Table 9.1, presents the data
for twenty-one cases. To illustrate binary prediction, we restrict our attention to the
15 cases that are bilateral hyperplasia or carcinoma. Following Aitchison and Dun-
smore (1975), the analysis is performed on the logarithms of the predictor variables.
Figure 9.1 plots the 15 points and includes three linear prediction rules: logistic re-
gression, probit regression and a support vector machine. Points above a line are
classified as carcinoma and points below a line are identified as bilateral hyperpla-
sia. To anthropomorphize, the generalized linear models seem to care more about
not getting any point too badly wrong. The SVM almost seems like if it cannot get
that one bilateral point correctly classified, it doesn’t care how far that point is from
the line. (Indeed, even if the SVM could get that bilateral point correctly classified, if
ignoring it will get the fitted line far enough away from all the other points, the SVM
would still largely ignore the misclassified point. For more on this, see the artificially
simple example in http://www.stat.unm.edu/˜fletcher/R-SL.pdf.)
Christensen (1997, Section 4.7) and Ripley (1996, Section 2.4) discuss the complete
three group data.

It is not clear whether the Cushing Syndrome data are regression data or dis-
crimination data. If regression data, someone would have sampled 21 Cushing’s
Syndrome patients who fell into the categories: 6 adenoma, 10 bilateral hyperplasia,
5 carcinoma. If discrimination data, someone decided to sample 6 adenoma patients,

http://www.stat.unm.edu/~fletcher/R-SL.pdf
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Table 9.1 Cushing’s Syndrome data.

Case Type TETRA PREG Case Type TETRA PREG
1 A 3.1 11.70 12 B 15.4 3.60
2 A 3.0 1.30 13 B 7.7 1.60
3 A 1.9 0.10 14 B 6.5 0.40
4 A 3.8 0.04 15 B 5.7 0.40
5 A 4.1 1.10 16 B 13.6 1.60
6 A 1.9 0.40 17 C 10.2 6.40
7 B 8.3 1.00 18 C 9.2 7.90
8 B 3.8 0.20 19 C 9.6 3.10
9 B 3.9 0.60 20 C 53.8 2.50

10 B 7.8 1.20 21 C 15.8 7.60
11 B 9.1 0.60
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Fig. 9.1 Logistic regression, probit regression, and an SVM: Cushing’s Syndrome data (subset).

10 bilateral hyperplasia patients, and 5 carcinoma patients. We assume the former
in this chapter. We assume the latter in Chapter 10. For discrimination data, the gen-
eralized linear model methods of the next section require the adjustments discussed
at the end Chapter 10 before they will make proper predictions. Linear prediction
methods that are not closely associated with estimating p(x) have shakier justifica-
tions when used for discrimination data because they do not lend themselves to the
adjustments that are clearly needed for generalized linear models. The discrimina-
tion methods of Chapter 10 are closely associated with estimating p(x) but they do
it indirectly by estimating the density of the predictor variables given the group. 2
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9.3 Binary Generalized Linear Model Estimation

For binary data the deviance in (9.1.1) reduces to

DF(β )≡
n

∑
i=1

−2
{

yi log
[
F(x′iβ )

]
+(1− yi) log

[
1−F(x′iβ )

]}
. (1)

Again, minimum deviance (maximum likelihood) estimation fits into the pattern
discussed in Section 4.4 of estimating β by defining a loss function L (y,u) and
weights wi > 0 and then minimizing

n

∑
i=1

wiL (yi,x′iβ ).

For binary generalized linear models the weights are all 1 and, as before, the loss
function is

LF(y,u) =−2{y log [F(u)]+(1− y) log [1−F(u)]}

but now, because of the binary nature of the data, we can write

LF(y,u) =
{
−2log [F(u)] if y = 1
−2log [1−F(u)] if y = 0 . (2)

The logit and probit loss functions are plotted in Figure 9.2. The loss functions are
quite similar, as were the prediction lines in Figure 9.1.

A penalized minimum deviance (penalized maximum likelihood) estimate is de-
fined as in Section 1. It can be viewed as minimizing

n

∑
i=1

LF(yi,x′iβ )+ kP(β ).

(The artificial example in the R code document includes a data augmentation fit that
is reasonably similar to the default SVM.)

9.4 Linear Prediction Rules

We now examine linear prediction rules in detail. First, that generalized linear mod-
els lead to linear prediction rules and then, that similar ideas can produce linear
prediction rules without an explicit probability model. In Section 6 we will try to
relate such rules back to probability models.

For the generalized linear models, the optimal Hamming loss predictor is 1 when
F(x′β )> 0.5 and 0 when F(x′β )< 0.5. These conditions are equivalent to predict-
ing 1 when x′β > F−1(0.5) and 0 when x′β < F−1(0.5). Thus the hyperplane of x
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Fig. 9.2 Binary logistic regression and probit regression loss functions.

vectors that satisfy x′β = F−1(0.5) implicitly defines a linear prediction rule which
is the optimal Hamming rule for the generalized linear model.

With β̂ the minimum deviance estimate and F(x′β̂ ) the estimated probability
for group 1, the logistic and probit lines in Figure 9.1 were constructed by setting
F(x′β̂ ) = 0.5, i.e., x′β̂ = F−1(0.5) = 0. (The last equality only holds when 0 is a
median of F and always holds when F is symmetric about 0.) When x′β̂ > 0, the
logistic and probit models have F(x′β̂ ) > 0.5. When x′β̂ < 0, they have F(x′β̂ ) <
0.5.

In a regression setting we typically have

x′β ≡ β0 +
d−1

∑
j=1

β jx j = β0 +x′β∗

where
x′ ≡ (x1, . . . ,xd−1).

The hyperplane x′β̂ = F−1(0.5) is the same creature as
[
β0 −F−1(0.5)

]
+x′β∗ = 0.

As a function of the predictor variables in x, the orientation of the hyperplane is
determined by β∗. Hyperplanes with β∗ vectors that are multiples of one another are
parallel in Rd−1.

Any hyperplane x′β = 0 can be used to predict binary outcomes using the rule: if
x′β > 0 the case is predicted as group 1 and if x′β < 0 the case is predicted as group
0. Using the regression notation that means: group 1 if −β0 < x′β∗ and group 0 if
−β0 > x′β∗. To use a hyperplane x′β =C is simply to redefine β0 as β0 −C. If η is
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a nonzero scalar multiple of β , the vectors x with x′β = 0 are precisely the same as
the vectors x with x′η = 0, so β and η define the same linear predictor. (Although
if the constant of proportionality is negative, the codes for the two groups will be
reversed.)

Since any β determines a binary predictor, we can certainly pick one by mini-
mizing

n

∑
i=1

L (yi,x′iβ )+ kP(β ),

for any loss function L , for any penalty function P , and any tuning parameter k.
The question is, “Will it be any good?” Certainly if we use the loss function associ-
ated with minimizing the deviance of a generalized linear model having F(0) = 0.5
and either take k = 0 or any reasonable penalty function with k small, the linear
predictor will be reasonable.

It is an exercise in ALM-III to show that x′β essentially measures the distance be-
tween x and the hyperplane defined by x′β = 0. In particular, one can show that |x′β |
is ∥β∥ times the perpendicular distance from x to the prediction hyperplane (sub-
space) {x|x′β = 0} by finding the perpendicular distance using Mβ ≡ β (β ′β )−1β ′.

Since the numerical value of x′β essentially measures the distance of x from the
hyperplane defined by x′β = 0, it should provide a measure of how clearly a case
belongs to a group. Ideally, we would like to know p(x). For the generalized linear
model loss functions that is easy, p(x) = F(x′β ). For a general differentiable loss
function, i.e. one not associated with a generalized linear model, we will probably
need to rely on equation (9.6.2) to estimate probabilities. In the next section we will
see that SVMs use a loss function that looks reasonable, but not one that is consistent
with a generalized linear model nor is it differentiable, so there is no obvious method
of turning an estimated SVM into group probabilities.

Like all linear models, the linearity of a linear prediction rule is linearity in the
unknown regression coefficients, not in the originally measured predictor variables.

EXAMPLE 9.4.2. In Figure 9.1, the linear structure used for determining the logit
and probit linear prediction rules was

x′β = β0 +β1T L+β2PL.

where T L and PL are the logs of the tetrahydrocortisone and pregnanetriol scores.
Figure 9.3 illustrates the use of the quadratic model

x′β = β00 +β10T L+β01PL+β20T L2 +β02PL2 +β11T L×PL.

The logistic and probit linear predictors 0 = x′β̂ are hyperplanes in 5 dimensions
but take the form of parabolas when plotted in the original two dimensions. (In 5
dimensions a hyperplane would be ignoring the fact that, say, “PL2” is not just the
name of a variable but is actually the square of the “PL” variable.)

Even more than in Figure 9.1, the logistic and probit linear predictors in Fig-
ure 9.3 plot almost on top of one another. Unlike Figure 9.1, the parabolas com-
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pletely separate the carcinoma cases from the bilateral hyperplacia cases. (More on
this later.) Figure 9.3 also illustrates a quadratic support vector machine. Only one
of the two SVM parabolic curves appears on this plot and the one that appears, over
the range of this plot, is almost a straight line. The SVM fails to separate the two
groups of observations. More details on the SVM linear predictor are given in the
next section. 2
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Fig. 9.3 Quadratic model logistic regression, probit regression (indistinguishable from logistic),
and an SVM: Cushing’s Syndrome data (subset).

9.4.1 Loss Functions

We have discussed the loss functions associated with binomial/binary generalized
linear models. The loss function for support vector machines is discussed in the next
section. The use of squared error loss is related to the normal theory discriminant
analysis of Chapter 10 and is also discussed in the next subsection. In the machine
learning community the use of squared error loss together with a penalty function is
sometimes called the proximal support vector machine. Another loss function that
gets used as an approximation to AdaBoost is

LAda(y,u) =
{

e−u if y = 1
eu if y = 0 .
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9.4.2 Least Squares Binary Prediction

Both linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA),
as defined in the next chapter, satisfy the definition of an estimated linear predictor
given here. In particular, there is a strong relationship between fitting a least squares
regression model to binary y data and LDA, cf. Williams (1959). The algebra in-
volved in the demonstration is tedious. (I have about four pages of formulae with
no explanations of what I am doing.) Suffice it to say that if the number of suc-
cesses equals the number of failures, LDA agrees with least squares regression on
0-1 data where a case is assigned to group 1 if and only if its predicted (fitted) value
is greater than 0.5. Moreover, if the number of successes and failures are not equal,
there exists a cut-off point for the least squares predicted values (typically different
from 0.5) that will give the same predictions as LDA.

9.5 Support Vector Machines

Support vector machines are linear predictors that pick β = (β0,β
′
∗)

′ by minimizing

n

∑
i=1

LS(yi,x′iβ )+ kPR(β ).

The penalty function is the standard ridge regression penalty, PR(β ) ≡ β ′
∗β∗, but

most importantly the loss function is

LS(y,u) =
{
(1−u)+ if y = 1
(1+u)+ if y = 0 .

(Recall that a+ = a if a is positive and a+ = 0 is a is not positive.) Figure 9.4 plots
the logit and SVM loss functions. The SVM loss function is certainly reasonable.

EXAMPLE 9.5.2. In Figures 9.1 and 9.3, the SVM curves presented were the
default linear and quadratic fits for unscaled predictor variables from the R library
e1071’s program svm. Figure 9.5 is similar to 9.3 but plots the SVM when the
tuning parameter k associated with the penalty function has been reduced by a factor
of 100. The new fitted SVM is much more like the maximimum likelihood fits and
it separates the two classes. 2

As discussed in Section 4.4, least squares is all about minimizing a squared error
loss function. Similarly, ridge and lasso regression problems are dominated by the
problem of minimizing the squared error loss function subject to quadratic and lin-
ear inequality constraints, cf. Section 8.4. Somewhat ironically, programs for finding
SVM estimates seem to focus on minimizing the quadratic penalty function subject
to the constraints imposed by needing to minimize the loss function. The issue is less
about whether the loss is more important than the penalty function and more about
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Fig. 9.4 Logistic regression and SVM loss functions.
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Fig. 9.5 Quadratic model logistic regression, probit regression, and an SVM with reduced tuning
parameter: Cushing’s Syndrome data (subset).
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the highest order polynomial involved in the minimization. ALM-III, Appendix A.3
discusses the general problem of minimizing quadratic functions subject to linear
inequality constraints and a subsection applies the general results to the SVM prob-
lem. In this chapter, we merely cite the most important of those results. Hastie et
al. (2016), Zhu (2008), and Moguerza and Muñoz (2006) all present introductions
to SVMs.

9.5.1 Probability Estimation

The value |x′β |, which is ∥β∥ times the perpendicular distance from x to the pre-
diction hyperplane, should measure the assuredness of a classification. The bigger
the value, the more sure we should be of the classification. Unfortunately, for SVMs
this does not obviously convert to a classification probability. First, the loss function
associated with SVMs is similar to the logit and probit losses, so SVMs might be
generalized linear models for some F . They are not, cf. ALM-III, so we cannot get
probabilities associated with SVMs by appealing to generalized linear models. Sec-
ond, the general equation for determining probabilities from a best predictor given
in equation (9.6.2) does not apply because the SVM loss function is not differen-
tiable everywhere. I am not aware of any way to get classification probabilities from
SVMs.

9.5.2 Parameter Estimation

Finding the SVM parameter estimates is generally performed by turning the estima-
tion problem into a quadratic optimization problem, cf. ALM-III, Appendix A.3.

Write our binary data in vector form as

Y ≡
[

Y1
Y0

]
where N1 successes are in Y1 ≡ JN1 and N0 = n−N1 failures are in Y0 ≡ 01

N0
. For this

discussion only
J1 ≡ JN1 ; J0 ≡ JN0 .

Similarly write the model matrix, which includes an intercept predictor, as

X ≡
[

X1
X0

]
≡
[

J1 X1
J0 X0

]
.

Any n vector v may be written

v =
[

v1
v0

]
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in conformance with Y1 and Y0.
Support vector machines pick β = (β0,β

′
∗)

′ by minimizing

n

∑
h=1

LS(yh,x′hβ )+ kβ
′
∗β∗ (1)

where

LS(y,u) =
{
(1−u)+ if y = 1
(1+u)+ if y = 0 .

We will leave the details of minimizing this to ALM-III but the innovative idea is
to introduce slack variables ξ = (Ξ1, . . . ,Ξn)

′ that serve as upper bounds for the
contributions to the loss function. It turns out that minimizing (1) is equivalent to
finding

inf
β ,ξ

(
kβ

′
∗β∗+ξ

′J
)

(2)

subject to
LS(yh,x′hβ )≤ Ξh, h = 1, . . . ,n. (3)

To establish this as a quadratic optimization problem, we need to replace the loss
function constraints (3) with linear constraints. In matrix form these constraints turn
out to be, for cases associated with Y1

01
N1

≤ ξ1; J1 −X1β ≤ ξ1 (3a)

where an inequality applied to a matrix is understood to apply elementwise. Simi-
larly for Y0 cases,

01
N0

≤ ξ0; J0 +X0β ≤ ξ0. (3b)

In total there are 2n linear inequality constraints being imposed on the criterion
function (2).

In matrix notation, rewrite the penalized loss function in standard form for
quadratic optimization as

kβ
′
∗β∗+ξ

′J =
1
2

β0
β∗
ξ

′0 0 0
0 2kI 0
0 0 0

β0
β∗
ξ

+
 0

0
Jn

′β0
β∗
ξ

 , (4)

which is to be minimized subject to the constraints (3) rewritten in standard form as
−X1 −I 0

X0 0 −I
0 −I 0
0 0 −I


 β

ξ1
ξ0

≤


−J1
−J0

0
0


or
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−J1 −X1 −I 0

J0 X0 0 −I
0 0 −I 0
0 0 0 −I




β0
β∗
ξ1
ξ0

≤


−J1
−J0

0
0

 .
In the SVM literature the criterion function (4) often gets multiplied by C̃ ≡ 1/2k
which results in minor changes to the results.

As discussed in ALM-III, Appendix A.3, typically one finds an n vector λ1 (not
an N1 vector like v1 in v = (v′1,v

′
0)

′) that maximizes the dual criterion

−1
2k

λ
′
1

[
X1X′

1 −X1X′
0

−X0X′
1 X0X′

0

]
λ1 +λ

′
1Jn.

(ALM-III, Appendix A.3 involves another n vector λ2 because there are 2n linear
inequality constraints.) The dual criterion has λ1 subject to the constraints

−J′1λ11 + J′0λ10 = 0

and
0n ≤ λ1 ≤ Jn.

Actual solutions β and ξ need to incorporate the well-known KKT conditions.
ALM-III, Appendix A.3 establishes that

β̂∗ =
1
2k

(
X′

1λ11 −X′
0λ10

)
.

Often many of the λ1 values are zero, so it makes sense to report only the values of
λ1 that are nonzero and report the corresponding rows of X1 and −X0. The computer
programs I have seen do something equivalent; they report the nonzero coefficients
of 1

2k (λ
′
11,−λ ′

10) and report the corresponding rows of X1 and X0 as support vectors.
Typically, they make you figure out β̂∗.

As discussed in ALM-III, Appendix A.3, if 0 < λ1h < 1, depending on whether
yh is 1 or 0, we must have β̂0 +x′hβ̂∗ = 1 or β̂0 +x′hβ̂∗ =−1, respectively. Changing
notation a bit, think about λ ′

1 = (λ ′
11,λ

′
10). If y1 j denotes an element of Y1 with

0 < λ11 j < 1, then β̂0 = 1− x′1 jβ̂∗ and similarly, when y0 j has 0 < λ10 j < 1, β̂0 =

−1− x′0 jβ̂∗. If you have the correct λ1, and thus the correct β̂∗, all of these cases

should give the same β̂0.
It may seem curious that finding β̂0 is so directly tied to cases with x′β̂ =±1, but

remember that any multiple of β̂ defines the same hyperplane, so we have merely
chosen a multiple that defines β̂0 in terms of being 1 unit away from an appropriate
value of x′hβ̂∗.

Computer programs often report −β̂0 rather than β̂0. Surprisingly, computer
programs, and even published works, often make some fuss about how to obtain
β̂0 from the various cases that have 0 < λ1h < 1. Indeed, when fitting the lin-
ear (as opposed to quadratic) model to the Cushing’s Syndrome data, the svm



246 9 Classification

program for R reports three vectors with 0 < λ1h < 1. These imply the values
β̂0 = 3.101790,3.102093,3.101790. Your guess is as good as mine for why the
middle one is slightly different. The program reports −β̂0 = −3.101891, which is
the average of the three.

9.5.2.1 The Kernel Trick

As discussed in Chapter 1, you could just replace X with R̃ and proceed exactly as
before. However, the SVM methodology admits a more particular approach to using
kernels. Every time you evaluate x′xh in the discussion, you could replace it with an
evaluation of R(x,xh). The primary change that ensues is that instead of evaluating

x′β̂∗ = x′
[

1
2k

(
X′

1λ11 −X′
0λ10

)]
= x′

[
1
2k

(
N1

∑
j=1

x1 jλ11 j −
N0

∑
j=1

x0 jλ10 j

)]

=
1
2k

(
N1

∑
j=1

x′x1 jλ11 j −
N0

∑
j=1

x′x0 jλ10 j

)
,

you evaluate
1
2k

(
N1

∑
j=1

R(x,x1 j)λ11 j −
N0

∑
j=1

R(x,x0 j)λ10 j

)
.

Again, this computation is simplified by dropping terms with λ1r j = 0, r = 0,1.

9.5.3 Advantages of SVMs

To be honest, the whole point of this chapter is to address support vector machines. I
had planned a subsection listing the advantages of SVMs but, after studying SVMs,
I no longer see any advantages. I once thought that their ability to involve the kernel
trick was an advantage. But we established in Subsection 1.7.2 that C(Φ) = C(R̃),
so the kernel trick applies to any linear structure Xβ , whether it is applied to regular
linear models, generalized linear models, proportional hazard models, or anything
else. The other advantage I imagined for SVMs was computational, because the
vector λ1 is often nonzero on only a relatively small subset of the data involving
“support vectors.” But in my review of the literature (which was far from complete
but more extensive than the references I have given here or in ALM-III) I did not
notice any such claims being made for SVMs; no more does the theory in ALM-III,
Appendix A.3 suggest to me any such advantage. In fact, I found some discussion
of the need to deal with the computational problems that SVMs have with big data
(something that would be unlikely to arise if the computational complexity was be-
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ing driven by a relatively small number of support vectors). This is not to say that
SVMs don’t give reasonable answers; they do. I am just not aware of any advan-
tages they have over using logistic regression with the kernel trick and penalized
estimation. (One advantage that SVM programs have is that, unlike most logistic
regression programs, SVM programs generally have the kernel trick and the ridge
penalty built into them.)

9.5.4 Separating Hyper-Hogwash

SVMs are often sold as finding the optimal hyperplane that has all the data from
one group above the hyperplane and all the data from the other group below the hy-
perplane. The “optimal” hyperplane is defined as the hyperplane that maximizes the
distance from the plane to the points on either side that are closest to the hyperplane.
While this technical argument is correct, as a reason for using SVMs I think it is
quite simply hogwash. I am not saying that SVMs are hogwash, only this argument
for using them. The optimal separating hyperplane phenomenon is based almost
entirely on the fact that SVMs involve minimizing the ridge regression penalty.

• The whole point of binomial generalized linear models is to find good ways of
estimating probabilities for the cases that are not obviously from one group or
the other. If a separating hyperplane exists, the problem is trivial! All of the MLE
probabilities can be pushed arbitrarily close to 1 or 0. The important question for
SVMs (like for all linear predictors) is not how to pick a separating hyperplane
but how to pick a hyperplane when separation is not possible!

In Figure 9.1, using a linear function of T L and PL, separation was not possible. In
Figure 9.3, using quadratic functions of T L and PL, separation is possible, so the
reported maximum likelihood logistic and probit fits do that; they separate the cases.
In fact, because it is possible to separate the cases, unique maximum likelihood fits
to the linear predictors do not exist. The reported curves in Figure 9.3 for logistic
and probit regression are merely those reported when R’s glm function stopped
iterating. Anderson (1972) argued that any logistic regression program will find
you a separating hyperplane when they exist. Essentially, when the program finds
a separating hyperplane, that fact establishes that no unique maximum likelihood
estimate will exist. Anderson (1972) and Albert and Anderson (1984) show that
there are no unique maximum likelihood estimators for separable logistic regression.

• Finding the optimal separating hyperplane is largely a waste of time. Figure 9.5
illustrates three separating hyperplanes in the form of parabolas. What basis is
there for picking one separating hyperplane over another one? In terms of max-
imizing the likelihood, they are all equally good. Why should you think there
would be a best separating hyperplane? Do you really need to impose some ar-
tificial optimality criterion to find a “best” separating hyperplane? (I admit that
maximizing the distance from the separating hyperplane to the closest points on
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either side is a nice choice, if you think it is worth the trouble to make a choice.)

• If a separating hyperplane exists, and the procedure does not give you a sepa-
rating hyperplane, then clearly the procedure is not about finding the optimal
separating hyperplane. Figure 9.3 shows that the default parabola fitted by svm
does not separate the two groups, even though the logit and probit fitted parabo-
las do seperate the groups. I am not saying that the svm solution is bad, only that
it is not finding a separating hyperplane when one clearly exists.

9.6 Best Prediction and Probability Estimation

We began by assuming independent binary data yh ∼ Bern[p(xh)] and showed that
fitting generalized linear models leads us to minimizing certain loss functions. In
the last two sections we have ignored the distributional assumptions and discussed
linear predictors based on minimizing different loss functions. We now go back and
relate minimization of arbitrary loss functions to best prediction and to estimation
of probabilities. Earlier we made the case that good estimation of probabilities was
vital to estimating the best predictors for standard predictive loss functions such as
squared error and Hamming.

The best predictor f̂ for an arbitrary predictive loss function L (y,u) satisfies

Ey,x
{
L [y, f̂ (x)]

}
= inf

f
Ey,x {L [y, f (x)]} . (1)

The best predictor, if it can be found, is found by conditioning on x and is the number
û ≡ f̂ (x) that achieves

Ey|x [L (y, û)] = inf
u

Ey|x [L (y,u)] .

If L (y,u) is differentiable in u for all y and if the derivative can be taken under the
integral of the conditional expectation, cf. Cramér (1946), the best prediction for a
fixed x should occur when

0 = duEy|x [L (y,u)] = Ey|x [duL (y,u)] .

In the special case of binary prediction, this easily becomes

0 = p(x) [duL (1,u)]+ [1− p(x)] [duL (0,u)] .

Typically, for known p(x), we would solve for û ≡ f̂ (x) to find the best predictor
for the loss function. As alluded to earlier, we can find the best predictor for square
error, Hamming, and even absolute error loss functions.

In binary regression, sometimes people solve the equation for p(x),
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p(x) =
−duL [0,u]

[duL (1,u)]− [duL (0,u)]
. (2)

The original idea was to use the conditional distribution of y to find the best predictor
(BP) under the loss function. Solving for p(x) is using the BP to find the conditional
distribution. It presumes that you know the BP without knowing the conditional
distribution. In practice, an estimated predictor u = f̃ (x) is sometimes plugged into
(2) to obtain an estimate of p(x).

Predictive estimators f̃ are often chosen to achieve

inf
f∈F

{
n

∑
h=1

L [yh, f (xh)]+ kP( f )

}
.

The fact that the sum puts the same weight on each observation pair (yh,x′h) is
something that is (only?) appropriate when the data come from a simple random
sample of some population, e.g., not discrimination data.

Standard limit theorems assure that (1/n)∑
n
h=1 L [yh, f (xh)] will be a reasonable

estimate of Ey,x {L [y, f (x)]} and if kP( f )/n→ 0, we should be able to evaluate the
effectiveness of f for large samples. But the estimated predictor f̃ is not generally
an estimate of the best predictor f̂ as defined by (1), it is an estimate of the best
predictor in F . Only if you are willing to assume that the best predictor is in F does
it make sense to use equation (2) to estimate the conditional probabilities, but that is
an assumption that we often make. Zhang, Liu, and Wu (2013) discuss these issues
and argue that regularization, i.e., incorporating a penalty function when estimating
the predictor f̃ , can have deleterious effects on using (2) for probability estimation.

It seems to be the case that people often define best prediction with one loss func-
tion, e.g., squared error or Hamming, but are willing to use a completely different
predictive loss function to obtain an estimated predictor f̃ and an estimate of p(x).

An exercise in ALM-III establishes the following:

• For linear models with squared error loss, equation (2) gives p(x) = x′β . This is
unsatisfactory since the probabilities are not required to be between 0 and 1.

• For a generalized linear model based on a cdf F that is symmetric about 0, equa-
tion (2) returns the standard answer p(x) = F(x′β ).

• If a loss function has the properties L [0,−u] = L [1,u] and duL [1,u]< 0, then
equation (2) gives a number between 0 and 1 with p(0) = 0.5.

Equation (2) can work very well as a method for estimating probabilities but it can
also work very poorly. It depends on the loss function being used.

Incidentally, equation (2) and fitting binomial generalized linear models are not
the only ways to associate a linear predictor with group probabilities given the pre-
dictor variables. In Chapter 10 we used LDA and QDA (which are both linear pre-
dictors) to estimate group probabilities via estimation of the sampling distribution
(density) of the predictor variables. Doing that requires knowledge of the preva-
lences (marginal group probabilities).





Chapter 10
Discrimination and Allocation

Abstract This chapter discusses discrimination and allocation. Regression data are
commonly the result of sampling a population, taking two or more measurements
on each individual sampled, and then examining how those variables relate to one
another. Discrimination problems have a very different sampling scheme. In dis-
crimination problems data are obtained from multiple groups and we seek efficient
means of telling the groups apart, i.e., discriminating between them. Discrimination
is closely related to one-way multivariate analysis of variance in that we seek to
tell groups apart. One-way multivariate analysis of variance addresses the question
of whether the groups are different whereas discriminant analysis seeks to specify
how the groups are different. Allocation is the problem of assigning new individu-
als to their appropriate group. Allocation procedures have immediate application to
diagnosing medical conditions.

Consider the eight populations of people determined by all combinations of sex
(male, female) and age (adult, adolescent, child, infant). These are commonly used
distinctions, but the populations are not clearly defined. It is not obvious when in-
fants become children, when children become adolescents, nor when adolescents
become adults. On the other hand, most people can clearly be identified as members
of one of these eight groups. It might be of interest to see whether one can discrim-
inate among these populations on the basis of, say, various aspects of their blood
chemistry. The discrimination problem is sometimes referred to as the problem of
separation. Another potentially interesting problem is trying to predict the popula-
tion of a new individual given only the information on their blood chemistry. The
problem of predicting the population of a new case is referred to as the problem of
allocation. Other names for this problem are identification and classification.

We will illustrate discrimination techniques on Aitchison and Dunsmore’s (1975)
Cushing’s Syndrome data, cf. Example 9.2.1, and Table 9.1. In this chapter we ex-
amine all three types: adenoma, bilateral hyperplasia, and carcinoma (except in the
last section). Figure 10.1 plots the logs of the amounts of tetrahydrocortisone and
pregnanetriol excreted in the subjects’ urine for all three groups. In Chapter 9 we
treated the data as though it resulted from a sample of 21 Cushing’s Syndrome pa-
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tients. A key difference here is that we now treat the data as though it resulted from
sampling 6 adenoma patients, 10 bilateral hyperplasia patients, and 5 carcinoma pa-
tients. The key difference in the sampling schemes is that in the regression sampling
we have reason to believe that bilateral hyperplasia is roughly twice as common
within the population as the other groups; whereas in the discrimination sampling
scheme the mere fact that there are nearly twice as many bilateral hyperplasia pa-
tients tells us nothing about the prevalence of bilateral hyperplasia among Cushing’s
Syndrome patients.
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Fig. 10.1 Cushing’s Syndrome data.

Most books on multivariate analysis contain extensive discussions of discrimina-
tion and allocation. The author can particularly recommend the treatments in An-
derson (2003), Johnson and Wichern (2007), and Seber (1984). In addition, Hand
(1981) and Lachenbruch (1975) have written monographs on the subject. As is so
often the case in statistics, the first modern treatment of these problems was by Sir
Ronald A. Fisher; see Fisher (1936, 1938). The discussion in this chapter is closely
related to methods associated with the multivariate normal distribution. There are
also a variety of nonparametric discrimination methods available.

Another common approach to discrimination is based on logistic regression (or
its generalization, log-linear models). Christensen (1997, 2015) and others treat lo-
gistic discrimination in more detail. Our interest is restricted to addressing how the
binary regression methods of the previous chapter must/can be adjusted for the dis-
criminant analysis sampling scheme.
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Discrimination seems to be a purely descriptive endeavor. The observations are
vectors y = (y1, . . . ,yq)

′ in Rq. All observations come from known populations. Dis-
criminate analysis uses the observations to partition Rq into regions, each uniquely
associated with a particular population. Given a partition, it is easy to allocate future
observations. An observation y is allocated to population r if y falls into the region
of Rq associated with the rth population. The difficulty lies in developing a rational
approach to partitioning Rq.

Just as a solution to the discrimination problem implicitly determines an allo-
cation rule, a solution to the allocation problem implicitly solves the discrimination
problem. The set of all y values to be allocated to population r determines the region
associated with population r.

Our discussion will be centered on the allocation problem. We present allocation
rules based on Mahalanobis’s distance, maximum likelihood, and Bayes theorem.
An advantage of the Mahalanobis distance method is that it is based solely on the
means and covariances of the population distributions. The other methods require
knowledge of the entire distribution in the form of a density. Not surprisingly, the
Mahalanobis, the maximum likelihood, and the Bayes rules are similar for normally
distributed populations.

In general, consider the situation in which there are t populations and q variables
y1, . . . ,yq with which to discriminate among them. In particular, if y = (y1, . . . ,yq)

′

is an observation from the ith population, we assume that either the mean and co-
variance matrix of the population are known, say

E(y) = µi

and
Cov(y) = Σi,

or that the density of the population distribution, say

f (y|i),

is known. In practice, neither the density, the mean, nor the covariance matrix will
be known for any population. These must be estimated using data from the various
populations.

An important special case is where the covariance matrix is the same for all
populations, say

Σ ≡ Σ1 = · · ·= Σt .

In this case, samples from the populations constitute data for a standard one-way
multivariate analysis of variance (MANOVA). A complete discussion of MANOVA
is beyond the scope of this book, see ANREG for a basic introduction and ALM
for a more theortical one. Appendix C contains an illustration of a three-factor
MANOVA.

Section 1 deals with the general allocation problem. Section 2 examines quadratic
discriminant analysis (QDA). It applies the general ideas by estimating parameters
and densities. Section 3 examines linear discriminant analysis (LDA). It is the spe-
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cial case of equal covariance matrices. Section 4 introduces ideas of cross-validation
for estimating error rates. Section 5 contains some general discussion. Sections 6
and 7 examine the relationship between MANOVA and LDA and in particular dis-
cuss a method for selecting variables in LDA and introduce discrimination coordi-
nates that are useful in visualizing the discrimination procedure. Section 8 discusses
a broader idea of linear discrimination that includes both LDA and QDA and relates
it to the ideas of linear prediction rules examined in the previous chapter. Section 9
gets into how one adjusts binary regression results for the discrimination sampling
scheme.

10.1 The General Allocation Problem

In this section, we discuss allocation rules based on Mahalanobis’s distance, max-
imum likelihood, and Bayes theorem. These rules are based on populations with
either known means and covariances or known densities.

10.1.1 Mahalanobis’s distance

The Mahalanobis distance

D2 ≡ (y−µ)′Σ−1(y−µ)

is a frequently used measure of how far a random vector is from the center of its
distribution, cf. PA. In the allocation problem, we have a random vector y and t
possible distributions from which it could arise. A reasonable allocation procedure
is to assign y to the population that minimizes the observed Mahalanobis distance.
In other words, allocate y to population r if

(y−µr)
′
Σ
−1
r (y−µr) = min

i
(y−µi)

′
Σ
−1
i (y−µi) . (1)

10.1.2 Maximum likelihood

If the densities f (y|i) are known for each population, the population index i is the
only unknown parameter. Given an observation y, the likelihood function is

L(i)≡ f (y|i),

which is defined for i = 1, . . . , t. The maximum likelihood allocation rule assigns y
to population r if
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L(r) = max
i

L(i),

or equivalently if
f (y|r) = max

i
f (y|i).

If the observations have a multivariate normal distribution, the maximum likeli-
hood rule is very similar to the Mahalanobis distance rule. From PA Section 1.2, the
likelihoods (densities) are

L(i) = f (y|i) = (2π)−q/2|Σi|−1/2 exp[−(y−µi)
′
Σ
−1
i (y−µi)/2] ,

i = 1, . . . , t, where |Σi| is the determinant of the covariance matrix. The logarithm is
a monotone increasing function, so maximizing the log-likelihood is equivalent to
maximizing the likelihood. The log-likelihood is

ℓ(i)≡ log[L(i)] =−q
2

log(2π)− 1
2

log(|Σi|)−
1
2
(y−µi)

′
Σ
−1
i (y−µi) .

If we drop the constant term − q
2 log(2π) and minimize twice the negative of the

log-likelihood rather than maximizing the log-likelihood, we see that the maximum
likelihood rule for normally distributed populations is: assign y to population r if

log(|Σr|)+(y−µr)
′
Σ
−1
r (y−µr) = min

i

{
log(|Σi|)+(y−µi)

′
Σ
−1
i (y−µi)

}
. (2)

The only difference between the maximum likelihood rule and the Mahalanobis
rule is the inclusion of the term log(|Σi|) which does not depend on y, the case
to be allocated. Both the Mahalanobis rule and the maximum likelihood rule in-
volve quadratic functions of y. Methods related to these rules are often referred to as
quadratic discrimination methods. (As discussed in the previous chapter, quadratic
functions of the predictor variables define linear functions of an expanded set of
predictor variables.)

EXAMPLE 10.1.1. The simplest case of allocation is assigning a new observation
y to one of two normal populations with the same variance. The top panel of Fig-
ure 10.2 contains normal densities with variance 1. The one on the left has mean 2;
the one on the right has mean 5. The solid dot is the point at which the two densities
are equal. For y to the right of the dot, the maximum likelihood allocation is to the
mean 5 population. To the left of the dot, the maximum likelihood allocation is to
the mean 2 population. The Mahalanobis distance in this one dimensional problem
is |y− µi|/1. The black dot is also the solution to y− 2 = y− 5, so y values to the
left of the dot are closer to the mean 2 population and those to the right are closer to
the mean 5 population.

The bottom panel of Figure 10.2 is far more complicated because it involves
unequal variances. The population on the left is N(2,1) whereas the population on
the right is now N(5,9). The two squares are where the densities from the two
distributions are equal. To the left of the left square and to the right of the right
square, the N(5,9) has a higher density, so a y in those regions would be assigned
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to that population. Between the two squares, the N(2,1) has a higher density, so a y
between the squares is assigned to the mean 2 population. The squared Mahalanobis
distances are (y−2)2/1 and (y−5)2/9. Setting these equal gives the two black dots.
Again, y is assigned to the mean 2 population if and only if y is between the black
dots. The normal theory maximum likelihood and Mahalanobis methods are similar
but distinct. 2
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Fig. 10.2 One dimensional normal discrimination.

10.1.3 Bayesian methods

We will discuss an intuitive rule for Bayesian allocation. ALM-III also discusses a
formal procedure based on costs of misclassification and shows that the intuitive
rule can be arrived at by the formal procedure.

Bayesian allocation methods presuppose that for each population i there exists a
prior probability, say π(i), that the new observation y comes from that population.
Typically, these prior probabilities are arrived at either from previous knowledge
of the problem or through the use of the maximum entropy principle (see Berger
1985, Section 3.4). The maximum entropy principle dictates that the π(i)s should be
chosen to minimize the amount of information contained in them. This is achieved
by selecting

π(i) = 1/t , (3)
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i = 1, . . . , t.
Given the prior probabilities and the data y, the posterior probability that y came

from population i can be computed using Bayes theorem (see Berger, 1985, Sec-
tion 4.2 or Christensen et al., 2010, Chapter 2). The posterior probability is

π(i|y) = f (y|i)π(i)
/ t

∑
j=1

f (y| j)π( j) . (4)

A simple intuitive allocation rule is to assign y to the population with the highest
posterior probability. In other words, assign y to population r if

π(r|y) = max
i

π(i|y) .

The denominator in (4) does not depend on i, so the allocation rule is equivalent to
choosing r such that

f (y|r)π(r) = max
i
{ f (y|i)π(i)}.

In the important special case in which the π(i) are all equal, this corresponds to
maximizing f (y|i); that is, choosing r so that

f (y|r) = max
i

f (y|i) .

Thus, for equal initial probabilities, the intuitive Bayes allocation rule is the same as
the maximum likelihood allocation rule. In particular, if the populations are normal,
the Bayes rule with equal prior probabilities is based on (2).

Most methods of discrimination are based on estimating the density functions
f (y|i). These include LDA, QDA, and such nonparametric methods as nearest
neighbors and kernels (in the sense of Subsection 7.5.3.). As discussed in Section 9,
logistic regression and some other binary regression methods give direct estimates
of π(i|y), but those estimates are based on having implicitly estimated π(i) with
Ni/∑ j N j, where the N js are the numbers of observations in each group. This is
rarely appropriate for discrimination data. Appropriate discrimination procedures
must correct for this.

10.2 Estimated Allocation and QDA

One serious problem with the allocation rules of the previous section is that typically
the moments and the densities are unknown. In (10.1.1) and (10.1.2) typically the
values µi and Σi are unknown. In practice, allocation is often based on estimated
means and covariances or estimated densities.

We assume that a random sample of Ni ≡ N(i) observations is available from the
ith population. The jth observation from the ith population is a q vector denoted
yi j ≡ (yi j,1, . . . ,yi j,q)

′. Note that
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E(yi j) = µi

and
Cov(yi j) = Σi .

It is important to recognize that in the special case of equal covariance matrices, the
data follow a multivariate one-way ANOVA model with t groups, cf. Appendix C.
It will be convenient to write a matrix that contains the ith sample,

Yi ≡

 y′i1
...

y′iN(i)

 .
The estimated Mahalanobis distance rule is that an observation y is allocated to

population r if

(y− ȳr·)
′S−1

r (y− ȳr·) = min
i
(y− ȳi·)

′S−1
i (y− ȳi·) ,

where

Si =
Ni

∑
j=1

(yi j − ȳi·)(yi j − ȳi·)
′
/

(Ni −1) = Y ′
i

[
I − 1

Ni
JN(i)

N(i)

]
Yi

/
(Ni −1) .

An estimated maximum likelihood allocation rule is to assign y to population r if

f̂ (y|r) = max
i

f̂ (y|i).

If q is not too large, the estimate f̂ (y|i) can be estimated nonparametrically using
nearest neighbors or kernels (Subsection 7.5.3) or, if f̂ (y|i) depends on parameters
θi, f̂ (y|i) can be obtained by estimating the parameters, which is what we do for
multivariate normals.

For multivariate normal densities, an estimated maximum likelihood allocation
rule is to assign y to population r if

log(|Sr|)+(y− ȳr·)
′S−1

r (y− ȳr·) = min
i
{log(|Si|)+(y− ȳi·)

′S−1
i (y− ȳi·)} .

Application of this estimated normal theory allocation rule is often referred to as
Quadratic Discriminant Analysis (QDA).

Although the QDA allocation decision is based a quadratic function of the pre-
dictor variables in y, the quadratic function in y can also be written as a linear com-
bination of the y predictor variables, their squares, and their crossproducts. In one
sense, QDA is not linear discrimination but in another sense it is. (In terms of the
“training” data yi j, it is neither quadratic nor linear but rather a very complicated
function.) This issue is discussed further in Section 8.

With estimated parameters, the Bayes allocation rule is really only a quasi-
Bayesian rule. The allocation is Bayesian, but the estimation of f (y|i) is not.
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Geisser’s (1971) suggestion of using the Bayesian predictive distribution as an esti-
mate of f (y|i) has been shown to be optimal under frequentist criteria by Aitchison
(1975), Murray (1977), and Levy and Perng (1986). It also provides the optimal
Bayesian allocation. In particular, for normal data, treating the maximum likelihood
estimates as the mean and covariance matrix of the normal gives an inferior estimate
for the distribution of new observations. The appropriate distribution (for “nonin-
formative” priors) is a multivariate t with the same location vector and a covariance
matrix that is a multiple of the MLE. See Geisser (1977) for a discussion of these
issues in relation to discrimination.

In any case, plugging in estimates of µi and Σi requires that good estimates be
available. Friedman (1989) has proposed an alternative estimation technique for use
with small samples.

Finally, in examining the data, it is generally not enough to look just at the results
of the allocation. Typically, one is interested not only in the population to which a
case is allocated but also in the clarity of the allocation. It is desirable to know
whether a case y is clearly in one population or whether it could have come from two
or more populations. The posterior probabilities from the Bayesian method address
these questions in the simplest fashion. Similar information can be gathered from
examining the entire likelihood function or the entire set of Mahalanobis distances.

We now illustrate QDA on the Cushing’s Syndrome data. Clarity of allocation
is addressed later in Example 10.5.1. An alternative analysis of the data based on
assuming equal covariance matrices for the groups is presented in the next section.

EXAMPLE 10.2.1. Cushing’ Syndrome: Quadratic Discrimination Analysis.
We wish to discriminate among the three types of Cushing’s Syndrome based on the
urinary excretion data. The data were given in Table 9.1. The pregnanetriol value for
case 4 looks out of place because it is the only value that is nonzero in the hundredths
place but, from looking at similar data, it is apparently a valid observation. Ripley
(1996, Section 2.4) discusses these data in the context of predictive allocation.

As before we analyze logs of the data. The log data were plotted in Figure 10.1.
A quick glance at the figure establishes that none of the data groups seems clearly to
be from a bivariate normal distribution, but with small sample sizes it is always hard
to tell. Performing a QDA on the Cushing’s Syndrome data begins with estimating
the means and covariance matrices for the three populations. These are as follows.

Variable Group Means Grand
a b c Mean

log(Tet) 1.0433 2.0073 2.7097 1.8991
log(Preg) −0.60342 −0.20604 1.5998 0.11038

Covariance Matrix for Adenoma
log(Tet) log(Preg)

log(Tet) 0.1107 0.1239
log(Preg) 0.1239 4.0891
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Covariance Matrix for Bilateral Hyperplasia
log(Tet) log(Preg)

log(Tet) 0.2119 0.3241
log(Preg) 0.3241 0.7203

Covariance Matrix for Carcinoma
log(Tet) log(Preg)

log(Tet) 0.5552 −0.2422
log(Preg) −0.2422 0.2885

The results of QDA are given in Table 10.1. Group probabilities are computed in
two ways. First, the data are used to estimate the parameters of the normal densities
and the estimated densities are plugged into Bayes theorem. Second, the proba-
bilities are estimated from cross-validation. The details of cross-validation will be
discussed in Section 4. The analyses are based on equal prior probabilities; hence,
they are also maximum likelihood allocations. Using the resubstitution method, only
two cases are misallocated: 9 and 12. Under cross-validation, cases 1, 8, 19, and 20
are also misclassified. 2

10.3 Linear Discrimination Analysis: LDA

If the populations are all multivariate normal with identical covariance matrices, say
Σ ≡ Σ1 = · · ·= Σt , then the Mahalanobis distance rule is identical to the maximum-
likelihood/Bayes allocation rule (10.1.2). The maximum-likelihood/Bayes alloca-
tion rule assigns y to the population r that satisfies

log(|Σ |)+(y−µr)
′
Σ
−1(y−µr) = min

i
{log(|Σ |)+(y−µi)

′
Σ
−1(y−µi)} .

However, the term log(|Σ |) is the same for all populations, so the rule is equivalent
to choosing the population r that satisfies

(y−µr)
′
Σ
−1(y−µr) = min

i
(y−µi)

′
Σ
−1(y−µi) .

This is precisely the Mahalanobis distance rule (10.1.1).
In practice, estimates must be substituted for Σ and the µis. With equal co-

variance matrices the yi j data fit the multivariate one-way ANOVA model of Ap-
pendix C, so the standard estimates ȳi·, i = 1, . . . , t and S = E/(n− t) are reasonable.
The estimated allocation rule is: assign y to population r if

(y− ȳr·)
′S−1(y− ȳr·) = min

i
(y− ȳi·)

′S−1(y− ȳi·) .
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Table 10.1 Quadratic Discrimination Analysis.

Resubstitution Cross-Validation
Allocated True Group True Group
to Group a b c a b c

a 6 1 0 5 2 0
b 0 8 0 0 7 2
c 0 1 5 1 1 3

Resubstitution Cross-Validation
Probability Probability

Case Group a b c a b c
1 ** a 0.61 0.00 0.39 0.24 0.00 0.76
2 a 1.00 0.00 0.00 1.00 0.00 0.00
3 a 0.91 0.09 0.00 0.81 0.19 0.00
4 a 1.00 0.00 0.00 0.96 0.04 0.00
5 a 0.92 0.08 0.00 0.87 0.13 0.00
6 a 1.00 0.00 0.00 1.00 0.00 0.00
7 b 0.00 1.00 0.00 0.00 1.00 0.00
8 ** b 0.42 0.58 0.00 0.62 0.38 0.00
9 ** b 0.61 0.39 0.00 0.93 0.07 0.00

10 b 0.00 1.00 0.00 0.00 1.00 0.00
11 b 0.00 1.00 0.00 0.00 1.00 0.00
12 ** b 0.00 0.28 0.72 0.00 0.12 0.88
13 b 0.01 0.99 0.00 0.01 0.98 0.01
14 b 0.02 0.98 0.00 0.03 0.97 0.00
15 b 0.04 0.96 0.00 0.05 0.95 0.00
16 b 0.00 0.96 0.04 0.00 0.94 0.06
17 c 0.00 0.01 0.99 0.00 0.01 0.99
18 c 0.00 0.00 1.00 0.00 0.00 1.00
19 ** c 0.00 0.40 0.60 0.00 1.00 0.00
20 ** c 0.00 0.00 1.00 0.00 1.00 0.00
21 c 0.00 0.05 0.95 0.00 0.08 0.92

Recall that in a one-way ANOVA, the estimated covariance matrix is a weighted
average of the individual estimates, namely

S =
t

∑
i=1

(Ni −1)Si/(n− t) .

Although (y− ȳi·)
′S−1(y− ȳi·) is a quadratic function of y, the allocation only

depends on a linear function of y. Note that

(y− ȳi·)
′S−1(y− ȳi·) = y′S−1y−2ȳ′i·S

−1y+ ȳ′i·S
−1ȳi· .

The term y′S−1y is the same for all populations. Subtracting this constant and divid-
ing by −2, the allocation rule can be rewritten as: assign y to population r if
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y′S−1ȳr·−
1
2

ȳ′r·S
−1ȳr· = max

i

{
y′S−1ȳi·−

1
2

ȳi·S−1ȳi·

}
.

This is based on a linear function of y, so this allocation rule is often referred to as
(traditional) Linear Discriminant Analysis (LDA).

EXAMPLE 10.3.1. Cushing’s Syndrome data.
LDA results from estimating normal densities with equal covariance matrices. In
this example we also assume equal prior probabilities so the Bayesian allocation
corresponds to a maximum likelihood allocation. All results are based on pooling
the covariance matrices from Example 10.2.1 into

Pooled Covariance Matrix

log(Tet) log(Preg)
log(Tet) 0.2601 0.1427
log(Preg) 0.1427 1.5601.

The results of the linear discriminant analysis are summarized in Table 10.2.
Based on resubstitution, four cases are misallocated, all from group b. Based on
leave-one-out cross-validation, three additional cases are misallocated. Cases 8 and
9 are consistently classified as belonging to group a, and cases 12 and 16 are clas-
sified as c. In addition, when they are left out of the fitting process, cases 1 and 4
are allocated to groups c and b, respectively, while case 19 is misallocated as b. It is
interesting to note that linear discrimination has a hard time deciding whether case
19 belongs to group b or c. A more detailed discussion of these cases is given later.

2

If q= 2 we can easily plot the data from each population as we did in Figure 10.1.
Consider t = 2 populations. As demonstrated in the next paragraph, linear discrim-
ination estimates a line that best separates the two clouds of data points. This is
similar to what we did in Figure 9.1 to predict bilateral hyperplasia and carcinoma
but the criteria for choosing the line has now changed because the nature of the data
is different. (Or at least we are treating it differently.) In Section 9 we will consider
the differences between the LDA line, the SVM line from the previous chapter, and a
logistic regression line modified to deal with discrimination data. If q = 3, while it is
harder to do, we can still plot the data from each population. LDA now estimates the
plane in 3 dimensions that best classifies the two clouds of data points. For q> 3, vi-
sualization becomes problematic but LDA uses hyperplanes, i.e., translated (shifted)
vector spaces (affine spaces) of dimension q−1, to classify the populations. Under
different assumptions, QDA estimates a quadratic, rather than linear, function of y
that classifies best. Again, QDA uses a different quadratic function than those illus-
trated in Figures 9.3 and 9.5, see Section 9 for comparisons. Remember, quadratics
are linear functions in higher dimensional spaces than Rq and LDA and QDA only
estimate the best classifiers when classifying multivariate normal data y.

We already know that LDA involves maximizing t linear functions of the data. If
there are just t = 2 groups, we now show that LDA classifies by evaluating whether
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Table 10.2 Linear discrimination.

Resubstitution Cross-Validation
Allocated True Group True Group
to Group a b c a b c

a 6 2 0 4 2 0
b 0 6 0 1 6 1
c 0 2 5 1 2 4

Resubstitution Cross-Validation
Probability Probability

Case Group a b c a b c
1 ** a 0.80 0.14 0.05 0.17 0.30 0.54
2 a 0.83 0.16 0.01 0.80 0.19 0.01
3 a 0.96 0.04 0.00 0.94 0.06 0.00
4 ** a 0.61 0.39 0.00 0.12 0.88 0.00
5 a 0.60 0.37 0.03 0.56 0.41 0.03
6 a 0.96 0.04 0.00 0.96 0.04 0.00
7 b 0.08 0.71 0.21 0.09 0.69 0.22
8 ** b 0.64 0.35 0.00 0.75 0.25 0.00
9 ** b 0.64 0.35 0.01 0.69 0.30 0.01

10 b 0.10 0.69 0.22 0.11 0.67 0.23
11 b 0.06 0.77 0.17 0.07 0.75 0.19
12 ** b 0.00 0.20 0.80 0.00 0.12 0.88
13 b 0.10 0.64 0.26 0.11 0.62 0.27
14 b 0.19 0.75 0.06 0.21 0.73 0.06
15 b 0.29 0.68 0.04 0.31 0.65 0.04
16 ** b 0.01 0.42 0.58 0.01 0.36 0.63
17 c 0.02 0.26 0.73 0.02 0.31 0.67
18 c 0.02 0.26 0.72 0.04 0.36 0.61
19 ** c 0.03 0.43 0.53 0.03 0.49 0.47
20 c 0.00 0.02 0.98 0.00 0.14 0.86
21 c 0.00 0.10 0.89 0.00 0.12 0.88

a linear function of y is greater or less than (above or below) a particular hyperplane
in q dimensions. We have seen that the traditional LDA rule assigns y to group 1 if

y′S−1ȳ1·−
1
2

ȳ′1·S
−1ȳ1· > y′S−1ȳ2·−

1
2

ȳ′2·S
−1ȳ2·,

which occurs if and only if

y′S−1(ȳ1·− ȳ2·)>
1
2

ȳ′1·S
−1ȳ1·−

1
2

ȳ′2·S
−1ȳ2·,

iff
y′S−1(ȳ1·− ȳ2·)>

1
2
(ȳ1·+ ȳ2·)

′S−1(ȳ1·− ȳ2·),

iff, with µ̂ ≡ (ȳ1·+ ȳ2·)/2,
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(y− µ̂)′S−1(ȳ1·− ȳ2·)> 0. (5)

The classification line (or plane or hyperplane) in a plot consists of the y values with
(y− µ̂)′S−1(ȳ1·− ȳ2·) = 0 or y′S−1(ȳ1·− ȳ2·) = µ̂ ′S−1(ȳ1·− ȳ2·).

Similar to the discussion in Section 9.4, any linear function of y can be used to
form a two group discrimination rule, say, assign y to a group based on whether
y′β∗ > β0. The trick is to find a good vector β∗ and a good constant β0. LDA uses
obviously good estimates of what are the optimal choices for β∗ and β0 when the
different populations are multivariate normal with equal covariance matrices.

10.4 Cross-Validation

It is of considerable interest to be able to evaluate the performance of allocation
rules. Depending on the populations involved, there is generally some level of mis-
classification that is unavoidable. (If the populations are easy to tell apart, why are
you worrying about them? In particular, cf. Subsection 9.5.4.) If the distributions
that determine the allocation rules are known, one can simply classify random sam-
ples from the various populations to see how often the data are misclassified. This
provides simple yet valid estimates of the error rates. Unfortunately, things are rarely
that straightforward. In practice, the data available are used to estimate the distribu-
tions of the populations. If the same data are also used to estimate the error rates, a
bias is introduced. Typically, this double dipping in the data overestimates the per-
formance of the allocation rules. The method of estimating error rates by reclassify-
ing the data used to construct the classification rules is often called the resubstitution
method.

To avoid the bias of the resubstitution method, cross-validation is often used,
cf. Geisser (1977) and Lachenbruch (1975). Cross-validation often involves leaving
out one data point, estimating the allocation rule from the remaining data, and then
classifying the deleted case using the estimated rule. Every data point is left out in
turn. Error rates are estimated by the proportions of misclassified cases. This version
of cross-validation is also known as the jackknife. (The jackknife was originally a
tool for reducing bias in location estimates.) The computation of the cross-validation
error rates can be simplified by the use of updating formulae similar to those dis-
cussed in PA-V Section 12.5 (Christensen, 2011, Section 13.5).

While resubstitution underestimates error rates, cross-validation may tend to
overestimate them. In standard linear models, if one thinks of the variance σ2 as the
error rate, resubstitution is analogous to estimating the variance with the naive esti-
mate SSE/n (also the normal theory MLE) whereas leave-one-out cross-validation
is analogous to estimating the variance with PRESS/n where PRESS is the pre-
dicted residual sum of squares discussed in PA-V Section 12.5 (Christensen, 2011,
Section 13.5). Using Jensen’s inequality it is not too difficult to show that
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E
[

SSE
n

]
< E

[
SSE

n− r(X)

]
= σ

2 ≤ E
[

PRESS
n

]
,

and, indeed, that on average the cross-validation estimate PRESS/n over estimates
σ2 by at least as much as the naive (resubstitution) method underestimates σ2.
While this is not really an issue in linear models, because we know how to find an
unbiased estimate of the error in linear models, this result calls in question the idea
of blindly using leave-one-out cross-validation to estimate error rates in allocation
problems and logistic regression. In fact, since the over-estimation and the under-
estimation seem to have similar orders of magnitude in standard linear models, one
might consider averaging the two estimates.

For large data sets, K group cross-validation seems to be more popular than leave-
one-out cross-validation. This involves (1) randomly dividing the data into K groups
and (2) fitting the model on K − 1 of those groups. Evaluate the error by (3) using
this fitted model to allocate the data for the one omitted group, and (4) comparing
these allocations to the true group memberships for the omitted group. This is done
K times, where each group is omitted one time. The overall estimates of error are
averages from the K different estimates. This approach requires quite a bit of data
to be effective. Leave-one-out cross-validation uses K = n but it seems popular to
pick K considerably smaller than n and, indeed, this seems likely to reduce the bias
problem of the previous paragraph.

When I first wrote this book (and contrary to the previous discussion), leave-one-
out cross-validation was considered to have less bias than the resubstitution method
but typically a considerably larger variance, cf. more recently Hastie et al. (2016,
Section 7.10). Hastie et al. also suggest that smaller values of K like K = 5 should
have less variability but possibly more bias.

If the number of observations is much larger than the number of parameters to be
estimated, resubstitution is often adequate for estimating the error rates. When the
number of parameters is large relative to the number of observations, the bias be-
comes unacceptably high. Under normal theory, the parameters involved are simply
the means and covariances for the populations. Thus, the key issue is the number of
variables used in the discrimination relative to the number of observations. (While
we have not discussed nonparametric discrimination, in the context of this discus-
sion nonparametric methods should be considered as highly parametric methods.)

The bootstrap (which was introduced in Section 5.5) has also been suggested as a
tool for estimating error rates. It often has both small bias and small variance, but it
is computationally intensive and handles large biases poorly. The interested reader
is referred to Efron (1983) and the report of the Panel on Discriminant Analysis,
Classification, and Clustering in Statistical Science (1989).
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10.5 Discussion

EXAMPLE 10.5.1. Cushing’s Syndrome Data.
Careful inspection of Table 9.1 and Figure 10.1 sheds light on both the QDA and
LDA procedures summarized in Tables 10.1 and 10.2. From Figure 10.1, there
seems to be almost no evidence that the covariance matrices of the three groups
are equal. (The spatial orientation of the three clusters of points look very different.)
Adenoma displays large variability in log(pregnanetriol), very small variability in
log(tetrahydrocortisone), and almost no correlation between the variables. Carci-
noma is almost the opposite. It has large variability in log(Tet) and small variability
in log(Preg). Carcinoma seems to have a negative correlation. Bilateral hyperplasia
displays substantial variability in both variables, with a positive correlation. These
conclusions are also visible from the estimated covariance matrices. Given that the
covariance structure seems to differ from group to group, linear discrimination does
surprisingly well when evaluated by resubstitution. As per references given later,
Linear Discriminant Analysis has been found to be rather robust. Of course, QDA
does a much better job for these data.

The fact that the assessments based on cross-validation are much worse than
those based on resubstitution is due largely to the existence of influential observa-
tions. The mean of group c and especially the covariance structure of group c are
dominated by the large value of log(Tet) for case 20. Case 20 is not misclassified by
the LDA because its effect on the covariance structure is minimized by the pooling
of covariance estimates over groups. In cross-validated QDA, its effect on the co-
variance of group c is eliminated, so case 20 seems more consistent with group b.
The large log(Preg) value of case 1 is also highly influential. With case 1 dropped
out and case 20 included, case 1 is more consistent with carcinoma than with ade-
noma. The reason that cases 8 and 9 are misclassified is simply that they tend to
be consistent with group a, see Figure 10.1. In examining Table 9.1, a certain sym-
metry can be seen involving cases 12 and 19. Because of case 19, when case 12 is
unassigned it looks more like group c than its original group. Similarly, because of
case 12, when case 19 is unassigned it looks more like group b than group c under
quadratic discrimination. Case 19 is essentially a toss-up under LDA. Cases 4 and
16 are misclassified under LDA because they involve very unusual data. Case 4 has
an extremely small pregnanetriol value, and case 16 has a very large tetrahydrocor-
tisone value for being part of the bilateral hyperplasia group.

In a data set this small, it seems unreasonable to drop influential observations. If
we cannot believe the data, there is little hope of being able to arrive at a reasonable
analysis. If further data bear out the covariance tendencies visible in Figure 10.1, the
better analysis is provided by quadratic discrimination. It must be acknowledged
that the error rates obtained by resubstitution are unreliable. They are generally
biased toward underestimating the true error rates and may be particularly bad for
these data. QDA simply provides a good description of the data. There is probably
insufficient data to produce really good predictions. 2
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To this point the methods explicitly discussed in this chapter both relate to the
normal distribution. If the true distributions f (y|i) are elliptically symmetric, both
the quadratic and linear methods work well. Moreover, the LDA method is generally
quite robust; it even seems to work quite well for discrete data. See Lachenbruch,
Sneeringeer, and Revo (1973), Lachenbruch (1975), and Hand (1983) for details.

The gold standard for discrimination seems to be, depending on one’s philosoph-
ical bent, maximum likelihood or Bayesian discrimination. But they are only the
gold standard if you know what the distributions are. If you know the densities,
those are the only functions of the data that need concern you.

Linear and quadratic discrimination for nonnormal data can be based on Maha-
lanobis distances rather than on densities. Since they are not based on densities, they
are ad hoc methods. Many of the binary regression methods discussed in the previ-
ous chapter provide direct estimates of π(i|y) that are (typically) inappropriate for
discrimination data but from which appropriate density estimates can be inferred,
cf. Section 9. Often the regression methods implicitly or explicitly perform discrim-
ination in higher dimensions. Instead of linear or quadratic discrimination on the
basis of, say, y = (y1,y2,y3)

′, they discriminate on the basis of some extended vec-
tor, for example, ỹ= (y1,y2,y3,y2

1,y
2
2,y

2
3,y1y2,y1y3,y2y3)

′. If you know the densities,
there is little point in expanding the dimensionality, because the density is the only
relevant function of the data. But if you do not know the densities, expanding the
dimensionality can be very useful. In particular, support vector machines typically
use expanded data. Of course, one could also perform traditional linear or quadratic
discrimination on the new ỹ and I suspect that, when practical, LDA and QDA dis-
crimination on ỹ will often be competitive with the newer methods. Personally, I am
more comfortable using expanded data in logistic (or log-linear) discrimination than
in LDA or QDA. (Clearly, the data in ỹ will not be multivariate normal!)

For the specific ỹ given above, any linear discrimination method based on ỹ′β∗
is equivalent to a quadratic discrimination based on y. This is not to say that LDA
applied to ỹ is QDA, but merely that this ỹ′β∗ is always a quadratic function of y. If
you know that the data y are normal, QDA on y is pretty nearly optimal. (For known
mean vectors and covariance matrices it is optimal.) And if the data are normal with
equal covariance matrices, those optimal quadratic discriminate functions reduce
to linear functions of y. But if y is normal, ỹ is certainly not normal and applying
traditional LDA methods to ỹ is unlikely to agree with QDA. Nonetheless, LDA on
ỹ is some form of quadratic discrimination.

10.6 Stepwise LDA

One interesting problem in allocation is the choice of variables. Including variables
that have no ability to discriminate among populations can only muddy the issues
involved. By analogy with multiple regression, one might expect to find advantages
to allocation procedures based solely on variables with high discriminatory power.
In multiple regression, methods for eliminating predictor variables are either di-
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rectly based on, or closely related to, testing whether exclusion of the variables
hurts the regression model. In other words, a test is performed of whether, given
the included variables, the excluded variables contain any additional information
for prediction. In LDA, methods for choosing discriminatory variables such as step-
wise discrimination are based on testing whether, given the included variables, the
excluded variables contain any additional information for discrimination among the
populations. We have noted that LDA is closely related to the multivariate one-way
ANOVA model. The background for tests of additional information in multivaratiate
linear models is beyond the scope of this book but is examined in ALM. Suffice it to
say that in this context they can be performed by testing a one-way ACOVA model
against the corresponding no-group-effects regression model. A one-way ACOVA
model can be viewed as simply a regression model that allows different intercepts
for different groups (not entirely different regressions for different groups), whereas
the corresponding no-group-effects regression model is the ACOVA model but with
only a single intercept.

EXAMPLE 10.6.1. We now illustrate the process of stepwise LDA using data
given by Lubischew (1962). He considered the problem of discriminating among
three populations of flea-beetles within the genus Chaetocnema. Six variables were
given: y1, the width, in microns, of the first joint of the first tarsus, y2, the same
measurement for the second joint, y3, the maximum width, in microns, of the aedea-
gus in the fore part, y4, the front angle, in units of 7.5 degrees, of the aedeagus, y5,
the maximum width of the head, in .01 millimeter units, between the external edges
of the eyes, and y6, the width of the aedeagus from the side, in microns. In addi-
tion, Lubischew mentions that r12 ≡ y1/y2 is very good for discriminating between
one of the species and the other two. The vector of dependent variables is taken as
y′ = (y1,y2,y3,y4,y5,y6,r12). stepwise LDA is carried out by testing for additional
information in the one-way MANOVA.

Evaluating the assumptions of a one-way MANOVA with three groups and seven
dependent variables is a daunting task. There are three 7× 7 covariance matrices
that should be roughly similar. To wit, there are

(7
2

)
= 21 bivariate scatter plots to

check for elliptical patterns. If the capability exists for the user, there are
(7

3

)
=

35 three-dimensional plots to check. There are 3(7) = 21 normal plots to evaluate
the marginal distributions and at least some linear combinations of the variables
should be evaluated for normality. Of course, if y1 and y2 are multivariate normal,
the constructed variable r12 cannot be. However, it may be close enough for our
purposes.

If the assumptions break down, it is difficult to know how to proceed. After any
transformation, everything needs to be reevaluated, with no guarantee that things
will have improved. It seems like the best bet for a transformation is some model-
based system similar to the Box and Cox (1964) method (see Andrews, Gnanade-
sikan, and Warner, 1971 or ANREG).

For the most part, in this example, we will cross our fingers and hope for the best.
In other words, we will rely on the robustness of the procedure. While it is certainly
true that the P values used in stepwise LDA should typically not be taken at face
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value (this is true for almost any variable selection technique), the P values can be
viewed as simply a one-to-one transformation of the test statistics. Thus, decisions
based on P values are based on the relative sizes of corresponding test statistics. The
test statistics are reasonable even without the assumption of multivariate normality
so, from this point of view, multivariate normality is not a crucial issue.

Although the properties of formal tests can be greatly affected by the invalidity
of the MANOVA assumptions, crude but valid evaluations can still be made based
on the test statistics. This is often the most that we have any right to expect from
multivariate procedures. For univariate models, Scheffé (1959, Chapter 10) gives an
excellent discussion of the effects of invalid assumptions on formal tests.

The three species of flea-beetles considered will be referred to as simply A, B,
and C and indexed as 1, 2, and 3, respectively. There are 21 observations on species
A with

ȳ′1· = (183.1,129.6,51.2,146.2,14.1,104.9,1.41)

and

S1 =



147.5 66.64 18.53 15.08 −5.21 14.21 0.406
66.64 51.25 11.55 2.48 −1.81 3.09 −0.044
18.53 11.55 4.99 5.85 −0.524 5.49 0.017
15.08 2.48 5.85 31.66 −0.969 15.63 0.090
−5.21 −1.81 −0.524 −0.969 0.791 −1.99 −0.021
14.21 3.09 5.49 15.63 −1.99 38.23 0.078
0.406 −0.044 0.017 0.090 −0.021 0.078 0.0036


.

Species B has 31 observations with

ȳ′2· = (201.0,119.3,48.9,124.6,14.3,81.0,1.69)

and

S2 =



222.1 63.40 22.60 30.37 4.37 29.47 0.926
63.40 44.16 7.91 11.82 0.337 11.47 −0.100
22.60 7.91 5.52 5.69 0.005 4.23 0.075
30.37 11.82 5.69 21.37 −0.327 11.70 0.088
4.37 0.337 0.005 −0.327 1.21 1.27 0.029

29.47 11.47 4.23 11.70 1.27 79.73 0.085
0.926 −0.100 0.075 0.088 0.029 0.085 0.009


.

For species C, there are 22 observations with

ȳ′3· = (138.2,125.1,51.6,138.3,10.1,106.6,1.11)

and
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S3 =



87.33 44.55 20.53 19.17 −0.736 15.29 0.301
44.55 73.04 15.71 14.02 −0.390 21.23 −0.267
20.53 15.71 8.06 8.21 −0.294 4.97 0.027
19.17 14.02 8.21 2.16 −0.502 7.93 0.027
0.736 −0.390 −0.294 −0.502 0.944 0.277 −0.002

15.29 21.23 4.97 7.93 0.277 34.25 −0.061
0.301 −0.267 0.027 0.027 −0.002 −0.061 0.0046


.

The pooled estimate of the covariance is a weighted average of S1, S2, and S3, with
approximately 50% more weight on S2 than on the other estimates.

Although, typically, backward elimination is to be preferred to forward selection
in stepwise procedures, it is illustrative to demonstrate forward selection on these
data. We will begin by making a very rigorous requirement for inclusion: variables
will be included if the P value for adding them is 0.01 or less.

The first step in forward selection consists of performing the univariate one-way
ANOVA F tests for each variable.

Step 1: Statistics for entry, df = 2,71.
Variable Fobs Pr[F > Fobs]

y1 160.339 0.0001
y2 12.499 0.0001
y3 9.659 0.0002
y4 134.353 0.0001
y5 129.633 0.0001
y6 101.314 0.0001
r12 351.292 0.0001

The P values are all sufficiently small to warrant inclusion of the variables. By far
the largest F statistic, and thus the smallest P value, is for r12, so this is the first
variable included for use in discrimination. Note that r12 is the variable constructed
by Lubischew.

The second and all subsequent steps of the procedure involve performing a one-
way analysis of covariance for each variable not yet included. For the second step,
the sole covariate is r12, and a test is made for treatment effects in the analysis
of covariance model. For the dependent variables y1 through y6, the results are as
follows.

Step 2: Statistics for entry, df = 2,70.
Variable Fobs Pr[F > Fobs]

y1 9.904 0.0002
y2 8.642 0.0004
y3 6.386 0.0028
y4 87.926 0.0001
y5 30.549 0.0001
y6 28.679 0.0001

The largest F statistic is for y4, and the corresponding P value is less than 0.01, so
y4 is included for discrimination.
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At the third step, both r12 and y4 are used as covariates in a one-way analysis of
covariance. Again, the F tests for treatment differences are performed.

Step 3: Statistics for entry, df = 2, 69.
Variable Fobs Pr[F > Fobs]

y1 2.773 0.0694
y2 3.281 0.0436
y3 6.962 0.0018
y5 24.779 0.0001
y6 3.340 0.0412

Variable y5 is included for discrimination. Note the large difference between the
F statistic for y5 and that for the other variables. There is an order-of-magnitude
difference between the abilities of the r12, y4, and y5 to discriminate and the abilities
of the other variables. Considering the questionable validity of formal tests, this is
an important point. It should also be mentioned that this conclusion is based on
one sequence of models. There is a possibility that other sequences would lead to
different conclusions about the relative importance of the variables. In fact, it would
be desirable to check all models or, better yet, have an algorithm to identify the best
models.

Step 4 simply adds weight to our conclusions of the previous paragraph. In per-
forming the analysis of covariance with three covariates, none of the variables con-
sidered have the very large F statistics seen earlier.

Step 4: Statistics for entry, df = 2,68.
Variable Fobs Pr[F > Fobs]

y1 1.985 0.1453
y2 2.567 0.0842
y3 3.455 0.0372
y6 3.359 0.0406

Any rule that terminates forward selection when all P values exceed .0371 will stop
the selection process at Step 4. In particular, our stringent stopping rule based on P
values of 0.01 terminates here.

In practice, it is much more common to use a stopping rule based on P values of
0.05, 0.10, or 0.15. By any of these rules, we would add variable y3 and continue
checking variables. This leads to Step 5 and the corresponding F statistics.

Step 5: Statistics for entry, df = 2,67.
Variable Fobs Pr[F > Fobs]

y1 7.040 0.0017
y2 8.836 0.0004
y6 3.392 0.0395

Surprisingly, adding y3 has changed things dramatically. While the F statistic for
y6 is essentially unchanged, the F values for y1 and y2 have more than tripled. Of
course, we are still not seeing the huge F statistics that were encountered earlier, but
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apparently one can discriminate much better with y3 and either y1 or y2 than would
be expected from the performance of any of these variables individually. This is
precisely the sort of thing that is very easily missed by forward selection procedures
and one of the main reasons why they are considered to be poor methods for model
selection. Forward selection does have advantages. In particular, it is cheap and it is
able to accommodate huge numbers of variables.

The stepwise procedure finishes off with two final steps. Variable y2 was added
in the previous step. The results from Step 6 are as follows.

Step 6: Statistics for entry, df = 2,66.
Variable Fobs Pr[F > Fobs]

y1 0.827 0.4418
y6 3.758 0.0285

Variable y6 is added if our stopping rule is not extremely stringent. This leaves just
y1 to be evaluated.

Step 7: Statistics for entry, df = 2,65.
Variable Fobs Pr[F > Fobs]

y1 0.907 0.4088

By any standard y1 would not be included. Of course, r12 is the ratio of y1 and y2, so
it is not surprising that there is no need for all three variables. A forward selection
procedure that does not include r12 would simply include all of the variables.

We have learned that r12, by itself, is a powerful discriminator. The variables
r12, y4, and y5, when taken together, have major discriminatory powers. Variable y3,
taken together with either y1 or y2 and the previous three variables, may provide
substantial help in discrimination.

Finally, y6 may also contribute to distinguishing among the populations. Most of
these conclusions are visible from the Table 10.3 that summarizes the results of the
forward selection.

Table 10.3 Summary of Forward Selection

Variable
Step Entered Fobs Pr[F > Fobs]

1 r12 351.292 0.0001
2 y4 87.926 0.0001
3 y5 24.779 0.0001
4 y3 3.455 0.0372
5 y2 8.836 0.0004
6 y6 3.758 0.0285

It is also of interest to see the results of a multivariate analysis of variance for
all of the variables included at each step. For example, after Step 3, variables r12,
y4, and y5 were included for discrimination. The likelihood ratio test statistic for no
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group effects in the one-way MANOVA is Λ = 0.0152 which is a very small, hence
very significant, number. (The likelihood ratio test statistic in this context is usually
referred to as Wilks’ Lambda.) Table 10.4 lists the results of such tests for each step
in the process. Based on their P values, all of the variables added had substantial
discriminatory power. Thus, it is not surprising that the Λ statistics in Table 10.4
decrease as each variable is added.

Table 10.4 Forward Stepwise Discrimination: MANOVA Tests

Variable LRTS P =
Step Entered Λobs Pr[Λ < Λobs]

1 r12 0.09178070 0.0001
2 y4 0.02613227 0.0001
3 y5 0.01520881 0.0001
4 y3 0.01380601 0.0001
5 y2 0.01092445 0.0001
6 y6 0.00980745 0.0001

To perform backward elimination you begin with the seven ACOVA models that
use one of the 7 variables as the dependent variable with the other 6 acting as pre-
dictors. Drop the variable that gives the smallest F statistic for group differences.
Using the remaining 6 variables, fit six ACOVA models each with 5 predictors vari-
ables wherein the first dropped variable is not considered for inclusion in any way.
Proceed until all the F statistics for group differences are large.

In practice, decisions about the practical discriminatory power of variables
should not rest solely on the P values. After all, the P values are often unreliable.
Other methods, such as the graphical methods presented in the next section, should
be used in determining the practical usefulness of results based on multivariate nor-
mal distribution theory. 2

10.7 Linear Discrimination Coordinates

As mentioned earlier, one is typically interested in the clarity of classification. This
can be investigated by examining the posterior probabilities, the entire likelihood
function, or the entire set of Mahalanobis distances. It is done by computing the
allocation measures for each element of the data set. The allocation measure can
be estimated either by the entire data set or the data set having deleted the case
currently being allocated. To many people, the second, cross-validatory, approach is
more appealing.

An alternative approach to examining the clarity of discrimination is through the
use of linear discrimination coordinates. This approach derives from the work of
Fisher (1938) and Rao (1948, 1952). It consists of redefining the coordinate system
in Rq in such a way that the different treatment groups in the one-way ANOVA have,
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in some sense, maximum separation in each coordinate. The clarity of discrimina-
tion can then be examined visually by inspecting one-, two-, or three-dimensional
plots of the data. In these plots, cases are identified by their populations. If the new
coordinate system is effective, observations from the same population should be
clustered together and distinct populations should be well-separated.

It is standard practice to redefine the coordinate system by taking linear combi-
nations of the original variables. It is also standard practice to define the new coor-
dinate system sequentially. In particular, the first coordinate is chosen to maximize
the separation between the groups. The second coordinate maximizes the separation
between the groups given that the second linear combination is uncorrelated with
the first. The third maximizes the separation given that the linear combination is
uncorrelated with the first two. Subsequent coordinates are defined similarly. In the
following discussion, we assume a constant covariance matrix for the t groups. It
remains to define what precisely is meant by “maximum separation of the groups.”
Details are given in ALM. Here we just hit the highlights.

Recall that with equal covariance matrices, the data available in a discriminant
analysis fit a multivariate one-way ANOVA,

y′i j = µ
′
i + ε

′
i j,

thus

E =
t

∑
i=1

Ni

∑
j=1

(yi j − ȳi·)(yi j − ȳi·)
′

and

H =
t

∑
i=1

Ni(ȳi·− ȳ··)(ȳi·− ȳ··)′ .

Also, define

H∗ =
t

∑
i=1

(ȳi·− ȳ··)(ȳi·− ȳ··)′ .

The linear discrimination coordinates are based on eigenvectors associated with E
and either H or H∗. We will examine the use of H in detail. For reasons discussed in
ALM, some people prefer to use H∗.

For any vector y = (y1, . . . ,yq)
′, the first linear discrimination coordinate is de-

fined by
y′a1,

where the vector a1 is chosen so that the univariate one-way ANOVA model

y′i ja1 = µi + εi j.

has the largest possible F statistic for testing equality of group effects. Intuitively,
the linear combination of the variables that maximizes the F statistic must have
the greatest separation between groups. A one-dimensional plot of the n elements
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of y′i ja1 shows the maximum separation between groups that can be achieved in a
one-dimensional plot.

The second linear discrimination coordinate maximizes the F statistic for testing
groups in

y′i ja2 = µi + εi j.

subject to the requirement that the estimated covariance between the y′i ja1s and
y′i ja2s is zero. The covariance condition is specifically,

a′1Sa2 = 0.

A one-dimensional plot of the y′i ja2s illustrates visually the separation in the
groups. Even more productively, the n ordered pairs that are y′i j(a1,a2) can be plot-
ted to illustrate the discrimination achieved by the first two linear discrimination
coordinates.

For h = 3, . . . ,r(H) the hth linear discriminant coordinate is

y′ah,

where ah maximizes the F statistic for testing groups in

y′i jah = µi + εi j

but is maximized subject to the covariance condition

a′hSai = 0 i = 1,2, . . . ,h−1 .

Unfortunately, the discrimination coordinates are not uniquely defined. Given a
vector ah, any scalar multiple of ah also satisfies the requirements listed earlier. One
way to avoid the nonuniqueness is to impose another condition. The most com-
monly used extra condition is that a′hSah = 1. Alas, even this does not quite solve
the uniqueness problem because −ah has the same properties as ah. ALM shows
that the linear discrimination coordinate vectors ai, i = 1, . . . ,q are eigenvectors of
E−1H and that simple visual inspection of the transformed data is appropriate.

EXAMPLE 10.7.1. One-Way Analysis of Variance with Repeated Measures
A study was conducted to examine the effects of two drugs on heart rates. Thirty
women were randomly divided into three groups of ten. An injection was given to
each person. Depending on their group, women received either a placebo, drug A,
or drug B indexed as i = 1,2,3, respectively. Repeated measurements of their heart
rates were taken beginning at two minutes after the injection and at five minute
intervals thereafter. Four measurements were taken on each individual, thus we have
t = 3 and q = 4. The data are given in Table 10.5. They are from ALM where they
were examined for multivariate normality and equal covariance matrices. The data
seem to satisfy the assumptions.

The linear discrimination coordinates are defined by a matrix of eigenvectors of
E−1H. One choice is



276 10 Discrimination and Allocation

Table 10.5 Heart rate data.

DRUG
Placebo A B

TIME 1 2 3 4 1 2 3 4 1 2 3 4
SUBJECT

1 80 77 73 69 81 81 82 82 76 83 85 79
2 64 66 68 71 82 83 80 81 75 81 85 73
3 75 73 73 69 81 77 80 80 75 82 80 77
4 72 70 74 73 84 86 85 85 68 73 72 69
5 74 74 71 67 88 90 88 86 78 87 86 77
6 71 71 72 70 83 82 86 85 81 85 81 74
7 76 78 74 71 85 83 87 86 67 73 75 66
8 73 68 64 64 81 85 86 85 68 73 73 66
9 76 73 74 76 87 89 87 82 68 75 79 69

10 77 78 77 73 77 75 73 77 73 78 80 70

A =


0.739 0.382 0.581 0.158

−0.586 −0.323 −0.741 0.543
−0.353 −0.234 0.792 −0.375

0.627 −0.184 −0.531 −0.218

 .
The columns of A define four new data sets y′i ja1, y′i ja2, y′i ja3, and y′i ja4 but re-
member that eigenvectors are not uniquely defined. Different software often give
different eigenvectors but (when the eigenvalues are unique) they only vary by a
scale factor, so the differences typically do not matter (unless you are trying to re-
produce existing results). If we perform an analysis of variance on each variable, we
get F statistics for discriminating between groups. All have 2 degrees of freedom in
the numerator and 27 in the denominator.

Variable F
Ya1 74.52
Ya2 19.47
Ya3 0.0
Ya4 0.0

As advertised, the F statistics are nonincreasing. The first two F statistics clearly
establish that there are group differences in the first two coordinates. The last two
F statistics are zero because with three groups there are 2 degrees of freedom for
treatments, so H is a 4× 4 matrix of rank 2. Only two of the linear discrimination
coordinates can have positive F statistics. This issue is discussed in more detail in
ALM.

The big advantage of linear discrimination coordinates is that they allow us to
plot the data in ways that let us visualize the separation in the groups. Figure 10.3
shows two plots that display the first discrimination coordinate values for each pop-
ulation. The R plotting software placed the populations in different positions. Note
that the degree of separation is substantial and about the same for all three groups.
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The edges of the middle group are close to the edges of the other groups. The
placebo has one observation that is consistent with drug A.

1.0 1.5 2.0 2.5 3.0

−5
0

5

Drug Index

YA
1

A B Placebo

−5
0

5

YA
1

Fig. 10.3 Plots of the heart rate data in the first linear discrimination coordinate.

Figure 10.4 is similar to Figure 10.3 except that it plots the data in the second
discrimination coordinate. Note that in the second coordinate it is very difficult to
distinguish between drugs A and B. The placebo is separated from the other groups,
but there is more overlap around the edges than was present in the first coordinate.

Figure 10.5 is a scatter plot of the data in the first two discrimination coordinates.
Together, the separation is much clearer than in either of the individual coordinates.
There is still one observation from drug A that is difficult to distinguish from the
placebo group but, other than that, the groups are very well-separated. That the
one observation from drug A is similar to the placebo is a conclusion based on the
Euclidean distance of the point from the centers of the groups for drug A and the
placebo. It is not clear that Euclidean distances are appropriate, but that is shown in
ALM. 2

10.8 Linear Discrimination

In linear models we consider a vector of predictor variables x and linear models x′β .
The key feature of a linear model is that x′β is a linear function of the predictor
variables, whatever the predictor variables may be. The predictor variables are not
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Fig. 10.4 Plots of the heart rate data in the second discrimination coordinate.
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Fig. 10.5 Scatter plot of the heart rate data in the first two linear discrimination coordinates.
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restricted to be a set of measurements originally taken on a collection of observa-
tional units. Chapters 4 and 8 examined the large variety of transformations that can
be applied to the original measurements that make linear models far more flexible.

In this chapter, our predictor variables have been denoted y, rather than x. We
have examined the traditional linear and quadratic discrimination methods LDA and
QDA. We have pointed out that both of these methods are linear in the sense that
they involve linear combinations of predictor variables, it is just that quadratic dis-
crimination includes squares and cross-products of the original measurements as
additional predictors. The key aspect of LDA and QDA is not that they involve linear
or quadratic functions of the original measurements but that the methods assume
that the original data have a multivariate normal distribution and involve estimat-
ing appropriate normal densities. If the data really are multivariate normal, no other
procedure will give much of an improvement on LDA or QDA. If the data are not
multivariate normal, nor easily transformed to multivariate normal, alternative dis-
crimination procedures should be able to improve on them.

Obviously one could apply LDA to a y vector that includes not only the original
measurements but also squares and cross-products (or other transformations) and
LDA would probably give reasonable results, even though such a y vector could
not possibly have a multivariate normal distribution. In the next section we focus
on linear discrimination methods that do not assume multivariate normality. These
methods include both logistic discrimination and support vector machines (SVMs).
All such methods admit as predictor variables, transformations of the original mea-
surements.

EXAMPLE 10.8.1. Figure 10.6 contains data of a form that have often been used
to sell support vector machines because neither LDA nor QDA can distinguish the
two populations whereas SVMs separate them easily. Such a claim is comparing
apples with oranges. It is true that the most naive forms of LDA and QDA cannot
separate them. Nor can the most naive forms of logistic or probit regression separate
them. But the most naive form of SVMs cannot separate them either. If you trans-
form the data into polar coordinates, you get the data representation in Figure 10.7.
It is trivial to separate the data in Figure 10.7 with a (nearly) vertical line and pretty
much any standard method will do it. The differences among the methods are that
they may pick different nearly vertical lines to do the separation. And in this case,
how much do you really care which line you use?

Obviously, no line is going to separate the data in Figure 10.6. To separate the
groups with a line, you have to transform the data. The main difference is that com-
puter programs for SVMs have a selection of transformation methods built into them
by allowing the specification of an appropriate reproducing kernel. Logistic regres-
sion programs could also allow the specification of an appropriate reproducing ker-
nel, but typically they do not. For the more traditional methods, like LDA and QDA,
it seems that the transformations need to be specified explicitly. (Even though you
can apply LDA and QDA to transformed data, it is rarely a good idea unless the
transformation is designed to make the data more multivariate normal.) 2
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Fig. 10.6 Doughnut data.
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Fig. 10.7 Doughnut data in polar coordinates.
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10.9 Modified Binary Regression

Binary discrimination shares the same predictive goal as binary regression but it
involves using a different type of data and therefore requires outside information
about the prevalences of the groups within the overall population. Instead of sam-
pling from the joint distribution of the dependent and predictor variables (or the
conditional distribution of the dependent variable given the predictor variables),
discrimination involves sampling from the conditional distribution of the predictor
variables given the “dependent” variable. With a different data collection scheme,
binary regression methods need to be modified before they are appropriate for dis-
crimination data. Binary regression and discrimination are restricted to t = 2 pop-
ulations. ANREG-II, Section 21.9 uses log-linear models to illustrate the extension
of logistic discrimination to the full t = 3 Cushing’s Syndrome data.

To be consistent with the notation of this chapter, we need to change the binary
regression notation used in Chapter 9. Here, y is a q dimensional vector of predictor
variables (rather than the d−1 vector x of Chapter 9) and we will now use z (rather
than the y of Chapter 9) to denote group membership. To predict z from y we need
to envision a joint distribution for (z,y′). Call the density f (z,y). There are some
easily resolved mathematical issues related to z being discrete and y typically being
continuous. Denote the marginal density (prevalence) of z as π(z), the conditional
density of z given y as π(z|y), the marginal density of y as f (y), and the conditional
density of y given z as f (y|z). Thus far we have treated z as fixed, not random, and
we wrote i in place of z. In binary regression and discrimination we denote the two
z groups as 0 and 1. (Thus far the two groups have been labeled 1 and 2.)

Since we are focused on predicting z, in both regression [sampling from either
f (z,y) or π(z|y)] and discrimination [sampling from f (y|z)], our goal is to estimate
π(z|y). (A sample from the joint distribution f (z,y) can be viewed as a sample
from either conditional scheme.) Regression data gives direct information on π(z|y).
Discrimination data gives direct information on f (y|z) but only indirect information
on π(z|y). Using Bayes’ Theorem with only two groups, the posterior probabilities
in (10.1.4) become

π(1|y) = f (y|1)π(1)
f (y|1)π(1)+ f (y|0)π(0)

; π(0|y) = 1−π(1|y).

If we know the prevalence distribution π(z), discrimination data allow us to estimate
f (y|z) and, indirectly, π(z|y).

Bayes theorem also determines the posterior odds for seeing z = 1,

O(1|y)≡ π(1|y)
π(0|y)

=
f (y|1)
f (y|0)

π(1)
π(0)

. (1)

Note that

π(1|y) = O(1|y)
1+O(1|y)

.
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We will see that binomial regression methods applied to discrimination data are eas-
ily adjusted to give appropriate posterior odds. The formulae for logistic regression
is particularly nice. (There is no obvious way of making the necessary adjustment
for SVMs.)

Define the q+ 1 dimensional row vectors x′ ≡ (1,y′) and β ′ = (β0,β
′
∗) so that

x′β = β0 + y′β∗. Further combining the notation of this chapter with the binary
regression notation, the probability of seeing an observation in group 1 given the
predictors is defined interchangeably as

π(1|y)≡ p(y)≡ p(x).

Binary generalized linear models further assume p(y) = F(x′β ) for a known, invert-
ible cdf F . The densities f (z,y), f (y|z), and f (y) bear no relationship to the cdf F
used in specifying binary generalized linear models.

Binary regression assumes (conditionally) independent observations

zh ∼ Bin[1, p(yh)]; h = 1, . . . ,n

with the associated likelihood function, cf. Chapter 9.1. The likelihood function for
discrimination data is

n

∏
h=1

f (yh|zh)≡
1

∏
i=0

Ni

∏
j=1

f (yi j|i),

where there are Ni observations yi j on group i. Christensen (1997) argues that the
logistic regression likelihood function can be viewed as a partial likelihood function
for discrimination data. (The argument is actually for the log-linear model that is
equivalent to the logistic model.) This allows one to use binary regression methods
to estimate the densities f (y|i) associated with discrimination data but it requires a
correction for the prevalences implicitly assumed when treating discrimination data
as if it were regression data.

Unconditional data constitute a random sample of (z,y′) values. Clearly, one can
estimate the marginal probabilities (prevalences) of the groups from unconditional
data. The obvious estimate of π(1) is the number of observed values z = 1 divided
by the sample size, N1/(N1 +N0).

If the ys are preselected and one samples from z|y, i.e. the usual regression sam-
pling scheme, there is no statistical basis for estimating π(1) without knowing the
marginal density f (y). If the yh were sampled from the appropriate distribution for y,
it would make (zh,y′h) a random sample from the appropriate joint distribution, and
zh a random sample with the prevalence probabilities, which makes N1/(N1 +N0)
the obvious estimate of π(1). Any estimation scheme that puts equal weight on the
losses associated with each observation is implicitly treating the yhs as a random
sample and using N1/(N1 +N0) as an estimate of π(1). All of our binary estima-
tion schemes in Chapter 9 used equal weights, so in particular using N1/(N1 +N0)
as an estimate of π(1) is implicit in SVMs. (In Chapter 9 we had little interest in
estimating π(1).)
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There is no possible way to estimate π(1) from discrimination data. A value
for π(1) has to be obtained from some source outside the data before it becomes
possible to estimate π(1|y). If we want to use regression estimates computed from
discriminant data, we need to correct for the implicit use of N1/(N1 +N0) as an
estimate of π(1).

In discriminating between two groups, the maximum likelihood allocation can
be based on the relative densities (likelihood ratio) f (y|1)/ f (y|0). We now derive
the likelihood ratio estimate, say, f̂ (y|1)/ f̂ (y|0) from some arbitrary fitted binary
regression estimates π̃(1|y)≡ p̃(y)≡ p̃(x) that incorporate the inappropriate preva-
lence π̃(1) = N1/(N1 +N0). From these we further obtain an estimate π̂(1|y) of
π(1|y) for an appropriate prior π(1).

The binary regression estimated posterior odds are

Õ(y) =
π̃(1|y)
π̃(0|y)

=
f̂ (y|1)
f̂ (y|0)

π̃(1)
π̃(0)

=
f̂ (y|1)
f̂ (y|0)

N1

N0
.

These induce the estimated relative likelihoods

f̂ (y|1)
f̂ (y|0)

=
π̃(1|y)
π̃(0|y)

N0

N1
.

To obtain the actual estimated posterior probabilities π̂(i|y) for discrimination using
the actual prevalences π(i), use the estimated odds

Ô(y)≡ π̂(1|y)
π̂(0|y)

=
f̂ (y|1)
f̂ (y|0)

π(1)
π(0)

=
π̃(1|y)
π̃(0|y)

N0

N1

π(1)
π(0)

.

The discrimination odds Ô give discrimination probabilities through π̂ = Ô/(1+Ô).
When fitting a logistic discrimination from a logistic regression estimate β̃ =

(β̃0, β̃
′
∗)

′, the odds take a particularly nice form. Since

log
[
Õ(y)

]
≡ x′β̃ ,

we get

log
[
Ô(y)

]
= x′β̃ − log

(
N1

N0

)
+ log

(
π(1)
π(0)

)
= y′β̃∗+

[
β̃0 − log

(
N1

N0

)
+ log

(
π(1)
π(0)

)]
= x′β̂

where

β̂
′ ≡
(

β̃0 − log
(

N1

N0

)
+ log

(
π(1)
π(0)

)
, β̃

′
∗

)
.

This leads to
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π̂(1|y) = ex′β̂
/[

1+ ex′β̂
]
.

Logistic discrimination defines a hyperplane of y values by x′β̂ ≡ β̂0 + y′β̂∗ = 0
which corresponds to 0.5 = π̂(1|y). If x′β̂ > 0, π̂(1|y) > 0.5. If x′β̂ < 0, π̂(1|y) <
0.5. The logistic regression model also defines a hyperplane of y values defined
by 0.5 = p̃(x′β̃ ) which is equivalent to 0 = x′β̃ or −β̃0 = y′β̃∗. Because β̂∗ = β̃∗,
these hyperplanes are parallel in q dimensions, but unless the prevalences π(i) are
proportional to the sample sizes Ni, the regression and discrimination hyperplanes
are distinct.

There are several ways of generalizing logistic discrimination to handle t > 2.
Christensen (1997, 2015) focuses on the fact that logit/logistic models are actually
log-linear models and that the appropriate log-linear model can easily be generalized
to handle more than two populations. In particular, he illustrates for t = 3 how to turn
estimated odds into allocations. Without probability estimates, SVMs often rely on
performing all of the

(t
2

)
binary discrimination problems and “voting” for a winning

allocation. Voting could also be used when probability estimates exist, not that I
would do that.

EXAMPLE 10.9.1. Figures 10.8, 10.9, and 10.10 are discrimination versions of
the regression Figures 9.1, 9.3, and 9.5. Figures 10.8, 10.9, and 10.10 have dropped
the probit regression curves and replaced them with LDA and QDA as appropriate.
They have also replaced the logistic regression curves with logistic discrimination
curves. The discrimination curves are all based on π(1) = 0.5. The SVM curves are
unchanged from the previous plots because I do not know how to make the necessary
adjustments.

In Figure 9.1 the logistic and probit regression lines were almost on top of each
other. The logistic discrimination line in Figure 10.8 is parallel but lower than the
regression line. This is consistent with the fact that putting equal prior probabilities
(prevalences) on the groups makes the carcinoma group more probable relative to
the prior probabilities proportional to sample sizes built into the logistic regression
line which makes bilateral twice as probable as carcinoma. The LDA line turns out
to be nearly parallel to the logistic discrimination line but is even lower. From the
limited amount of data, there is no reason to think that the covariance matrices of
the two groups are equal; the spreads of the points are not at all similar. Despite this,
the LDA does not do a bad job on these data. The SVM is unchanged.

In Figure 9.3 the logistic and probit regression parabolas were almost on top of
each other. The logistic discrimination parabolas in Figure 10.9 should have the
same shape as the logistic regression parabolas but move closer to the bilateral
group. In fact, I cannot see any difference between the logistic regression and lo-
gistic discrimination parabolas for these data. The QDA parabolas have a radically
different shape than the logistic parabolas but, although they do not completely sep-
arate the two groups, they do not do a bad job. The SVM is unchanged and the
curve that is visible on the plot has a different shape from both other methods. Fig-
ure 10.10 is the same as Figure 10.9 except that it replaces the default SVM with
the one from Figure 9.5 that has a reduced tuning parameter (increased cost). 2
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Fig. 10.8 Logistic discrimination, LDA, and an SVM: Cushing’s Syndrome data (subset).
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Fig. 10.9 Quadratic model logistic discrimination, QDA, and an SVM: Cushing’s Syndrome data
(subset).
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Fig. 10.10 Quadratic model logistic discrimination, QDA, and an SVM with reduced tuning pa-
rameter: Cushing’s Syndrome data (subset).

My code for constructing these figures also contains code for producing tables of
estimated posterior probabilities for logistic discrimination that are similar to those
presented in Chapter 9 and in Christensen (1997, 2015). I personally find the lack
of probability estimates a substantial disadvantage to SVMs. For binary regression
data, although I do not see any advantages to SVMs over binomial regression (other
than software advantages), SVMs clearly give reasonable answers. But for discrim-
ination data, unless you think that using prevalences proportional to sample sizes is
reasonable, SVM will not give reasonable answers.

10.10 Exercises

EXERCISE 10.10.1. Consider the data of Example 10.3.1. Suppose a person has
heart rate measurements of y = (84,82,80,69)′.
(a) Using normal theory linear discrimination, what is the estimated maximum like-
lihood allocation for this person?
(b) Using normal theory quadratic discrimination, what is the estimated maximum
likelihood allocation for this person?
(c) If the two drugs have equal prior probabilities but the placebo is twice as proba-
ble as the drugs, what is the estimated maximum posterior probability allocation?
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(d) What is the optimal allocation using only the first two linear discrimination co-
ordinates?

EXERCISE 10.10.2. In the motion picture Diary of a Mad Turtle the main charac-
ter, played by Richard Benjamin Kingsley, claims to be able to tell a female turtle by
a quick glance at her carapace. Based on the data of Exercise 10.6.1, do you believe
that it is possible to accurately identify a turtle’s sex based on its shell? Explain.
Include graphical evaluation of the linear discrimination coordinates.

EXERCISE 10.10.3. Using the data of Exercise 10.6.3, do a stepwise LDA to
distinguish among the thyroxin, thiouracil, and control rat populations based on
their weights at various times. To which group is a rat with the following series of
weights most likely to belong: (56,75,104,114,138)?

EXERCISE 10.10.4. Lachenbruch (1975) presents information on four groups of
junior technical college students from greater London. The information consists of
summary statistics for the performance of the groups on arithmetic, English, and
form relations tests that were given in the last year of secondary school. The four
groups are Engineering, Building, Art, and Commerce students. The sample means
are:

Engineering Building Art Commerce
Arithmetic (y1) 27.88 20.65 15.01 24.38
English (y2) 98.36 85.43 80.31 94.94
Form Relations (y3) 33.60 31.51 32.01 26.69
Sample Size 404 400 258 286

The pooled estimate of the covariance matrix is

Sp =

55.58 33.77 11.66
33.77 360.04 14.53
11.66 14.53 69.21

 .
What advice could you give to a student planning to go to a junior technical college
who just achieved scores of (22,90,31)′?

EXERCISE 10.10.5. Suppose the concern in Exercise 10.10.4 is minimizing the
cost to society of allocating students to the various programs of study. The great
bureaucrat in the sky, who works on the top floor of the tallest building in Whitehall,
has determined that the costs of classification are as follows:

Cost Optimal Study Program
Engineering Building Art Commerce

Allocated Engineering 1 2 8 2
Study Building 4 2 7 3
Program Art 8 7 4 4

Commerce 4 3 5 2
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Evaluate the program of study that the bureaucrat thinks is appropriate for the stu-
dent from Exercise 10.10.4.

EXERCISE 10.10.6. Show that the Mahalanobis distance is invariant under affine
transformations z = Ay+b of the random vector y when A is nonsingular.

EXERCISE 10.10.7. Let y be an observation from one of two normal populations
that have means of µ1 and µ2 and common covariance matrix Σ . Define λ ′ = (µ1 −
µ2)

′Σ−1.
(a) Show that, under linear discrimination, y is allocated to population 1 if and only
if

λ
′y−λ

′ 1
2
(µ1 +µ2)> 0.

(b) Show that if y is from population 1,

E(λ ′y)−λ
′ 1
2
(µ1 +µ2)> 0

and if y is from population 2,

E(λ ′y)−λ
′ 1
2
(µ1 +µ2)< 0.

EXERCISE 10.10.8. Consider a two group allocation problem in which the prior
probabilities are π(1) = π(2) = 0.5 and the sampling distributions are exponential,
namely

f (y|i) = θie−θiy, y ≥ 0.

Find the optimal allocation rule. Assume a cost structure where c(i| j) is zero for
i = j and one otherwise. The total probability of misclassification for an alloca-
tion rule is precisely the Bayes risk of the allocation rule under this cost struc-
ture. Let δ (y) be an allocation rule. The frequentist risk for the true population j is
R( j,δ ) =

∫
c(δ (y)| j) f (y| j)dy and the Bayes risk is r(p,δ ) = ∑

t
j=1 R( j,δ )π( j). See

Berger (1985, Section 1.3) for more on risk functions. Find the total probability of
misclassification for the optimal rule.

EXERCISE 10.10.9. Suppose that the distributions for two populations are bivari-
ate normal with the same covariance matrix. For π(1)= π(2)= 0.5, find the value of
the correlation coefficient that minimizes the total probability of misclassification.
The total probability of misclassification is defined in Exercise 10.10.8.



Chapter 11
Dimension Reduction

Abstract This chapter introduces the theory and application of principal compo-
nents, classical multidimensional scaling, and factor analysis. Principal components
seek to effectively summarize high dimensional data as lower dimensional scores.
Multidimensional scaling gives a visual representation of points when all we know
about the points are the distances separating them. Classical multidimensional scal-
ing is seen to be an application of principal components when the distances are
standard Euclidean distances. Ideas similar to principal components, i.e. the sin-
gular value decomposition for a non-square matrix, can but directly applied to a
data matrix to compress the data. Principal components and factor analysis are of-
ten used for similar purposes but their theoretical background is quite different. The
linear discrimination coordinates of the previous chapter are sometimes considered
a form of dimension reduction.

Suppose that observations are available on q variables. When q is quite large it
can be very difficult to grasp the relationships among the many variables. It might be
convenient if the variables could be reduced to a more manageable number. Clearly,
it is easier to work with 4 or 5 variables than with, say, 25. (In the era of big data,
perhaps I should be arguing that 400 or 500 variables are easier to work with than
2500.) Of course, one cannot reasonably expect to get a substantial reduction in
dimensionality without some loss of information. We want to minimize that loss.
Assuming that a reduction in dimensionality is desirable, how can it be performed
efficiently? One reasonable method is to choose a small number of linear combina-
tions of the variables based on their ability to reproduce the entire set of variables.
In effect, we want to create a few new variables that are best able to predict the
original variables. Principal component analysis (PCA) finds linear combinations
of the original variables that are best linear predictors of the full set of variables.
This predictive approach to dimensionality reduction seems intuitively reasonable.
We emphasize this interpretation of principal component analysis rather than the
traditional motivation of finding linear combinations that account for most of the
variability in the data. We have previously used principal components as a tool for
finding alternative estimates in Section 4.1.

289
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More recently, independent component analysis (ICA) has become a popular
method of data reduction. Hyvärinen, Karhunen, and Oja (2001) introduce the sub-
ject as both a generalization of principal components and as a generalization of
factor analysis. (The latter seems more appropriate to me.) The R (package and)
program fastICA begins by computing the principal components and obtains the
“independent components” from them.

Principal components are similar in spirit to the linear discrimination coordi-
nates discussed in Chapter 10. Principal components form a new coordinate system
for Rq. These coordinates are defined sequentially so that they are uncorrelated but,
subject to being uncorrelated, they maximize the ability to predict the original de-
pendent variables. In practice, only the first few coordinates are used to represent
the entire vector of dependent variables.

Section 1 presents several alternative derivations for theoretical principal compo-
nents including both predictive and nonpredictive motivations. Section 2 examines
the use of sample principal components. Section 3 introduces classical multidimen-
sional scaling (CMDS), which seeks to plot the locations of cases when one only
knows the distances between the cases. The reason for examining CMDS here is
their close relation to PCA. Sections 4 and 5 introduce some nonstatistical methods
used for compressing data matrices. The final section examines factor analysis. Al-
though many people consider principal component analysis a special case of factor
analysis, in fact their theoretical bases are quite different.

11.1 The Theory of Principal Components

There are several equivalent definitions of principal components. We begin with the
predictive definition. Principal components are a sequence of linear combinations
of the variable vector y. Each linear combination has maximum capability to predict
the full set of variables subject to the condition that each combination is uncorrelated
with the previous linear combinations.

What does it mean to be a linear combination that has maximum capability to
predict the full set of variables? Details of best linear prediction can be found in
PA Chapter 6 and, more extensively, in ALM. Briefly, when predicting a random
vector y = (y1, . . . ,yq)

′ from another random vector x = (x1, . . . ,xp−1)
′, the best

linear predictor (BLP) is a linear function of x that minimizes E{[y− f (x)]′[y−
f (x)]}. This is the expected squared distance between the vector we want to predict
and what we are using to predict it with. In particular if we let

E(y) = µy E(x) = µx
Cov(y) = Vyy Cov(x) = Vxx

and
Cov(y,x) =Vyx =V ′

xy,

then the best linear predictor, also called the linear expectation, is
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Ê(y|x)≡ µy +B′(x−µx),

where B(p−1)×q is a solution
VxxB =Vxy.

When Vxx is nonsingular, B =V−1
xx Vxy and Ê(y|x)≡ µy +VyxV−1

xx (x−µx).
In this chapter there is little need for consideration of predictor variables x and

we change notation to
µ ≡ E(y); Σ ≡ Cov(y).

For derivations of the following results see ALM. For a given scalar random variable
a′y, the best linear predictor of y is

Ê(y|a′y) = µ +Cov(y,a′y)[Var(a′y)]−1(a′y−a′µ)

= µ +Σa[a′Σa]−1a′(y−µ),

but we want to find the best choice of a, the one whose BLP does the best job of
predicting y. Call this best choice a1. It is some work to show that the best choice
a1 is any eigenvector corresponding to the largest eigenvalue of Σ .

Next we want to find a linear combination a′2y so that a′2y does the best job of pre-
dicting y subject to the condition that this second linear combination is uncorrelated
with the first, i.e.,

0 = Cov(a′2y,a′1y) = a′2Σa1.

It turns out that the best choice of a2 is any eigenvector corresponding to the second
largest eigenvalue of Σ . Here I have assumed that the largest and second largest
eigenvalues are different, but there is little problem if they are not.

We continue in this way. For h = 1, . . . ,q we find a linear combination a′hy so
that a′hy does the best job of predicting y subject to the condition that this linear
combination is uncorrelated with the previous ones, i.e.,

0 = Cov(a′hy,a′jy) = a′hΣa j, j = 1, . . . ,h−1.

(I have described this process with an implicit assumption that the q eigenvalues of
Σ are distinct. If the largest eigenvalue has multiplicity greater than 1, the second
principal component is determined by any eigenvector for the largest eigenvalue that
is orthogonal to [uncorrelated with] the first chosen eigenvector. If the multiplicity
is greater than 2, the third is determined by any eigenvector orthogonal to the first 2.
Similar ideas continue to apply for any eigenvalues with multiplicities greater than
1.)

Now suppose we consider the first r of these principal component variables,
a′1y, . . . ,a′ry and consider a different set of linear combinations b′1y, . . . ,b′ry. We can
also show that the joint prediction of y based on a′1y, . . . ,a′ry is at least as good as the
joint prediction of y based on b′1y, . . . ,b′ry. In other words, Ê(y|a′1y, . . . ,a′ry) does at
least as good a job of predicting y as Ê(y|b′1y, . . . ,b′ry) does. The second approach to
principal components consists of maximizing the joint predictive ability. There are
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lots of good choices for selecting good joint predictors, but you cannot do any better
than the sequentially defined principal components.

A third approach to principal components is based on trying to maximize the
variability in linear combinations. In other words, pick a1 to maximize

Var(a′1y) = a′1Σa1.

It has never been intuitive to me why you would want to maximize the variance.
It is somewhat intuitive that maximizing the variance is needed for getting good
prediction. In any case, as it stands maximizing the variance does not make a lot
of sense because Var(10a′1y) = 100Var(a′1y), so without some other conditions you
can never maximize the variance. Suffice it to say that after specifying appropriate
conditions, this approach gives the same linear combinations a′jy as the sequential
prediction approach.

Finally, principal components can be related to ellipsoids. If y ∼ N(µ,Σ), the
set of points that have constant likelihood (the same value of the density) fall on
ellipsoids defined by Σ−1. Figure 11.1 illustrates a density isobar for

y ∼ N
([

1
2

]
,

[
1.0 0.9
0.9 2.0

])
.

The major and minor axes are denoted a1 and a2, respectively. One can show that the
axes of the ellipse are determined by the eigenvectors of Σ , so they also determine
the sequential best predictors.

11.2 Sample Principal Components

In practice, the covariance matrix Σ is unknown, so the principal components can-
not be computed. However, if a sample y1, . . . ,yn of observations on y is available,
sample principal components can be computed from either the sample covariance
matrix

S =
n

∑
i=1

(yi − ȳ·)(yi − ȳ·)′
/
(n−1)

or the sample correlation matrix

R = D−1/2SD−1/2,

where S = [si j] and D = Diag(s11, . . . ,sqq). Most often, the correlation matrix seems
to be the appropriate choice.

Choose a1, . . . ,aq as an orthonormal set of eigenvectors corresponding to the
eigenvalues φ1 ≥ ·· · ≥ φq of S or R, respectively. Write A = [a1, . . . ,aq] and, for
r ≤ q, Ar = [a1, . . . ,ar]. A vector w, rewritten in the principal component coordinate
system, is A′w. Write the entire data set as
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Fig. 11.1 Two-dimensional normal density isobar (µ = (1,2)′, σ11 = 1.0, σ12 = 0.9, σ22 = 2.0)
with major and minor axes.

Y =

y′1
...

y′n

 .
Using S, the data in the principal component coordinate system are

YA.

If principal components are based on the correlation matrix R, the rescaled data arez′1
...

z′n

= Z = Y D−1/2

and the data in the principal component coordinate system are
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ZA .

The point of principal component analysis is to reduce dimensionality. If the
smallest ordered eigenvalues of S, φr+1, . . . ,φq are small, a random vector y with
covariance matrix S can be predicted well by A′

ry. If the entire data set is transformed
in this way, a principal component observation matrix is obtained,

YAr = [Ya1, . . . ,Yar], (1)

where

Yai =

a′iy1
...

a′iyn

 .

The elements of the vector Yai consist of the ith principal component applied to each
of the n observation vectors. The principal component observation matrix combines
these vectors for each of the first r principal components.

The analysis of the data can be performed on the principal component observa-
tions with a minimal loss of information. This includes various plots and formal
statistical techniques for the analysis of a sample from one population.

If you want to predict back the actual data you need to estimate the BLP. The
estimate of Ê(yi|A′

ryi) is

ŷi = ȳ·+SAr[A′
rSAr]

−1A′
r(yi − ȳ·)

= ȳ·+ArD(λ(r))[D(λ(r))]
−1A′

r(yi − ȳ·)

= ȳ·+ArA′
r(yi − ȳ·),

where λ(r) is the vector of the largest r eigenvalues of S. So for the entire data matrix,

Ŷ = Jȳ′·+[I − (1/n)Jn
n ]YArA′

r = (1/n)Jn
nY +[I − (1/n)Jn

n ]YArA′
r. (2)

We will see in Section 4 that this involves performing a singular value decomposi-
tion on the n×q mean adjusted data matrix [I − (1/n)Jn

n ]Y .

11.2.1 The Sample Prediction Error

A question that arises immediately is just how much information is lost by using r
principal components rather than the entire data set. The value

100
q

∑
j=r+1

φ j

/ q

∑
j=1

φ j

is the percentage of the maximum prediction error left unexplained by Ê(yi|A′
ryi),

i = 1, . . . ,n. Alternatively,
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100
r

∑
j=1

φ j

/ q

∑
j=1

φ j

is the percentage of the maximum prediction error accounted for by A′
ry.

11.2.2 Using Principal Components

Principal components are designed to reduce dimensionality. They provide a number
r < q of linear combinations a′iy that maximize the ability to linearly predict the
original random q-vector y. Thus they are appropriate to use when you are taking a
random sample of ys.

Although the analysis of data can be performed on the principal component ob-
servations with a minimal loss of information, why accept any loss of information?
Two possibilities come to mind. First, if q is very large, an analysis of all q variables
may be untenable. If one must reduce the dimensionality before any work can pro-
ceed, principal components are a reasonable place to begin. However, it should be
kept in mind that principal components are based on linear combinations of y and
linear predictors of y. If the important structure in the data is nonlinear, principal
components can totally miss that structure.

A second reason for giving up information is when you do not trust all of the
information. In prediction theory the underlying idea is that a vector (y,x′) would
be randomly sampled from some population and we would seek to predict y based
on x. Principal component regression (cf. ANREG or PA) can be used to reduce the
dimensionality of x. But PA argues that using the principal components are an ef-
fective way to treat collinearity, even if you only have a sample from y|x. The main
idea was that, with errors in the model matrix, directions corresponding to small
eigenvalues are untrustworthy. In the present context, we might say that any statis-
tical relationships depending on linear combinations that do not provide substantial
power of prediction are questionable.

As a general principle, to reduce the dimensionality of data successfully you
need to know ahead of time that it can be reduced. Whether it can be reduced de-
pends on the goal of the analysis. The work involved in figuring out whether data
reduction can be accomplished often negates the value of doing it. The situation is
similar to that associated with Simpson’s paradox in contingency table analysis (see
Christensen, 1997, Section 3.1; Christensen, 2014). Valid inferences cannot always
be obtained from a collapsed contingency table. To know whether valid inferences
can be obtained, one needs to analyze the full table first. Having analyzed the full
table, there may be little point in collapsing to a smaller-dimensional table. Often, it
would be convenient to reduce a data set using principal components and then do a
MANOVA on the reduced data. Unfortunately, about the only way to find out if that
approach is reasonable is to examine the results of a MANOVA on the entire data
set.
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Principal components are well designed for data reduction within a given pop-
ulation. If there are samples available from several populations with the same co-
variance matrix, then the optimal data reduction will be the same for every group
and can be estimated using the pooled covariance matrix. Note that this essentially
requires doing a one-way MANOVA prior to the principal component analysis. If
an initial MANOVA is required, you may wonder why one would bother to reduce
the data having already done a significant analysis on the unreduced set.

In particular, my friend Ed Bedrick has pointed out that if y is sampled from more
than one population, reducing the dimensionality, without having first accounted
for the different populations, can cause you to loose the ability to distinguish the
populations. With two normal populations having means µ1 and µ2, if the vector
µ1 −µ2 is orthogonal to the eigenvectors that you are using to define your principal
components, then there may be no information in your principal components capa-
ble of distinguishing the populations. For a two-dimensional illustration using one
principal component see Figure 11.2. In fact, even if µ1 −µ2 is merely close to per-
pendicular with a1, . . . ,ar you may lose most of the information for distinguishing
the populations. (These ideas are explored in Exercise 14.3 of ALM-III.) Basically,
the only way to tell that this is not happening is to do the one-way MANOVA prior
to doing the principal component analysis. Again, there may be no point in doing
principal components after doing MANOVA. Jolliffe (2002, Section 9.1) discusses
this problem in more detail.

Data reduction is also closely related to a more nebulous idea, the identification
of underlying factors that determine the observed data. For example, the vector y
may consist of a battery of tests on a variety of subjects. One may seek to explain
scores on the entire set of tests using a few key factors such as general intelligence,
quantitative reasoning, verbal reasoning, and so forth. It is common practice to ex-
amine the principal components and try to interpret them as measuring some sort
of underlying factor. Such interpretations are based on examination of the relative
sizes of the elements of ai. Although factor identification is commonly performed,
it is, at least in some circles, quite controversial.

EXAMPLE 11.2.1. One of the well-traveled data sets in multivariate analysis is
from Jolicoeur and Mosimann (1960) on the shell (carapace) sizes of painted turtles,
cf. Table 11.1. Aspects of these data have been examined by Morrison (2004) and
Johnson and Wichern (2007). The analysis is based on 103/2 times the natural logs
of the height, width, and length of the shells. Because all of the measurements are
taken on a common scale, it may be reasonable to examine the sample covariance
matrix rather than the sample correlation matrix. The point of this example is to
illustrate the type of analysis commonly used in identifying factors. No claim is
made that these procedures are reasonable.

For 24 males, the covariance matrix is

S =

6.773 6.005 8.160
6.005 6.417 8.019
8.160 8.019 11.072

 .
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Fig. 11.2 Two populations indistinguishable in the first principal component.

Table 11.1 Carapace dimensions.

Female Female Male Male
Length Width Height Length Width Height Length Width Height Length Width Height

98 81 38 138 98 51 93 74 37 116 90 43
103 84 38 138 99 51 94 78 35 117 90 41
103 86 42 141 105 53 96 80 35 117 91 41
105 86 42 147 108 57 101 84 39 119 93 41
109 88 44 149 107 55 102 85 38 120 89 40
123 92 50 153 107 56 103 81 37 120 93 44
123 95 46 155 115 63 104 83 39 121 95 42
133 99 51 155 117 60 106 83 39 125 93 45
133 102 51 158 115 62 107 82 38 127 96 45
133 102 51 159 118 63 112 89 40 128 95 45
134 100 48 162 124 61 113 88 40 131 95 46
136 102 49 177 132 67 114 86 40 135 106 47
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The eigenvalues and corresponding eigenvectors for S are as follows.

φi 23.303 0.598 0.360
a1 a2 a3

103/2 ln(height) 0.523 0.788 −0.324
103/2 ln(width) 0.510 −0.594 −0.622
103/2 ln(length) 0.683 −0.159 0.713

Recall that eigenvectors are not uniquely defined. Eigenvectors of a matrix B cor-
responding to φ (along with the zero vector) constitute the null space of B− φ I.
Often, the null space has rank 1, in which case every eigenvector is a multiple of
every other eigenvector. If we standardize the eigenvectors of S so that each has a
maximum element of 1, we get the following eigenvectors.

a1 a2 a3

103/2 ln(height) 0.764 1 −0.451
103/2 ln(width) 0.747 −0.748 −0.876
103/2 ln(length) 1 −0.205 1

φ 23.30 0.60 0.36

The first principal component accounts for 100(23.30)/(23.30 + 0.60 + 0.36) = 96%
of the predictive capability (variance) of the variables. The first two components ac-
count for 100(23.30 + 0.60)/(24.26) = 98.5% of the predictive capability (variance)
of the variables. All the elements of a1 are positive and approximately equal, so a′1y
can be interpreted as a measure of overall size. The elements of a2 are a large posi-
tive value for 103/2 ln(height), a large negative value for 103/2 ln(width), and a small
value for 103/2 ln(length). The component a′2y can be interpreted as a comparison
of the ln(height) and the ln(width). Finally, if one considers the value a31 =−0.451
small relative to a32 = −0.876 and a33 = 1, one can interpret a′3y as a comparison
of width versus length.

Interpretations such as these necessarily involve rounding values to make them
more interpretable. The interpretations just given are actually appropriate for the
three linear combinations of y, b′1y, b′2y, and b′3y that follow.

b1 b2 b3

103/2 ln(height) 1 1 0
103/2 ln(width) 1 −1 −1
103/2 ln(length) 1 0 1

The first interpreted component is

b′1y = 103/2 ln [(height)(width)(length)]

= 103/2 ln [volume],

where the volume is that of a box. It is interesting to note that in this particular
example, the first principal component can be interpreted without changing the co-
efficients of a1.
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a′1y = 103/2[0.764ln(height)+0.747ln(width)+ ln (length)]

= 103/2 ln[(height)0.764(width)0.747(length)] .

The component a′1y can be thought of as measuring the log volume with adjustments
made for the fact that painted turtle shells are somewhat curved and thus not a per-
fect box. Because the first principal component accounts for 96% of the predictive
capability, to a very large extent, if you know this pseudovolume measurement, you
know the height, length, and width.

In this example, we have sought to interpret the elements of the vectors ai. Alter-
natively, one could base interpretations on estimates of the correlations Corr(yh,a′iy).
The estimates of Corr(yh,a′1y) are very uniform, so they also suggest that a1 is an
overall size factor. 2

Linear combinations b′iy that are determined by the effort to interpret principal
components will be called interpreted components. Although it does not seem to
be common practice, it is interesting to examine how well interpreted components
predict the original data and compare that to how well the corresponding principal
components predict the original data. As long as the interpreted components are lin-
early independent, a full set of q components will predict the original data perfectly.
Any nonsingular transformation of y will predict y perfectly because it amounts to
simply changing the coordinate system. If we restrict attention to r components, we
know from the theoretical results on joint prediction that the interpreted components
can predict no better than the actual principal components.

In general, to evaluate the predictive capability of r interpreted components, write
Br = [b1, . . . ,br] and compute

n

∑
i=1

[yi − Ê(y|B′
ryi)]

′[yi − Ê(y|B′
ryi)] = (n−1)tr{S−SBr(B′

rSBr)
−1B′

rS}.

One hundred times this value divided by (n−1)∑
q
i=1 φi = (n−1)tr(S) gives If this

is not much greater than the corresponding percentage for the first r principal com-
ponents, the interpretations are to some extent validated.

EXAMPLE 11.2.2. As explained in ALM, the percentage of the predictive error
unaccounted for by using the first two interpreted components in Example 11.2.1 is

100tr[S−SB2(B′
2SB2)

−1B′
2S]

tr[S]
=

100(24.26−23.88)
24.26

=
100(0.38)

24.26
= 1.6.

Using the first two principal components,
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100tr[S−SA2(A′
2SA2)

−1A′
2S]

tr[S]
=

100
3

∑
j=1

φ j −
2

∑
j=1

φ j

3

∑
j=1

φ j

=
100(0.36)

24.26
= 1.5.

Thus, in this example, there is almost no loss of predictive capability by using the
two interpreted components rather than the first two principal components. 2

There is one aspect of principal component analysis that is often overlooked. It
is possible that the most interesting components are those that have the least predic-
tive power. Such components are taking on very similar values for all cases in the
sample. It may be that these components can be used to characterize the population.
Jolliffe (2002) has a fairly extensive discussion of uses for the last few principal
components.

EXAMPLE 11.2.3. The smallest eigenvalue of S is 0.36 and corresponds to the
linear combination

a′3y = 103/2 [−0.451ln(height)−0.876ln(width)+ ln (length)] .

This linear combination accounts for only 1.5% of the variability in the data. It is
essentially a constant. All male painted turtles in the sample have about the same
value for this combination. The linear combination is a comparison of the ln-length
with the ln-width and ln-height. This might be considered as a measurement of the
general shape of the carapace. One would certainly be very suspicious of any new
data that were supposedly the shell dimensions of a male painted turtle but which
had a substantially different value of a′3y. On the other hand, this should not be
thought of as a discrimination tool except in the sense of identifying whether data
are or are not consistent with the male painted turtle data. We have no evidence that
other species of turtles will produce substantially different values of a′3y. 2

11.3 Classical Multidimensional Scaling

Multidimensional Scaling starts with a matrix containing the squared distances be-
tween a set of objects and produces a plot of the objects that reflects those distances.
There are a number of methods for doing this but we restrict our attention to Clas-
sical Multidimensional Scaling (CMDS) because it reproduces the (mean corrected)
sample principal component scores from only the squared distance matrix.

Consider a matrix D that consists of the squared distances between n objects.
To obtain an r dimensional graphical representation of the objects, find eigenvectors
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a1, . . . ,ar of [I−(1/n)JJ′]D [I−(1/n)JJ′] corresponding to its r largest eigenvalues.
Create the matrix

Ar ≡ [a1, · · · ,ar]≡

a′1
...

a′n


and in r dimensions, plot the n vectors ai to represent the n objects.

EXAMPLE 11.3.1. I computed the distances between the 21 observations in the
Cushing’s Syndrome data of Table 9.1 and applied CMDS to the squared distances.
The result appears in Figure 11.3. The plot is just a recentering and rotation of the
data appearing in Figure 10.1. (The data are rotated about 45 degrees counterclock-
wise.) This occurs because, as we will show, the 2-dimensional CMDS method is
essentially just plotting the first two principal components of the data. Because the
original data were two dimensional, the first two principal components contain all
the information in the data, so we just get a recentered, rotated plot of the data. 2
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Fig. 11.3 Classical multidimensional scaling: Cushing syndrome data.

Starting with a data matrix

Y =

y′1
...

y′n


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that contains observations on n objects, we construct the squared Euclidian distance
matrix D for which the i j element di j is the squared distance between yi and y j. In
particular,

di j = (yi − y j)
′(yi − y j).

We then establish that we can find the mean corrected sample principal components
directly from D . CMDS consists of plotting the mean corrected sample principal
components.

Multiplying out the squared distances gives

di j ≡ (yi − y j)
′(yi − y j) = y′iyi + y′jy j −2y′iy j.

The squared distances are functions of the inner products and all of the inner prod-
ucts are given by

YY ′ =


y′1y1 y′1y2 · · · y′1yn
y′2y1 y′2y2 · · · y′2yn

...
...

. . .
...

y′ny1 y′ny2 · · · y′nyn

 .
Create a vector consisting of the squared lengths of the vectors of observations,

d ≡ (y′1y1,y′2y2, · · · ,y′nyn)
′.

It is not hard to see that the squared Euclidean distance matrix is

D = dJ′+ Jd′−2YY ′. (1)

To relate this to principal components, we need to relate D to the sample covariance
matrix

S ≡ 1
n−1

Y ′[I − (1/n)JJ′]Y =
1

n−1
{
[I − (1/n)JJ′]Y

}′{
[I − (1/n)JJ′]Y

}
.

The key mathematical fact in relating squared distances to principal components
is that if λ and b are an eigenvalue and eigenvector for B′B, then λ and Bb are an
eigenvalue and eigenvector for BB′. In particular, if φ and a are an eigenvalue and
eigenvector of (n−1)S, then φ and{

[I − (1/n)JJ′]Y
}

a (2)

are an eigenvalue and eigenvector of{
[I − (1/n)JJ′]Y

}{
[I − (1/n)JJ′]Y

}′
= [I − (1/n)JJ′]YY ′[I − (1/n)JJ′]. (3)

The formula in (2) is just a mean corrected principal component.
We can show

[I − (1/n)JJ′]
(
YY ′) [I − (1/n)JJ′] =

−1
2

[I − (1/n)JJ′]D [I − (1/n)JJ′].
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Since S and (n−1)S have the same eigenvectors and the same ordering of the eigen-
values, we can compute the mean corrected principal components from the squared
distance matrix.

While Example 11.3.1 is informative about what CMDS is doing, in practice
multidimensional scaling is often used in situations where only a measure of dis-
tance between objects is available; not the raw data from which the distances were
computed.

EXAMPLE 11.3.2. Lawley and Maxwell (1971) and Johnson and Wichern (1988)
examine data on the examination scores of 220 male students. The dependent vari-
able vector consists of test scores on (Gaelic, English, history, arithmetic, algebra,
geometry). The correlation matrix is

R =


1.000 0.439 0.410 0.288 0.329 0.248
0.439 1.000 0.351 0.354 0.320 0.329
0.410 0.351 1.000 0.164 0.190 0.181
0.288 0.354 0.164 1.000 0.595 0.470
0.329 0.320 0.190 0.595 1.000 0.464
0.248 0.329 0.181 0.470 0.464 1.000

 .

We are going to treat the 6 tests as objects and use the correlation matrix as a mea-
sure of similarity between the objects. In particular, we used

D = 1−R

as our squared distance measure with results displayed in the top panel of Fig-
ure 11.4. The bottom panel of Figure 11.4 contains the CMDS representation when
the distance is measured as 1 minus the squared correlation between the variables.
(This does not involve multiplying the matrix R times itself.) 2

11.4 Data Compression

A black and white photograph can be digitized as a matrix of pixels where the
elements of the matrix are gray scale intensities. Such a matrix, say Y , might be
1000×800 requiring us to store 800,000 numerical values. The object of this section
is simply to find an approximation

Yn×q
.
=Wn×rHr×q; r ≤ min{n,q}

that allows us to store fewer values while still retaining enough of the original in-
formation to reconstruct Y in a useful fashion. For the black and white photo with
800,000 pixel intensities it might be enough just to store, say, (1000× 50)+ 50+
(50×800) = 90,050 values. Such decompositions are not unique. If you take an r
dimensional orthonormal matrix O, it is clear that
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Fig. 11.4 Classical multidimensional scaling: Examination data.

WH = (WO)(O′H)≡ W̃ H̃.

There is nothing inherently statistical about the approximation in equation (1) or,
indeed, in this entire section or the next (except for pointing out a relationship to the
statistical procedure of principal components). The statistical version of this prob-
lem is know as Factor Analysis and is treated in the last section of this chapter. The
following subsection presents an exact decomposition that can be used as the basis
for compression (approximate decompositions). The second subsection presents an
iterative procedure based on least squares.

11.4.1 The Singular Value Decomposition

The generalized Singular Value Decomposition, Proposition A.8.7, can be applied
to an n×q data matrix Y . Let Y be an n×q matrix with rank s. Then Y can be written
as

Y =ULV ′,

where U is n× s, L is s× s, V ′ is s× p, and

L ≡ Diag(λ j).
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The λ js are the positive square roots of the positive eigenvalues (singular values) of
Y ′Y and YY ′. The columns of V are s orthonormal eigenvectors of Y ′Y correspond-
ing to the positive eigenvalues with

Y ′YV =V L2,

and the columns of U are s orthonormal eigenvectors of YY ′ with

YY ′U =UL2.

When computing these things it is important to remember that you should compute
the eigenvalues and eigenvectors of either Y ′Y or YY ′, which ever has smaller di-
mensions, but not compute both. The eigenvalues and eigenvectors for the larger
matrix can be determined from those of the smaller matrix. If you know V , take
U = YV L−1. If you know U , take V = Y ′UL−1

To solve the 1000× 800 data matrix compression problem, typically s = q so
consider the 800 λ j values from the Theorem. Many of them will be small, some
number of them will be larger. If there are, say, r = 50 larger ones, then use the
50 corresponding columns of U and rows of V ′ to create new matrices Ũ , Ṽ ′, L̃ and
Ỹ = ŨL̃Ṽ ′. If Ỹ does a good job of approximating Y you can save Ũ , L̃, and Ṽ ′ rather
than the original Y using fewer resources. The number r of λ j values needed for a
good approximation depends on the particular application. Note that

YṼ =ULV ′Ṽ =UL
[

Ir
0

]
=U

[
L̃
0

]
= ŨL̃,

which implies that
Ỹ = ŨL̃Ṽ ′ = YṼṼ ′.

Obviously, once you have the matrices Ũ , L̃, and Ṽ , you have wide latitude in using
them to define matrices W and E for approximating Y .

In equation (11.2.2) we pointed out that the estimated BLP of the data matrix Y
based on r principal components is

Ŷ = Jȳ′·+[I − (1/n)Jn
n ]YArA′

r = (1/n)Jn
nY +[I − (1/n)Jn

n ]YArA′
r.

The second term of Ŷ is just the singular value decomposition data compression of
[I − (1/n)Jn

n ]Y based on the r largest eigenvalues.

11.4.2 Iterative Least Squares

The iterative least squares algorithm is based on alternating least squares estimates.
Using notation similar to the previous subsection, think about fitting a multivariate
linear model Y =WH + e by first fixing W to estimate H and then by using that H
as fixed to estimate a new W . Using the subscript j to indicate the jth column of
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matrices, compute each H(n+1)
j to be the least squares estimate of H j from minimiz-

ing [Yj −W (n)H j]
′[Yj −W (n)H j], j = 1, . . . ,q. Similarly, looking at the ith rows of

matrixes, now take w(n+1)
i to be the least squares estimate of wi from minimizing

[yi −H(n+1)′wi]
′[yi −H(n+1)′wi].

For pure data compression problems, like the black and white photograph, this
seems like a perfectly reasonable method although no advantages over the singular
value decomposition leap out at me. However, the method seems less appropriate for
many statistical applications. In statistical applications the rows of Y are typically
taken as observations on independent individuals whereas the entries of a particular
row, say, y′i are taken to have some correlation matrix, say, Σq×q that is the same for
every individual. Using least squares to find approximations to random vectors yi
with correlated components has little statistical justification.

For r = 1 this may be the same as partial least squares regression where W0 is
a vector of measurements that you want to relate to Y . Which was developed as an
alternative to principal components regression and a generalization of the NIPALS
algorithm.

11.4.3 NIPALS

NIPALS- Nonlinear iterative partial least squares turns an orthogonal basis for X ′X
into an orthonormal basis of eigenvectors.

Take b̃0. b0 = b̃0∥b̃0∥−1 , b̃n+1 = (X ′X)bn, bn+1 = b̃n∥b̃n∥−1. If bn → b, then
∥Xb∥2b = X ′Xb and ∥b∥ = 1. Define λb ≡ ∥Xb∥2. In the descriptions I have seen
they add another step b̂n+1 = Xbn and b̃n+1 = X ′b̂n+1∥b̂n∥−1 that can obviously be
consolidated.

Now take c̃0 ⊥ b, c0 = c̃0∥c̃0∥−1 , c̃n+1 =(X ′X−λbbb′)cn, cn+1 = c̃n∥c̃n∥−1. Note
that an easy inductive proof gives that if cn ⊥ b, then cn+1 ⊥ b. If cn → c, then c ⊥ b,
so ∥Xc∥2c = (X ′X −λbbb′)c = X ′Xc and ∥c∥= 1 and define λc ≡ ∥Xc∥2. Although
in theory the c js are all orthogonal to b, in computational practice one might need
to use Gram-Schmidt on them to deal with accumulating round off errors.

To find the next one, use the matrix X ′X −λbbb′−λccc′.

11.4.4 Partial Least Squares

11.5 Nonnegative Data Compression

Sometimes when Y contains only nonnegative numbers (as in the black and white
photo example) it is desired to write

Yn×q =Wn×rHr×q, (1)



11.5 Nonnegative Data Compression 307

where both W and H also only contain nonnegative numbers.
It is by no means clear that this can be done at all, and if it can be done, at least

some times it will not be unique. If you take an r dimensional orthonormal matrix
O, it is clear that

WH = (WO)(O′H)≡ W̃ H̃.

While there is no assurance that WO and O′H will contain only nonnegative num-
bers, because WO rotates the rows of W and O′H rotates the columns of H, if W
and H contain only positive numbers, we can always choose a rotation that is small
enough to keep all the numbers positive. Hence for positive Y , W , and H we know
the decomposition is not unique.

Much like the previous section, our real interest is in finding matrices W and H
that make equation (1) approximately correct, rather than finding a true solution.

11.5.1 Iterative Proportional Fitting

This method is often called the multiplicative update rule but iterative proportional
fitting seems as apt a name and the algorithm is quite similar to the iterative pro-
portional fitting sometimes used for fitting log-linear models, cf. Christensen (1997,
Section 3.3).

If Y =WH, then we have equality of the r×q matrices

W ′Y =W ′WH. (2)

Write the i j element of these matrices as

{W ′Y}i j = {W ′WH}i j.

Remembering that W ′Y , W ′WH, and H all have the same dimensions and writing
H = [hi j] (and W = [wi j]), it is immediately obvious that

hi j = hi j
{W ′Y}i j

{W ′WH}i j

and that a similar argument based on the n× r matrix equality

Y H ′ =WHH ′ (3)

gives

wi j = wi j
{Y H ′}i j

{WHH ′}i j
.

This is the basis for the algorithm. Start with any initial guesses for W and H,
say W (0) and H(0) that contain nonnegative numbers. (Off the top of my head I
would probably pick W (0) = Jr

n and H(0) = Jq
r .) Update the initial guesses with the



308 11 Dimension Reduction

equations

h(n+1)
i j = hi j

{W (n)′Y}i j

{W (n)′W (n)H(n)}i j
(4)

w(n+1)
i j = w(n)

i j
{Y H(n+1)′}i j

{W (n)H(n+1)H(n+1)′}i j
. (5)

If the current versions W (n) and H(n) have all nonnegative entries, the multipliers
are nonnegative, so the updated versions of W (n+1) and H(n+1) also nonnegative. If
the algorithm converges, it will converge to values of W and H that satisfy equations
(2) and (3), not equation (1). Equation (2) ensures that

MWY = MWWH =WH

and equation (3) ensures that

Y MH ′ =WHMH ′ =WH,

so
MWY MH ′ =WH.

The question then becomes whether

MWY MH ′
.
=Y =MWY MH ′+(In−MW )Y MH ′+MWY (Iq−MH ′)+(In−MW )Y (Iq−MH ′)

is a sufficiently useful approximation.
Different starting matrices W (0) and H(0) (even with the same value of r) may

converge to different choices of W and H giving different approximations to Y . I
also know of no reason the algorithm has to converge.

11.5.2 Nonnegative Iterative Least Squares

The idea of this is simple enough but the execution is much less so. When executing
the least squares estimation schemes for partial least squares in Subsection 11.4.2,
simply add in a constraint that the least squares estimates must be nonnegative num-
bers. Easy to say; hard to do. The unrestricted least squares estimates have closed
form solutions so the partial least squares algorithm is fairly straight forward. Find-
ing least squares estimates subject to linear inequality constraints is a much more
difficult thing to do, cf. ALM-III, Appendix A.3.

Using, as before, the subscript j to indicate the jth column of matrices, com-
pute each H(n+1)

j to be the least squares estimate of H j from minimizing [Yj −
W (n)H j]

′[Yj −W (n)H j], j = 1, . . . ,q but now the parameters and estimates are sub-
ject to the linear inequality constraints h(n+1)

i j ≥ 0. Similarly, looking at the ith rows

of matrixes, now take w(n+1)
i to be the least squares estimate of wi from minimiz-
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ing [yi −H(n+1)wi]
′[yi −H(n+1)wi], i = 1, . . . ,n subject to the linear inequality con-

straints w(n+1)
i j ≥ 0. Again, the linear inequality constraints make the problem of

finding the least squares estimates much harder.

11.6 Factor Analysis

Principal components are often used in an attempt to identify factors underlying
the observed data. There is also a formal modeling procedure called factor analysis
that is used to address this issue. The model looks similar to the multivariate linear
models of Appendix C.1 but several of the assumptions are changed and, most im-
portantly, you don’t get to see the matrix of predictor variables. It is assumed that
the observation vectors yi are uncorrelated and have E(yi) = µ and Cov(yi) = Σ . For
n observations, the factor analysis model is

y′i = µ
′+ x′iB+ ε

′
i , i = 1, . . . ,n

or
Y = Jµ

′+XB+ e, (1)

where Y is n×q and X is n× r. Most of the usual multivariate linear model assump-
tions about the rows of e are made,

E(εi) = 0,
Cov(εi,ε j) = 0 i ̸= j ,

and for Ψ nonnegative definite

Cov(εi)≡Ψ ,

except Ψ is now assumed to be diagonal. The matrix B remains a fixed but unknown
matrix of parameters. The entries in B are now called factor loadings.

The primary change in assumptions relates to X which is now random and unob-
servable. We have assumed that the mean of the observation vector on individual i
is E(y′i) = µ ′, so the corresponding row x′iB better be random with mean zero. Each
row of X is assumed to be an unobservable random vector with

E(xi) = 0 ,
Cov(xi,x j) = 0 , i ̸= j ,

Cov(xi) = Ir ,

and
Cov(xi,ε j) = 0 , any i, j .
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The idea behind the model is that the elements of X consist of r underlying com-
mon factors. For fixed individual i, the different observations, yih, h = 1, . . . ,q are
different linear combinations of the r (random) common factors for that individ-
ual xik, k = 1, . . . ,r plus some (white noise) error εih, h = 1, . . . ,q. The errors for
the individual are allowed to have different variances but they are assumed to be
uncorrelated.

Specifically, every individual i has observations yih that involve the same linear
combinations (loadings) of the common factors, ∑

r
k=1 βhkxik, where the βhks do not

depend on the individual i but change depending on h, so the linear combination
depends on which variable yih is being considered for individual i. Of course differ-
ent individuals i have different realizations of the random common factors xik. So,
while all the common factors affect each column of Y , different linear combinations
of the common factors apply to different columns. The kth column of X consists
of n realizations of the kth common factor. The row k of B therefore tells how the
kth factor is incorporated into all of observations. It serves as the basis for trying to
interpret what the kth factor contributes. The hth column of B are the coefficients
that generate the hth dependent variable yih.

For the model to be of interest, the number of factors r should be less than the
number of variables q. Based on this model, yi = µ +B′xi + εi, i = 1, . . . ,n, so

Cov(yi) = Cov(B′xi + εi)

= B′B+Ψ .

In most of the discussion to follow, we will work directly with the matrix B′B. It is
convenient to have a notation for this matrix. Write

Λ ≡ B′B .

The matrix Λ is characterized by two properties: (1) Λ is nonnegative definite and
(2) r(Λ) = r. Recalling our initial assumption that Cov(yi) = Σ , the factor analysis
model has imposed the restriction that

Σ = Λ +Ψ . (2)

Clearly, one cannot have r(Λ) = r > q. It is equally clear that if r = q, one can
always find matrices Λ and Ψ that satisfy (2). Just choose Λ = Σ and Ψ = 0. If
r < q, equation (2) may place a real restriction on Σ , see also a comment below
about an exercise in ALM-III.

In practice, Σ is unknown and estimated by S, so one seeks matrices B̂ and Ψ̂

such that
S .
= B̂′B̂+Ψ̂ .

The interesting questions now become (a) how many factors r are needed to get a
good approximation and (b) which matrices B̂ and Ψ̂ give good approximations.
The first question is certainly amenable to analysis. Clearly, r = q will always work,
so there must be ways to decide when r < q is doing an adequate job. The second
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question ends up being tricky. The problem is that if U is any orthonormal matrix,
UB̂ works just as well as B̂ because

B̂′B̂ = (UB̂)′(UB̂) .

11.6.1 Additional Terminology and Applications

As may already be obvious, factor analysis uses quite a bit of unusual terminology.
The elements of a row of e are called unique or specific factors. These are un-

correlated random variables that are added to the linear combinations of common
factors to generate the observations. They are distinct random variables for each dis-
tinct observation (i.e., they are specific to the observation). The ith diagonal element
of Ψ ≡ Cov(εi) is called the uniqueness, specificity, or specific variance of the ith
variable.

The diagonal elements of Λ are called communalities. Writing Λ = [λi j], the
communality of the ith variable is generally denoted

h2
i ≡ λii .

Note that if B = [βi j],

h2
i =

r

∑
k=1

β
2
ki .

The total variance is
tr[Σ ] = tr[Λ ]+ tr[Ψ ] .

The total communality is

v ≡ tr[Λ ] =
q

∑
i=1

h2
i =

q

∑
i=1

r

∑
k=1

β
2
ki .

The matrix
Λ = Σ −Ψ = Cov(B′x)

is called the reduced covariance matrix, for obvious reasons. Often the observations
are standardized so that Σ is actually a correlation matrix. If this has been done, Λ

is sometimes called the reduced correlation matrix (even though it need not be a
correlation matrix).

In practice, factor analysis is used primarily to obtain estimates of B. One then
tries to interpret the estimated factor loadings in some way that makes sense relative
to the subject matter of the data. As is discussed later, this is a fairly controversial
procedure. One of the reasons for the controversy is that B is not uniquely defined.
Given any orthonormal r× r matrix U , write X0 = XU ′ and B0 =UB; then,

XB = XU ′UB = X0B0,
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where X0 again satisfies the assumptions made about X . Unlike standard linear mod-
els, X is not observed, so there is no way to tell X and X0 apart. There is also no
way to tell B and B0 apart. Actually, this indeterminacy is used in factor analysis to
increase the interpretability of B. This will be discussed again later. At the moment,
we examine ways in which the matrix B is interpreted.

One of the key points in interpreting B is recognizing that it is the rows of B that
are important and not the columns. A column of B is used to explain one dependent
variable. A row of B consists of all of the coefficients that affect a single common
factor. The q elements in the jth row of B represent the contributions made by the jth
common factor to the q dependent variables. Traditionally, if a factor has all of its
large loadings with the same sign, the subject matter specialist tries to identify some
common attribute of the dependent variables that correspond to the high loadings.
This common attribute is then considered to be the underlying factor. A bipolar
factor involves high loadings that are both positive and negative; the user identifies
common attributes for both the group of dependent variables with positive signs and
the group with negative signs. The underlying factor is taken to be one that causes
individuals who are high on some scores to be low on other scores. The following
example involves estimated factor loadings. Estimation is discussed in the following
two subsections.

EXAMPLE 11.6.1. Again consider the correlation matrix

R =


1.000 0.439 0.410 0.288 0.329 0.248
0.439 1.000 0.351 0.354 0.320 0.329
0.410 0.351 1.000 0.164 0.190 0.181
0.288 0.354 0.164 1.000 0.595 0.470
0.329 0.320 0.190 0.595 1.000 0.464
0.248 0.329 0.181 0.470 0.464 1.000


from Lawley and Maxwell (1971) and Johnson and Wichern (2007) that was ob-
tained from (Gaelic, English, history, arithmetic, algebra, geometry) examination
scores on 220 male students.

For r = 2, maximum likelihood estimation gives one choice of estimates,

B̂ =

[
0.553 0.568 0.392 0.740 0.724 0.595
0.429 0.288 0.450 −0.273 −0.211 −0.132

]
and

(ψ̂1, . . . , ψ̂6) = (0.510,0.594,0.644,0.377,0.431,0.628) .

Factor interpretation involves looking at the rows of B̂ and trying to interpret
them. Write

B̂ =

[
b̂′1
b̂′2

]
.

All of the elements of b̂1 are large and fairly substantial. This suggests that the first
factor is a factor that indicates general intelligence. The second factor is bipolar,
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with positive scores on math subjects and negative scores on nonmath subjects. The
second factor might be classified as some sort of math–nonmath factor. This exam-
ple will be examined again later with a slightly different slant. 2

Rather than taking the factor analysis model as a serious model for the behavior
of data, it may be more appropriate to view factor analysis as a data analytic proce-
dure that seeks to discover structure in the covariance matrix and may suggest the
presence of underlying factors. My son Fletcher (not to be confused with my imag-
inary son Basil) has convinced me that if you have a previous idea of the important
factors it may be a worthwhile exercise to see whether the data are capable of being
contorted into consistency with those previous factors.

11.6.2 Maximum Likelihood Theory

Maximum likelihood theory can be used for both estimation and testing. Maximum
likelihood factor analysis is based on assuming that the random vectors in the factor
model have a joint multivariate normal distribution and rewriting the factor analysis
model as a standard multivariate linear model. (By contrast, ICA allows at most one
of the factors to have a normal distribution.) To do this, the random terms are pooled
together as, say

ξi = B′xi + εi

and
ξ = XB+ e .

With Λ = B′B, the factor analysis model is a special case of the one-sample model
of Section 10.1,

Y = Jµ
′+ξ , (3)

where

E(ξi) = 0 ,
Cov(ξi,ξ j) = 0 i ̸= j ,

and
Cov(ξi) = Λ +Ψ ,

with Ψ diagonal, Λ nonnegative definite, and r(Λ) = r.
In Section 10.1, the assumption was simply that

Cov(ξi) = Σ .

The new model places the restriction on Σ that

Σ = Λ +Ψ , (4)
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where r(Λ) = r and Ψ is diagonal. For ξis with a joint multivariate normal distribu-
tion, the likelihood function for an arbitrary Σ was discussed in Chapter 9. Clearly,
the likelihood can be maximized subject to the restrictions that Σ = Λ +Ψ , Λ is
nonnegative definite, r(Λ) = r, and Ψ is diagonal. However Seber (1984, Exercise
5.4) argues that even these parameters are not identifiable without additional restric-
tions.

Because Λ +Ψ is just a particular choice of Σ , as in Chapter 9 the maximum
likelihood estimate of µ is always the least squares estimate, µ̂ = ȳ·. This simpli-
fies the maximization problem. Unfortunately, with the additional restrictions on Σ ,
closed-form estimates of the covariance matrix are no longer available. Computa-
tional methods for finding MLEs are discussed in Lawley and Maxwell (1971) and
Jöreskog (1975). They can be quite difficult.

It is an exercise in ALM-III to show
(a) that the maximization problem reduces to finding a rank r matrix Λ̂ and a diag-
onal matrix Ψ̂ that minimize

log(|Λ +Ψ |)+ tr{(Λ +Ψ)−1
Σ̂q},

where Σ̂q =
n−1

n
S and Λ̂ is nonnegative definite and

(b) that any positive definite Σ can be written with a factor analysis analysis struc-
ture having r = q − 1. To do this it is well to remember that Σ = PD(φi)P′ =
P [D(φi)−φqI +φqI]P′

One advantage of the maximum likelihood method is that standard asymptotic
results apply. Maximum likelihood estimates are asymptotically normal. Minus two
times the likelihood ratio test statistic is asymptotically chi-squared under the null
hypothesis. See Geweke and Singleton (1980) for a discussion of sample size re-
quirements for the asymptotic test.

Of specific interest are tests for examining the rank of Λ . If r < s, the restric-
tion r(Λ) = r is more stringent than the restriction r(Λ) = s. To test H0 : r(Λ) = r
versus HA : r(Λ) = s, one can use the likelihood ratio test statistic. This is just the
maximum value of the likelihood under r(Λ) = r divided by the maximum value
of the likelihood under r(Λ) = s. Under H0, −2 times the log of this ratio has an
asymptotic chi-squared distribution. The degrees of freedom are the difference in
the number of independent parameters for the models with r(Λ) = s and r(Λ) = r.
If we denote

Σ̂r = Λ̂ +Ψ̂

when r(Λ) = r with a similar notation for r(Λ) = s, −2 times the log of the likeli-
hood ratio test statistic is easily shown to be

n
[

ln
(
|Σ̂r|
|Σ̂s|

)
+ tr{(Σ̂−1

r − Σ̂
−1
s )Σ̂q}

]
,

where again

Σ̂q =
n−1

n
S .
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As will be seen later, the degrees of freedom for the test are usually

if s = q,q−1 df = q(q+1)/2−q− [qr− r(r−1)/2] ,
if s < q−1 df = [qs− s(s−1)/2]− [qr− r(r−1)/2].

The formula for degrees of freedom is derived from the number of independent
parameters in each model. If r(Λ) ≡ r = q,q− 1, the covariance matrix Σ is un-
restricted. The independent parameters are the q elements of µ and the q(q+ 1)/2
distinct elements of Σ . Recall that because Σ is symmetric, not all of its elements
are distinct. Thus, for r = q,q−1, the model has

q+q(q+1)/2

degrees of freedom.
Counting the degrees of freedom when r(Λ) = r < q− 1 is a bit more compli-

cated. The model involves the restriction

Σ = Λ +Ψ ,

where Ψ is diagonal and Λ is nonnegative definite with rank r. Clearly, Ψ has q
independent parameters, the diagonal elements. Because Λ is of rank r, then q− r
columns out of the q× q matrix are linear combinations of the other r columns.
Thus, the independent parameters are at most the elements of these r columns. There
are qr of these parameters. However, Λ is also symmetric. All of the parameters
above the diagonal are redundant. In the first r columns there are 1+2+ · · ·+(r−
1) = r(r − 1)/2 of these redundant values. Thus, Λ has at most qr − r(r − 1)/2
parameters. Finally, µ again involves q independent parameters. Adding the number
of independent parameters in µ , Ψ , and Λ gives the maximum model degrees of
freedom as

q+q+[qr− r(r−1)/2] .

Taking differences in model degrees of freedom gives the test degrees of freedom
indicated earlier. However, if r and q are both large, the number of factor model
parameters can exceed the number of parameters for the unrestricted covariance
matrix model, so an unrestricted covariance matrix should be used. In particular, if
r = q− 1, the number of factor model parameters always exceeds the number of
parameters in the unrestricted covariance matrix. Fortunately, r is usually taken to
be small.

Thus far in the discussion, we have ignored B in favor of Λ = B′B. Given a
function of Λ , say B = f (Λ), and the maximum likelihood estimate Λ̂ , the MLE of
B is B̂ = f (Λ̂). The problem is in defining the function f . There are an uncountably
infinite number of ways to define f . If f defines B and U is an orthonormal matrix,
then

f1(Λ) =U f (Λ)

is just as good a definition of B because Λ = B′B = B′U ′UB. As mentioned, this
indeterminacy is used to make the results more interpretable. The matrix B is rede-
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fined until the user gets a pleasing B̂. The procedure starts with any B̂ and then B̂
is rotated (multiplied by an orthonormal matrix) until B̂ seems to be interpretable
to the user. In fact, there are some standard rotations (e.g., varimax and quartimax),
that are often used to increase interpretability. For a more complete discussion of
rotations see Williams (1979).

Often, in an effort to make B well-defined, it is taken to be D
(√

φ1, . . . ,
√

φr
)

A′
r,

where Ar = [a1, . . . ,ar] with ai an eigenvector of Λ with length one corresponding
to a positive eigenvalue φi. To accomplish the goal one would need to address the
issues of eigenvalues not being unique and the nonidentifiability of Λ .

EXAMPLE 11.6.2. For r = 2, the orthonormal matrices U used in rotations are 2×
2 matrices. Thus, the effects of orthogonal rotations can be plotted. The plots consist
of q points, one for each dependent variable. Each point consists of the two values in
each column of B̂. Figure 11.5 gives a plot of the unrotated factor loadings presented
in Example 11.6.1 for the examination score data. The points labeled 1 through 6
indicate the corresponding dependent variable h = 1, . . . ,6. Two commonly used
rotations are the varimax rotation and the quartimax rotation (see Exercise 11.6.10).
The varimax rotation for these data is

B̂V =

[
0.235 0.323 0.088 0.771 0.724 0.572
0.659 0.549 0.590 0.170 0.213 0.210

]
,

and the quartimax rotation is

B̂Q =

[
0.260 0.344 0.111 0.777 0.731 0.580
0.650 0.536 0.587 0.139 0.184 0.188

]
.

A plot of the varimax factor loadings is presented in Figure 11.6. It is a substantial
counterclockwise rotation about the origin (0,0) of Figure 11.5. A plot (not given) of
the quartimax loadings is a very slight clockwise rotation of the varimax loadings.
Rather than isolating a general intelligence factor and a bipolar factor as seen in the
unrotated factors, these both identify factors that can be interpreted as one for math-
ematics ability and one for nonmathematics ability. I have had different software
give me slightly different versions of B̂V . 2

The factor analysis model for maximum likelihood assumes that the matrix of
common factors X has rows consisting of independent observations from a mul-
tivariate normal distribution with mean zero and covariance matrix Ir. While X
is not observable, it is possible to predict the rows of X . In It can be seen that
Ê(xi|Y ) = B(Λ +Ψ)−1(yi − µ). Thus, estimated best linear predictors of the xis
can be obtained. These factor scores are frequently used to check the assumption
of multivariate normality. Bivariate plots can be examined for elliptical shapes and
outliers. Univariate plots can be checked for normality.



11.6 Factor Analysis 317

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Factor 1

Fa
ct

or
 2

1

2

3

4
5

6

Fig. 11.5 Unrotated factor loadings.

11.6.3 Principal Factor Estimation

It would be nice to have a method for estimating the parameters of model (3) that did
not depend on the assumption of normality. Thurstone (1931) and Thompson (1934)
have proposed principal (axes) factor estimation as such a method. The parameters
to be estimated are µ , Λ , and Ψ . As mentioned earlier, model (3) is just a standard
multivariate linear model with a peculiar choice for Σ . The results of Section 9.2
imply that ȳ· is the best linear unbiased estimate of µ .

It remains to estimate Λ and Ψ . If Ψ is known, estimation of Λ is easy. Using
equation (4)

Λ = Σ −Ψ ,

where Λ is assumed to be nonnegative definite of rank r. If it were not for the rank
condition, a natural estimate would be

Λ̃ ≡ S−Ψ .
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Fig. 11.6 Varimax factor loadings.

Incorporating the rank condition, one natural way to proceed is to choose a nonneg-
ative definite matrix of rank r, say Λ̂ , that minimizes, say,

tr{(S−Ψ)−Λ} .

Although other functions of (S−Ψ)−Λ might be reasonable, the trace is a conve-
nient choice because we have already solved a version of this problem.

Let φ1 ≥ ·· · ≥ φq be the eigenvalues of S, let a1, . . . ,aq be the corresponding
eigenvectors, let Ar = [a1, . . . ,ar], and let G be a q × r matrix of rank r. In our
discussion of principal components, we established that

tr[S−SAr(A′
rSAr)

−1A′
rS] = min

G
tr[S−SG(G′SG)−1G′S] .

Clearly, SG(G′SG)−1G′S is nonnegative definite of rank r. If we consider the prob-
lem of estimating Σ when r(Σ) = r and restrict ourselves to the class of estimates
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SG(G′SG)−1G′S, then the matrix SAr(A′
rSAr)

−1A′
rS is an optimal rank r estimate of

S.
Applying this result in the factor analysis problem gives an optimal estimate

Λ̂ = Λ̃Ar(A′
rΛ̃Ar)

−1A′
rΛ̃ ,

where Ar consists of eigenvectors of Λ̃ = S−Ψ . If we choose the eigenvectors so
that A′

rAr = Ir, Λ̂ simplifies to

Λ̂ = ArD(φ1, . . . ,φr)A′
r,

where φ1, . . . ,φr are the r largest eigenvalues of Λ̃ . An obvious estimate of B is

B̂ = D(
√

φ1, . . . ,
√

φr)A′
r .

Of course, any rotation of B̂ is an equally appropriate estimate.
All of this assumes that Ψ is known. In practice, one makes an initial guess Ψ0

that leads to initial estimates Λ̃0 = S−Ψ0 and Λ̂0. Having computed Λ̂0, compute
Ψ1 from the diagonal elements of S− Λ̂0 and repeat the process to obtain Λ̂1. This
iterative procedure can be repeated until convergence. A common choice for Ψ0 =
D(ψi0) is

ψi0 = 1/sii,

where sii is the ith diagonal element of S−1.
Another common choice for Ψ0 is taking ψi0 = 0 for all i. This choice yields

Λ̃ = S, and the rows of B̂ = D(
√

φi)A′
r are eigenvectors of S. These are the same

vectors as used to determine principal components. In fact, principal components
are often used to address questions about underlying factors. The difference is that
in a principal component analysis the elements of the eigenvector determine a linear
combination of the dependent variable y. In the factor analysis model, the elements
of an eigenvector, say a1, are the q coefficients applied to the first hypothetical factor.
Although factor interpretations are based on these q values, in the factor analysis
model, data are generated using the r values a1h, . . . ,arh taken across eigenvectors.

Some of the problems with principal factor estimation are that r is assumed to be
known, there are no tests available for the value of r, and the matrix S−Ψ may not
be nonnegative definite.

In our examination of principal components, we found that the eigenvectors of
Σ provided solutions to several different problems: sequential prediction, joint pre-
diction, sequential variance maximization, and geometrical interpretation. The prin-
cipal factor estimation method can also be motivated by a sequential optimization
problem, see Gnanadesikan (1977).
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11.6.4 Computing

I performed the analysis in Minitab 18, in R’s factanal, and in the R library
psych’s program fa. R’s factanal fits using only maximum likelihood, Minitab
allows both methods, and fa allows these two and several more. Between these
various programs, the third digit of the loadings often differed by 1.

As for rotations, R’s factanal allows none and varimax as well as promax
which is a transformation but not a rotation. Minitab allows none, varimax, quarti-
max, equimax, and a family of rotations called orthomax. Psych’s fa allows none,
varimax, quartimax, equamax, and four others as well as promax and six more trans-
formations that are not rotations.

11.6.5 Discussion

There is no question that model (3) is a reasonable model. There is considerable
controversy about whether the factor analysis model (1) has any meaning beyond
that of model (3).

Factor analysis is a frequently used methodology. Obviously, its users like it.
Users like to rotate the estimated factor loadings B̂ and interpret their results. On
the other hand, many people, often of a more theoretical bent, are deeply disturbed
by the indeterminacy of the factors and the factor loadings. Many people claim it is
impossible to understand the nature of the underlying factors and the basis of their
interpretation. Personally, I have always tried to straddle this particular fence. There
are people on both sides that I respect. (OK, as I have gotten older, I’ve fallen on the
“disturbed by the indeterminacy” side of the fence.)

An important criterion for evaluating models is that if a model is useful it should
be useful for making predictions about future observables. The maximum likelihood
model (3), like all linear models, satisfies this criterion. The prediction of a new
case would be ȳ·. The peculiar covariance matrix of model (3) plays a key role in
predicting the unobserved elements of a new case when some of the elements have
been observed.

The factor analysis model (1) looks like it is more than the corresponding linear
model. The interpretation of factor loadings depends on (1) being more than the
linear model. If the factor analysis model really is more than the linear model, it
should provide predictions that are distinct from the linear model. When the factor
analysis model is correct, these predictions should be better than the linear model
predictions.

Unfortunately, the factor analysis model does not seem to lend itself to prediction
except through the corresponding linear model. One can predict the factor vectors
xi (assuming that µ , B, and Ψ are known), but this does not affect prediction of yi.
In particular, it is an exercise in ALM to show that

Ê(xi|Y ) = Ê(xi|yi) = B(Λ +Ψ)−1(yi −µ).
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Though the factor analysis model may not hold up to careful scrutiny, it does
not follow that the data-analytic method known as factor analysis is a worthless en-
deavor. Rather than thinking of factor analysis as a theoretical method of estimating
the loadings on some unspecified factors, it may be better to think of it as a data-
analytic method for identifying structure in the covariance matrix. As a data-analytic
method, it is neither surprising nor disconcerting that different people (using differ-
ent rotations) obtain different results. It is more important whether, in practice, users
working on similar problems often obtain similar results.

The factor analysis model is one motivation for this method of data analysis. We
now will present a slightly different view. We begin by decomposing the covariance
matrix into the sum of r different covariance matrices plus Ψ . In other words, write

B =

b′1
...

b′r


and

Λi = bib′i .

Thus,

Σ = Λ +Ψ

= B′B+Ψ

=
r

∑
i=1

bib′i +Ψ

=
r

∑
i=1

Λi +Ψ .

We can think of y as being a random observation vector and Λi as being the covari-
ance matrix for some factor, say wi, where y= µ+∑

r
i=1 wi+ε with Cov(wi,w j)= 0,

Cov(ε) = Ψ , and Cov(wi,ε) = 0. In the usual factor analysis model with factors
x = (x1, . . . ,xr)

′ and B′ = [b1, . . . ,br], we have wi = xibi. The question then becomes
what kind of underlying factor wi would generate a covariance matrix such as Λi.
The advantage to this point of view is that attention is directed towards explain-
ing the observable correlations. In traditional factor analysis, attention is directed
towards estimating the ill-defined factor loadings. Of course, the end result is the
same.

Just as the matrix B is not unique, neither is the decomposition

Λ =
r

∑
i=1

Λi .

In practice, one would rotate B to make the Λis more interpretable. Moreover, as will
be seen later, one need not actually compute Λi to discover its important structure.
The key features of Λi are obvious from examination of bi.
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EXAMPLE 11.6.3. Using B̂ from Example 11.6.1

Λ̂1 = b̂1b̂′1 =


0.31 0.31 0.22 0.41 0.40 0.33
0.31 0.32 0.22 0.42 0.41 0.34
0.22 0.22 0.15 0.29 0.28 0.23
0.41 0.42 0.29 0.55 0.54 0.44
0.40 0.41 0.28 0.44 0.52 0.43
0.33 0.34 0.23 0.44 0.43 0.35

 .

All of the variances and covariances are uniformly high because all of the elements
of b1 are uniformly high. The factor w1 must be some kind of overall measure —
call it general intelligence.

The examination of the second covariance matrix

Λ̂2 =


0.18 0.12 0.19 −0.12 −0.09 −0.07
0.12 0.08 0.13 −0.08 −0.06 −0.04
0.19 0.13 0.20 −0.12 −0.09 −0.06

−0.12 −0.08 −0.12 0.07 0.06 0.04
−0.09 −0.06 −0.09 0.06 0.04 0.03
−0.07 −0.04 −0.06 0.04 0.03 0.02


is trickier. The factor w2 has two parts; there is positive correlation among the first
three variables: Gaelic, English, and history. There is positive correlation among
the last three variables: arithmetic, algebra, and geometry. However, the first three
variables are negatively correlated with the last three variables. Thus, w2 can be
interpreted as a math factor and a nonmath factor that are negatively correlated.

A totally different approach to dealing with Λ2 is to decide that any variable with
a variance less than, say, 0.09 is essentially constant. This leads to

Λ̃2 =


0.18 0 0.19 0 0 0

0 0 0 0 0 0
0.19 0 0.20 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Thus, the second factor puts weight on only Gaelic and history. The second factor
would then be interpreted as some attribute that only Gaelic and history have in
common.

Either analysis of Λ2 can be arrived at by direct examination of

b′2 = (−0.429,−0.288,−0.450,0.273,0.211,0.132) .

The pattern of positives and negatives determines the corresponding pattern in Λ2.
Similarly, the requirement that a variance be greater than 0.09 to be considered
nonzero corresponds to a variable having an absolute factor loading greater than
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0.3. Only Gaelic and history have factor loadings with absolute values greater than
0.3. Both are negative, so Λi will display the positive correlation between them. 2

The examination of underlying factors is, of necessity, a very slippery enterprize.
The parts of factor analysis that are consistent with traditional ideas of modeling
are estimation of Λ and Ψ and the determination of the rank of Λ . The rest is pure
data analysis. It is impossible to prove that underlying factors actually exist. The
argument in factor analysis is that if these factors existed they could help explain
the data.

Factor analysis can only suggest that certain factors might exist. The appropriate
question is not whether they really exist but whether their existence is a useful idea.
For example, does the idea of a factor for general intelligence help people to under-
stand the nature of test scores. A more stringent test of usefulness is whether the idea
of a general intelligence factor leads to accurate predictions about future observable
events. Recall from Exercise 11.5 that one can predict factor scores, so those pre-
dictions can be used as a tool in making predictions about future observables for the
individuals in the study.

An interesting if unrelated example of these criteria for usefulness involves the
force of gravity. For most of us, it is impossible to prove that such a force exists.
However, the idea of this force allows one to both explain and predict the behavior
of physical objects. The fact that accurate predictions can be made does not prove
that gravity exists. If an idea explains current data in an intelligible manner and/or
allows accurate prediction, it is a useful idea. For example, the usefulness of New-
ton’s laws of motion cannot be disregarded just because they break down for speeds
approaching that of light.

11.7 Additional Exercises

Exercise 11.7.1. (a) Find the vector b that minimizes

q

∑
i=1

[
yi −µi −b′(x−µx)

]2
.

(b) For given weights wi, i = 1, . . . ,q, find the vector b that minimizes

q

∑
i=1

w2
i
[
yi −µi −b′(x−µx)

]2
.

(c) Find the vectors bi that minimize

q

∑
i=1

w2
i
[
yi −µi −b′i(x−µx)

]2
.
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Exercise 11.7.2. In a population of large industrial corporations, the covariance
matrix for y1 = assets/106 and y2 = net income/106 is

Σ =

[
75 5
5 1

]
.

(a) Determine the principal components.
(b) What proportion of the total prediction variance is explained by a′1y?
(c) Interpret a′1y.
(d) Repeat (a), (b), and (c) for principal components based on the correlation matrix.

Exercise 11.7.3. What are the principal components associated with

Σ =


5 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

?

Discuss the problem of reducing the variables to a two-dimensional space.

Exercise 11.7.4. Let v1 = (2,1,1,0)′, v2 = (0,1,−1,0)′, v3 = (0,0,0,2)′, and

Σ =
3

∑
i=1

viv′i .

(a) Find the principal components of Σ .
(b) What is the predictive variance of each principal component? What percentage
of the maximum prediction error is accounted for by the first two principal compo-
nents?
(c) Interpret the principal components.
(d) What are the correlations between the principal components and the original
variables?

Exercise 11.7.5. Do a principal components analysis of the female turtle cara-
pace data of Exercise 10.6.1.

Exercise 11.7.6. The data in Table 11.2 are a subset of the Chapman data re-
ported by Dixon and Massey (1983). It contains the age, systolic blood pressure,
diastolic blood pressure, cholesterol, height, and weight for a group of men in the
Los Angeles Heart Study. Do a principal components analysis of the data.

Exercise 11.7.7. Assume a two-factor model with
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Table 11.2 Chapman data.

age sbp dbp chol ht wt age sbp dbp chol ht wt
44 124 80 254 70 190 37 110 70 312 71 170
35 110 70 240 73 216 33 132 90 302 69 161
41 114 80 279 68 178 41 112 80 394 69 167
31 100 80 284 68 149 38 114 70 358 69 198
61 190 110 315 68 182 52 100 78 336 70 162
61 130 88 250 70 185 31 114 80 251 71 150
44 130 94 298 68 161 44 110 80 322 68 196
58 110 74 384 67 175 31 108 70 281 67 130
52 120 80 310 66 144 40 110 74 336 68 166
52 120 80 337 67 130 36 110 80 314 73 178
52 130 80 367 69 162 42 136 82 383 69 187
40 120 90 273 68 175 28 124 82 360 67 148
49 130 75 273 66 155 40 120 85 369 71 180
34 120 80 314 74 156 40 150 100 333 70 172
37 115 70 243 65 151 35 100 70 253 68 141
63 140 90 341 74 168 32 120 80 268 68 176
28 138 80 245 70 185 31 110 80 257 71 154
40 115 82 302 69 225 52 130 90 474 69 145
51 148 110 302 69 247 45 110 80 391 69 159
33 120 70 386 66 146 39 106 80 248 67 181

Σ =

0.15 0.00 0.05
0.00 0.20 −0.01
0.05 −0.01 0.05


and

B =

[
0.3 0.2 0.1
0.2 −0.3 0.1

]
.

What is Ψ? What are the communalities?

Exercise 11.7.8. Using the vectors v1 and v2 from Exercise 11.7.4, let

Λ = v1v′1 + v2v′2.

Give the eigenvector solution for B and another set of loadings that generates Λ .

Exercise 11.7.9. Given that

Σ =

1.00 0.30 0.09
0.30 1.00 0.30
0.09 0.30 1.00


and

Ψ = D(0.1,0.2,0.3),
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find Λ and two choices of B.

Exercise 11.7.10. Find definitions for the well-known factor loading matrix rota-
tions varimax, direct quartimin, quartimax, equamax, and orthoblique. What is each
rotation specifically designed to accomplish? Apply each rotation to the covariance
matrices of Exercise 11.7.9.

Exercise 11.7.11. Do a factor analysis of the female turtle carapace data of
Exercise 10.6.1. Include tests for the numbers of factors and examine various factor-
loading rotations.

Exercise 11.7.12. Do a factor analysis of the Chapman data discussed in Exer-
cise 11.7.6.

Exercise 11.7.13. Show the following determinant equality.

|Ψ +BB′|= |I +B′
Ψ

−1B||Ψ |.

Exercise 11.7.14. Find the likelihood ratio test for

H0 : Σ = σ
2 [(1−ρ)I +ρJJ′

]
against the general alternative.



Chapter 12
Clustering

Abstract Cluster analysis takes an unstructured data matrix Yn×q and turns it into
a one-way MANOVA data structure that places every observation into a group. We
will illustrate two methods for doing this and mention a third. Hierarchical cluster
analysis starts by treating every data vector yh as a separate group and then sequen-
tially looks to combine groups into larger groups. Left to the bitter end, the process
combines everything into one big group. The key issues are how to combine groups
and how many groups is it appropriate to have. K-means clusterimg starts with K
clusters, typically constructed randomly, and looks to improve the homogeneity of
the K clusters. Spectral cluster analysis is little more than applying clustering meth-
ods to principal components.

12.1 Pointwise Distance Measures

The idea of clustering is to collect cases that are close together. That presupposes
some idea of what it means for data vectors to be near one another.

In Section 4.4 we discussed various norms for vectors. The norm of a vector is
just its length. The distance between two vectors is the norm of their difference vec-
tor. For example, the squared Euclidean distance between a vector y = (y1, . . . ,yq)

′

and another vector w is

∥y−w∥2 ≡ (y−w)′(y−w) = (w− y)′(w− y)≡ ∥w− y∥2.

For p ≥ 1 the Lp norm is defined as

∥y∥p ≡

(
q

∑
h=1

|yh|p
)1/p

.

The L2 norm gives Euclidian distance, so in our notation

327
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∥y−w∥ ≡ ∥y−w∥2.

The second most frequently used Lp norm in Statistics is probably L1,

∥y∥1 ≡
q

∑
h=1

|yh|.

Ridge regression and lasso regression both penalize estimates of the regression co-
efficient vector β∗ based on the length of β∗. Ridge regression uses the squared L2

norm as a penalty function and lasso uses the L1 norm. The L∞ norm is defined as

∥y∥∞ ≡ max{|y1|, |y2|, . . . , |yq|}.

Finally, for a positive definite matrix W one can define a norm via

∥y∥2
W ≡ y′Wy.

Ideas of distance are fundamentally geometric ideas and, indeed, cluster analysis
has little to do with statistical ideas. (Although cluster analysis has been taught as
a part of statistics for as long as I can remember.) A key feature in any cluster
analysis is deciding on an appropriate measure of distance. Such a decision can,
and should, be made based on the characteristics of the specific problem. In the
examples given later, the measurements involved are comparable to one another and
standard Euclidean distance is used. But if the measurements are not comparable,
Euclidean distance becomes problematic. For example, if the length and width of
turtle shells are measured in millimeters but the height is measured in kilometers,
the use of Euclidean distance amounts to ignoring the height measurements since,
relative to the other measurements, the heights are all essentially the same.

If no specific ideas about distance are forthcoming in an application, treating the
data as a random sample from some population (even one defined as a mixture of
subpopulations), suggests using the squared Mahalanobis distance. This was defined
in Subsection 10.1.1 for the squared distance between a random vector and its mean.
Letting Σ denote the covariance matrix of the population, use

y′Σ−1y

as the squared norm of the vector y, so that the squared distance between yi and y j
is

D2(yi,y j) = (yi − y j)
′
Σ
−1(yi − y j).

This is equivalent to using Euclidean distance on a transformation of y that has an
identity covariance matrix. In practice we estimate Σ from our sample of ys.

Rather than transforming y to have an identity covariance matrix, a far less ap-
pealing (to me) alternative is merely to rescale the components of y so that each
has variance 1 (but retain their correlations) and then using Euclidean distances on
those transformed variables. This transformation is equivalent to using ∥y∥2

W with
W−1 = Diag(σ11, . . . ,σqq), or, in practice, the estimated variances.
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12.2 Hierarchical Cluster Analysis

12.2.1 Background

Hierarchical clustering is hierarchical in that it starts (stage s = n) with every row
of Y constituting a different group/cluster. At stage s = n− 1, it combines the two
closest observations into one cluster, to give n− 1 clusters. At stage s = n− 2, it
combines the two clusters that are closest together to give n−2 clusters. It proceeds
with each stage combining the two clusters that are closest together. When s = 1,
everything is together in one cluster.

Hierarchal clustering defines a sequence of one-way MANOVA data structures.
For each s = n, . . . ,1 define the data structure

ysi j, i = 1, . . . ,s, j = 1, . . . ,Nsi. (1)

At every stage s, n = Ns1 + · · ·+Nss.
There are two things that need to be specified: (1) the distance between two ob-

servation vectors and (2) the distance between two clusters of observations. There
are several ways to define the distance between two observations and there are sev-
eral ways to use observation distances to define cluster distances. The results of the
algorithm typically depend on both specifications.

The clusters you get depend on how you measure distances between clusters
and there exist various proposals for defining the distance between two clusters of
vectors. All such proposals for cluster distances are based on the definition of the
distance between two vectors, which was considered in the previous section.

12.2.2 Clusterwise “distance” measures

In this subsection we will use the notation for the Euclidean norm to indicate the
distance between two vectors but remember that it can be replaced by any of the
other norms that we discussed. (I strongly favor the Mahalanobis norm.)

Now that we can talk about the distance between two observations, ∥y−w∥, we
can discuss alternative definitions of the distance between two clusters of points.
For some reason the different methods of measuring cluster distances are referred to
as linkage methods. We specify linkage methods for a fixed number of clusters s, so
we use the data notation in display (1) but suppress the subscript s in the notation.
Cluster Ci consists of all the observations yi j, j = 1, . . . ,Ni. None of the proposed
measures of cluster “distance” satisfy the mathematical definition of a distance mea-
sure. (Perhaps why they are called linkages?) The measures are summarized in Ta-
ble 12.1. At each stage of an hierarchical process, combine the two clusters that are
closest to each other.
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Table 12.1 Clustering Methods.

Linkage Method Distance Formula

Simple (Nearest Neighbor) DS(Ci,Ck)≡ min j,h ∥yi j − ykh∥

Complete (Farthest Neighbor) DC(Ci,Ck)≡ max j,h ∥yi j − ykh∥

Average DA(Ci,Ck)≡ 1
Ni

1
Nk

∑
Ni
j=1 ∑

Nk
h=1 ∥yi j − ykh∥

Centroid DCt(Ci,Ck)≡ ∥ȳi·− ȳk·∥

Ward DWa(Ci,Ck), cf. equation (2)

All but the last distance measure in Table 12.1 are pretty self explanatory. Simple
linkage measures the minimum distance between two clusters. Complete linkage
measures the maximum distance between two clusters. Average looks at the average
of all the pointwise distances. Centroid looks at the distance between the centers of
the clusters. The last measure, Ward’s, is more complex.

Ward’s method is to join the pair of clusters that minimizes the increase in sum
of cluster variances. At the first step, all cluster variances are 0. Join the two points
closest together in Euclidean distance. With Si denoting the sample covariance ma-
trix for the ith cluster, thereafter it seems that Ward’s linkage joins the two clusters
that generate the smallest value of

DWa(Ci,Ck) = ∑
r ̸=i,k

tr(Sr)
2 +

Ni −1
Ni +Nk −1

tr(Si)
2 +

Nk −1
Ni +Nk −1

tr(Sk)
2

+
NiNk

(Ni +Nk)(Ni +Nk −1)
(ȳi·− ȳk·)

′(ȳi·− ȳk·). (2)

I merely think that (2) is correct.
According to Murtagh and Legendre (2014), there are two different algorithms

popularly employed for implementing Ward’s method and they differ by whether
they require inputs that are Euclidean distances (R’s ward.D2, SAS, JMP, Matlab
— all as of December, 2012) or require inputs that are squared Euclidean distances
(R’s ward.D, SPSS, Systat, Statistica — same date). Moreover, it seems that most
programs were not very good about telling users which input was needed.
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12.2.3 An Illustration

It is interesting to apply hierarchical clustering to one-way MANOVA data so that
we can look at how well the procedure reproduces the actual groups. I used the
Cushing’s Syndrome data because the small sample size makes it amenable to com-
paring methods. Because the two measurements are comparable, I used Euclidean
distances for simplicity — rather than (my preferred) Mahalanobis distances. Fig-
ure 12.1 contains two tree diagrams (dendograms); the top is based on single linkage
and the bottom is based on complete linkage. In each case I asked the program to
identify 5 groups. Single linkage creates one large cluster and 4 singleton groups
that you might call outliers. The singleton clusters are 3 of the 6 adenoma cases
and the other is a carcinoma case. Complete linkage only generates 1 of the 5 clus-
ters being a singleton. The other 4 clusters are pretty well mixed up relative to the
true disease groups. Only one of the 4 clusters with multiple observations contains
observations from a single disease category.
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Fig. 12.1 Hierarchical clustering. Single and complete linkage. Cushing Syndrome Data. Five
clusters identified.

Figure 12.2 also contains two dendograms, the top based on average linkage
and the bottom based on centroid linkage. Again I asked the program to identify 5
groups. Average linkage generates 2 singletons, one adenoma and one carcinoma.
The other three groups are pretty well mixed up. Centroid linkage generates 3 sin-
gletons but one of the other groups is, with one exception, carcinoma.
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Fig. 12.2 Hierarchical clustering. Average and centroid linkage. Cushing Syndrome Data. Five
clusters identified.

Finally, Figure 12.3 contains the dendograms from using the two programs avail-
able in R for Ward’s method. Inputting distances to one and squared distances to
the other, the two programs give the same results; results that do not seem strikingly
different from the other methods. Ward’s method identifies c4 as a singleton. The
rest of the clusters pretty well mix up the disease categories but one of the 4 clusters
with multiple observations contains observations from a single disease category.

None of these procedures seem very good at reproducing the 3 disease clusters
that we know exist. I leave it as an exercise to reevaluate the clustering using the
Mahalanobis norm based on the pooled estimate of the covariance matrix used in
the LDA analysis of these data. Doing that is cheating because it presupposes that
you know the group structure. A more legitimate alternative is to ignore the true
group structure and use the estimated covariance matrix from all observations.

All of these methods identify c4 as a singleton cluster. Three of them identify a4
as a singleton. The cases b3, b5, b8, b9 always seem pretty close. Clustering seems
to be based on the hope that points that are close to one another should behave sim-
ilarly. To me, that seems like a good bet when trying to identify clusters of points
to use in a near replicate lack-of-fit test, cf. ANREG-II, Section 15.4. In those appli-
cations, the only thing you care about is finding points that are very close together.
It seems less clear to me what value these methods add to the Cushing’s Syndrome
data. But then, other than trying to reproduce the known group structure, it is not
clear what we would want to accomplish by clustering those observations. That is
an issue well worth considering before applying cluster analysis to any data. Often
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Fig. 12.3 Ward hierarchical clustering: Cushing Syndrome Data. Five clusters identified.

the idea is for cluster analysis to find meaningful groups that you did not know were
there.

12.3 K-means Clustering

Again we use ∥y∥ as generic notation for the length of y, cf. Section 12.1.
The n×q data matrix Y has rows y′h, h = 1, . . . ,n. Similar to hierarchical cluster-

ing, at each stage of the process, say s, we will create repeated versions of one-way
MANOVA data, but unlike hierarchical clustering, the number of clusters always
remains K, i.e.,

ysi j, i = 1, . . . ,K, j = 1, . . . ,Nsi.

At every stage s, n = Ns1 + · · ·+NsK . We will use both the yh and ysi j notations
simultaneously.

Pick K points, perhaps randomly, as cluster centers. Call these, ȳ0i. i = 1, . . . ,K.
Apparently, the process is very sensitive to how these initial points are selected.
Assign yh to the cluster that minimizes, ∥yh − ȳ0i∥. This defines the first set of
MANOVA data,

y1i j, i = 1, . . . ,K, j = 1, . . . ,N1i.

Compute the cluster means ȳ1i· = (1/N1i)∑
N1i
j=1 y1i j. Reassign yh to the cluster that

minimizes, ∥yh − ȳ1i·∥ and use this to define the next set of MANOVA data
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y2i j, i = 1, . . . ,K, j = 1, . . . ,N2i.

Repeat this process until the clusters stop changing.

EXAMPLE 12.3.1. Cushing’s Syndrome Data.
I ran the algorithm with K = 5. There does not seem to be much more to do than
report the clusters.

C1 = {a2,a5,b1,b4,b5,b7}, C2 = {a6,b2,b3,b8,b9},

C3 = {a3,a4}, C4 = {a1,c1,c2,c5},C5 = {b6,b10,c3,c4}.

The comments from the end of Subsection 12.1.4 on the value added by clustering
still apply.

12.4 Spectral Clustering

Although there are some twists that can be performed (that actually make the pro-
cedure cruder), this is basically about clustering the principal component scores as
opposed to the raw data. The name devolves from the relationship of principal com-
ponent scores to the singular value decomposition of the data matrix as discussed
in Section 11.4 because the singular value decomposition is sometimes called the
spectral decomposition.

move It really does not matter if you look at the raw data principal components
YAr or principal components based on the mean adjusted data [Y − Jȳ′·]Ar = [I −
(1/n)Jn

n ]YAr. You get the same result if you adjust for the mean before transforming
the data or after transforming the data because [(1/n)Jn

nY ]Ar = (1/n)Jn
n [YAr]. In

other words, if you apply the principal component transformation to the raw data,
YAr, and then adjust for the mean values of the transformed data you get YAr −
(1/n)Jn

n [YAr]. You get the same result if you adjusting the raw data for the mean
values Y − (1/n)Jn

nY , before applying the principal component transformation [Y −
(1/n)Jn

nY ]Ar

12.5 Exercises

EXAMPLE 12.5.1. Heart Rate Data.

EXAMPLE 12.5.2. Other Data.



Appendix A
Matrices and Derivatives

A matrix is a rectangular array of numbers. Such arrays have rows and columns.
The numbers of rows and columns are referred to as the dimensions of a matrix. A
matrix with, say, 5 rows and 3 columns is referred to as a 5×3 matrix.

EXAMPLE A.0.1. Three matrices are given below along with their dimensions.1 4
2 5
3 6

 , [
20 80
90 140

]
,


6

180
−3
0


3×2 2×2 4×1

.

2

Let r be an arbitrary positive integer. A matrix with r rows and r columns, i.e.,
an r× r matrix, is called a square matrix. The second matrix in Example A.0.1 is
square. A matrix with only one column, i.e., an r×1 matrix, is a vector, sometimes
called a column vector. The third matrix in Example A.0.1 is a vector. A 1×r matrix
is sometimes called a row vector.

An arbitrary matrix A is often written

A = [ai j]

where ai j denotes the element of A in the ith row and jth column. Two matrices are
equal if they have the same dimensions and all of their elements (entries) are equal.
Thus for r × c matrices A = [ai j] and B = [bi j], A = B if and only if ai j = bi j for
every i = 1, . . . ,r and j = 1, . . . ,c.

EXAMPLE A.0.2. Let

A =

[
20 80
90 140

]
and B =

[
b11 b12
b21 b22

]
.

If B = A, then b11 = 20,b12 = 80,b21 = 90, and b22 = 140. 2

335
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The transpose of a matrix A, denoted A′, changes the rows of A into columns of a
new matrix A′. If A is an r×c matrix, the transpose A′ is a c×r matrix. In particular,
if we write A′ = [ãi j], then the element in row i and column j of A′ is defined to be
ãi j = a ji.

EXAMPLE A.0.3. 1 4
2 5
3 6

′

=

[
1 2 3
4 5 6

]
and [

20 80
90 140

]′
=

[
20 90
80 140

]
.

The transpose of a column vector is a row vector,
6

180
−3
0


′

= [6 180 −3 0 ] . 2

A.1 Matrix Addition

Two matrices can be added (or subtracted) if they have the same dimensions, that
is, if they have the same number of rows and columns. Addition and subtraction is
performed elementwise.

EXAMPLE A.1.1.1 4
2 5
3 6

+
2 8

4 10
6 12

=

1+2 4+8
2+4 5+10
3+6 6+12

=

3 12
6 15
9 18

 .
[

20 80
90 140

]
−
[
−15 −75
80 130

]
=

[
35 155
10 10

]
.

2

In general, if A and B are r× c matrices with A = [ai j] and B = [bi j], then

A+B = [ai j +bi j] and A−B = [ai j −bi j] .
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A.2 Scalar Multiplication

Any matrix can be multiplied by a scalar. Multiplication by a scalar (a real number)
is elementwise.

EXAMPLE A.2.1. Scalar multiplication gives

1
10

[
20 80
90 140

]
=

[
20/10 80/10
90/10 140/10

]
=

[
2 8
9 14

]
.

2 [6 180 −3 0 ] = [12 360 −6 0 ] . 2

In general, if λ is any number and A = [ai j], then

λA = [λai j] .

A.3 Matrix Multiplication

Two matrices can be multiplied together if the number of columns in the first matrix
is the same as the number of rows in the second matrix. In the process of multipli-
cation, the rows of the first matrix are matched up with the columns of the second
matrix.

EXAMPLE A.3.1.1 4
2 5
3 6

[20 80
90 140

]
=

(1)(20)+(4)(90) (1)(80)+(4)(140)
(2)(20)+(5)(90) (2)(80)+(5)(140)
(3)(20)+(6)(90) (3)(80)+(6)(140)


=

380 640
490 860
600 1080

 .
The entry in the first row and column of the product matrix, (1)(20)+ (4)(90),

matches the elements in the first row of the first matrix, (1 4), with the elements in

the first column of the second matrix,
(

20
90

)
. The 1 in (1 4) is matched up with the

20 in
(

20
90

)
and these numbers are multiplied. Similarly, the 4 in (1 4) is matched

up with the 90 in
(

20
90

)
and the numbers are multiplied. Finally, the two products

are added to obtain the entry (1)(20)+(4)(90). Similarly, the entry in the third row,
second column of the product, (3)(80)+(6)(140), matches the elements in the third
row of the first matrix, (3 6), with the elements in the second column of the second
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matrix,
(

80
140

)
. After multiplying and adding we get the entry (3)(80)+(6)(140).

To carry out this matching, the number of columns in the first matrix must equal the
number of rows in the second matrix. The matrix product has the same number of
rows as the first matrix and the same number of columns as the second because each
row of the first matrix can be matched with each column of the second.

2

EXAMPLE A.3.2. We illustrate another matrix multiplication commonly per-
formed in Statistics, multiplying a matrix on its left by the transpose of that matrix,
i.e., computing A′A.1 4

2 5
3 6

′1 4
2 5
3 6

 =

[
1 2 3
4 5 6

]1 4
2 5
3 6


=

[
1+4+9 4+10+18

4+10+18 16+25+36

]
=

[
14 32
32 77

]
.

2

Notice that in matrix multiplication the roles of the first matrix and the second
matrix are not interchangeable. In particular, if we reverse the order of the matrices
in Example A.3.1, the matrix product

[
20 80
90 140

]1 4
2 5
3 6


is undefined because the first matrix has two columns while the second matrix has
three rows. Even when the matrix products are defined for both AB and BA, the
results of the multiplication typically differ. If A is r× s and B is s× r, then AB is
an r× r matrix and BA is and s× s matrix. When r ̸= s, clearly AB ̸= BA, but even
when r = s we still can not expect AB to equal BA.

EXAMPLE A.3.3. Consider two square matrices, say,

A =

[
1 2
3 4

]
B =

[
0 2
1 2

]
.

Multiplication gives

AB =

[
2 6
4 14

]
and

BA =

[
6 8
7 10

]
,
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so AB ̸= BA. 2

In general if A = [ai j] is an r× s matrix and B = [bi j] is a s× c matrix, then

AB = [di j]

is the r× c matrix with

di j =
s

∑
ℓ=1

aiℓbℓ j.

A useful result is that the transpose of the product AB is the product, in reverse
order, of the transposed matrices, i.e. (AB)′ = B′A′.

EXAMPLE A.3.4. As seen in Example A.3.1,

AB ≡

1 4
2 5
3 6

[20 80
90 140

]
=

380 640
490 860
600 1080

≡C.

The transpose of this matrix is

C′ =

[
380 490 600
640 860 1080

]
=

[
20 90
80 140

][
1 2 3
4 5 6

]
= B′A′.

2

Let a = (a1, . . . ,an)
′ be a vector. A very useful property of vectors is that

a′a =
n

∑
i=1

a2
i ≥ 0.

A.4 Special Matrices

If A = A′, then A is said to be symmetric. If A = [ai j] and A = A′, then ai j = a ji. The
entry in row i and column j is the same as the entry in row j and column i. Only
square matrices can be symmetric.

EXAMPLE A.4.1. The matrix

A =

4 3 1
3 2 6
1 6 5


has A = A′. A is symmetric about the diagonal that runs from the upper left to the
lower right. 2
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For any r×c matrix A, the product A′A is always symmetric. This was illustrated
in Example A.3.2. More generally, write A = [ai j], A′ = [ãi j] with ãi j = a ji, and

A′A = [di j] =

[
c

∑
ℓ=1

ãiℓaℓ j

]
.

Note that

di j =
c

∑
ℓ=1

ãiℓaℓ j =
c

∑
ℓ=1

aℓiaℓ j =
c

∑
ℓ=1

ã jℓaℓi = d ji

so the matrix is symmetric.
Diagonal matrices are square matrices with all off-diagonal elements equal to

zero.

EXAMPLE A.4.2. The matrices1 0 0
0 2 0
0 0 3

 , [
20 0
0 −3

]
, and

1 0 0
0 1 0
0 0 1


are diagonal. 2

In general, a diagonal matrix is a square matrix A = [ai j] with ai j = 0 for i ̸= j.
Obviously, diagonally matrices are symmetric. When v = (v1, . . . ,vp)

′ we denote
the p× p diagonal matrix with the vis on the diagonal as D(v) or D(vi) (or possible
replace D with Diag).

An identity matrix is a diagonal matrix with all 1s along the diagonal, i.e., aii = 1
for all i. The third matrix in Example A.4.2 above is a 3× 3 identity matrix. The
identity matrix gets it name because any matrix multiplied by an identity matrix
remains unchanged.

EXAMPLE A.4.3. 1 4
2 5
3 6

[1 0
0 1

]
=

1 4
2 5
3 6

 .
1 0 0

0 1 0
0 0 1

1 4
2 5
3 6

=

1 4
2 5
3 6

 .
2

An r× r identity matrix is denoted Ir with the subscript deleted if the dimension is
clear.

A zero matrix is a matrix that consists entirely of zeros. Obviously, the product
of any matrix multiplied by a zero matrix is zero.
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EXAMPLE A.4.4. 0 0
0 0
0 0

 ,


0
0
0
0

 .
2

Often a zero matrix is denoted by 0 where the dimension of the matrix, and the
fact that it is a matrix rather than a scalar, must be inferred from the context.

A matrix M that has the property MM = M is called idempotent. A symmetric
idempotent matrix is a perpendicular projection operator.

EXAMPLE A.4.5. The following matrices are both symmetric and idempotent:1 0 0
0 1 0
0 0 1

 ,
1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3

 ,
 .5 .5 0
.5 .5 0
0 0 1

 .
2

A.5 Linear Dependence and Rank

Consider the matrix

A =

1 2 5 1
2 2 10 6
3 4 15 1

 .
Note that each column of A can be viewed as a vector. The column space of A,
denoted C(A), is the collection of all vectors that can be written as a linear combi-
nation of the columns of A. In other words, C(A) is the set of all vectors that can be
written as

λ1

1
2
3

+λ2

2
2
4

+λ3

 5
10
15

+λ4

1
6
1

= A


λ1
λ2
λ3
λ4

= Aλ

for some vector λ = (λ1,λ2,λ3,λ4)
′.

The columns of any matrix A are linearly dependent if they contain redundant
information. Specifically, let x be some vector in C(A). The columns of A are lin-
early dependent if we can find two distinct vectors λ and γ such that x = Aλ and
x = Aγ . Thus two distinct linear combinations of the columns of A give rise to the
same vector x. Note that λ ̸= γ because λ and γ are distinct. Note also that, using
a distributive property of matrix multiplication, A(λ − γ) = Aλ −Aγ = 0, where
λ − γ ̸= 0. This condition is frequently used as an alternative definition for linear
dependence, i.e., the columns of A are linearly dependent if there exists a vector
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δ ̸= 0 such that Aδ = 0. If the columns of A are not linearly dependent, they are
linearly independent.

EXAMPLE A.5.1. Observe that the example matrix A given at the beginning of
the section has 1 2 5 1

2 2 10 6
3 4 15 1




5
0

−1
0

=

0
0
0

 ,
so the columns of A are linearly dependent. 2

The rank of A is the smallest number of columns of A that can generate C(A). It
is also the maximum number of linearly independent columns in A.

EXAMPLE A.5.2. The matrix

A =

1 2 5 1
2 2 10 6
3 4 15 1


has rank 3 because the columns 1

2
3

 ,
2

2
4

 ,
1

6
1


generate C(A). We saw in Example A.5.1 that the column (5,10,15)′ was redundant.
None of the other three columns are redundant; they are linearly independent. In
other words, the only way to get1 2 1

2 2 6
3 4 1

δ =

0
0
0


is to take δ = (0,0,0)′. 2

A.6 Inverse Matrices

The inverse of a square matrix A is the matrix A−1 such that

AA−1 = A−1A = I.

The inverse of A exists only if the columns of A are linearly independent. Typically,
it is difficult to find inverses without the aid of a computer. For a 2×2 matrix
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A =

[
a11 a12
a21 a22

]
,

the inverse is given by

A−1 =
1

a11a22 −a12a21

[
a22 −a12
−a21 a11

]
. (1)

To confirm that this is correct, multiply AA−1 to see that it gives the identity matrix.
Moderately complicated formulae exist for computing the inverse of 3×3 matrices.
Inverses of larger matrices become very difficult to compute by hand. Of course
computers are ideally suited for finding such things.

One use for inverse matrices is in solving systems of equations.

EXAMPLE A.6.1. Consider the system of equations

2x+4y = 20
3x+4y = 10.

We can write this in matrix form as[
2 4
3 4

][
x
y

]
=

[
20
10

]
.

Multiplying on the left by the inverse of the coefficient matrix gives[
2 4
3 4

]−1 [2 4
3 4

][
x
y

]
=

[
2 4
3 4

]−1 [20
10

]
.

Using the definition of the inverse on the left-hand side of the equality and the
formula in (A.6.1) on the right-hand side gives[

1 0
0 1

][
x
y

]
=

[
−1 1
3/4 −1/2

][
20
10

]
or [

x
y

]
=

[
−10

10

]
.

Thus (x,y) = (−10,10) is the solution for the two equations, i.e., 2(−10)+4(10) =
20 and 3(−10)+4(10) = 10. 2

More generally, a system of equations, say,

a11 y1 +a12 y2 +a13 y3 = c1

a21 y1 +a22 y2 +a23 y3 = c2

a31 y1 +a32 y2 +a33 y3 = c3
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in which the ai js and cis are known and the yis are variables, can be written in matrix
form as a11 a12 a13

a21 a22 a23
a31 a32 a33

y1
y2
y3

=

c1
c2
c3


or

AY =C.

To find Y simply observe that AY = C implies A−1AY = A−1C and Y = A−1C. Of
course this argument assumes that A−1 exists, which is not always the case. More-
over, the procedure obviously extends to larger sets of equations.

On a computer, there are better ways of finding solutions to systems of equations
than finding the inverse of a matrix. In fact, inverses are often found by solving
systems of equations. For example, in a 3× 3 case the first column of A−1 can be
found as the solution to a11 a12 a13

a21 a22 a23
a31 a32 a33

y1
y2
y3

=

1
0
0

 .
For a special type of square matrix, called an orthonormal matrix, the transpose

is also the inverse. In other words, a square matrix P is an orthonormal matrix if

P′P = I = PP′.

To establish that P is orthonormal, it is enough to show either that P′P = I or that
PP′ = I. Orthonormal matrices are particularly useful in discussions of eigenval-
ues and principal components. (Most people call these orthogonal matrices but or-
thonormal is clearly a better name for them.)

Orthogonal is a synonym for perpendicular. Two vectors x and y are orthogonal
(written x ⊥ y) if x′y = 0. (You can check out the geometry of this in two and three
dimensions by realizing that with a coordinate system a vector is the line segment
that goes from the point with all zeros to the point specified by the coordinates in
the vector.) If the columns of a matrix A are orthogonal it is easy to see that A′A
has to be a diagonal matrix. Requiring that P′P = I is requiring more than that the
columns of P be orthogonal. It also requires that the columns of P be normalized
to have length one. The length of a vector x is defined to be

√
x′x. (Again, you can

check out the geometry of this in three or fewer dimensions.)

A.7 Useful Properties

The following proposition summarizes many of the key properties of matrices and
the operations performed on them.
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Proposition A.7.1. Let A, B, and C be matrices of appropriate dimensions and
let λ be a scalar.

A+B = B+A

(A+B)+C = A+(B+C)

(AB)C = A(BC)

C(A+B) = CA+CB

λ (A+B) = λA+λB(
A′)′ = A

(A+B)′ = A′+B′

(AB)′ = B′A′(
A−1)−1

= A(
A′)−1

=
(
A−1)′

(AB)−1 = B−1A−1.

The last equality only holds when A and B both have inverses. The second-to-last
property implies that the inverse of a symmetric matrix is symmetric because then
A−1 = (A′)−1 = (A−1)′. This is a very important property.

A.8 Eigenvalues; Eigenvectors

Let A be a symmetric matrix. A scalar φ is an eigenvalue of A and x ̸= 0 is an
eigenvector for A corresponding to φ if

Ax = φx.

This specification also works for any square matrix but then you have to deal with
the possibility that the eigenvalues and eigenvectors may involve complex numbers.

EXAMPLE A.8.1. Consider the matrix

A =

 3 1 −1
1 3 −1

−1 −1 5

 .
The value 3 is an eigenvalue and any nonzero multiple of the vector (1,1,1)′ is a
corresponding eigenvector. For example,
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1 3 −1

−1 −1 5

1
1
1

=

3
3
3

= 3

1
1
1

 .
Similarly, if we consider a multiple, say, 4(1,1,1)′, 3 1 −1

1 3 −1
−1 −1 5

4
4
4

=

12
12
12

= 3

4
4
4

 .
The value 2 is also an eigenvalue with eigenvectors that are nonzero multiples of
(1,−1,0)′.  3 1 −1

1 3 −1
−1 −1 5

 1
−1

0

=

 2
−2

0

= 2

 1
−1

0

 .
Finally, 6 is an eigenvalue with eigenvectors that are nonzero multiples of (1,1,−2)′.
2

Our uses for eigenvalues and eigenvectors are closely tied to the following result.
Sometimes eigenvalues are called singular values or characteristic values (similarly
for eigenvectors) but almost everyone seems to use the indicated name for the fol-
lowing result.

Proposition A.8.2. The Singular Value Decomposition.
Let A be a symmetric matrix, then for a diagonal matrix D(φi) consisting of eigenval-
ues there exists an orthonormal matrix P whose columns are corresponding eigen-
vectors such that

A = PD(φi)P′.

EXAMPLE A.8.3. Consider again the matrix

A =

 3 1 −1
1 3 −1

−1 −1 5

 .
In writing A = PD(φi)P′, the diagonal matrix is

D(φi) =

3 0 0
0 2 0
0 0 6

 .
The orthonormal matrix is
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P =


1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

 .
We leave it to the reader to verify that PD(φi)P′ = A and that P′P = I.

Note that the columns of P are multiples of the vectors identified as eigenvectors
in Example A.8.1; hence the columns of P are also eigenvectors. The multiples of
the eigenvectors were chosen so that P′P= I and PP′ = I. Moreover, the first column
of P is an eigenvector corresponding to 3, which is the first eigenvalue listed in
D(φi). Similarly, the second column of P is an eigenvector corresponding to 2 and
the third column corresponds to the third listed eigenvalue, 6.

With a 3×3 matrix A having three distinct eigenvalues, any matrix P with eigen-
vectors for columns would have P′P a diagonal matrix, but the multiples of the
eigenvectors must be chosen so that the diagonal entries of P′P are all 1. 2

EXAMPLE A.8.4. Consider the matrix

B =

 5 −1 −1
−1 5 −1
−1 −1 5

 .
This matrix is closely related to the matrix in Example A.8.1. The matrix B has 3
as an eigenvalue with corresponding eigenvectors that are multiples of (1,1,1)′, just
like the matrix A. Once again 6 is an eigenvalue with corresponding eigenvector
(1,1,−2)′ and once again (1,−1,0)′ is an eigenvector, but now, unlike A, (1,−1,0)
also corresponds to the eigenvalue 6. We leave it to the reader to verify these facts.
The point is that in this matrix, 6 is an eigenvalue that has two linearly independent
eigenvectors. In such cases, any nonzero linear combination of the two eigenvectors
is also an eigenvector. For example, it is easy to see that

3

 1
−1

0

+2

 1
1

−2

=

 5
−1
−4


is an eigenvector corresponding to the eigenvalue 6.

To write B = PD(φ)P′ as in Proposition A.8.2, D(φ) has 3, 6, and 6 down the
diagonal and one choice of P is that given in Example A.8.3. However, because one
of the eigenvalues occurs more than once in the diagonal matrix, there are many
choices for P. 2

Generally, if we need eigenvalues or eigenvectors we get a computer to find them
for us. Since eigenvectors are not unique, every program for finding them has to
decide which ones to report. Often they report eigenvectors that have length 1, but
even if the eigenvalues are all distinct that is not enough to uniquely determine them.

Two frequently used functions of a square matrix are the determinant and the
trace.
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Definition A.8.5.
a) The determinant of a square matrix is the product of the eigenvalues of the

matrix.
b) The trace of a square matrix is the sum of the diagonal elements of the matrix.

This is not the usual definition for a determinant but it works fine for our purposes.
It turns out that the trace of a square matrix is also the sum of its eigenvalues but
for a nonsymmetric matrix that may involve having eigenvalues that are complex
conjugates so that their sum is a real number.

An extremely useful property of the trace, and one that is not at all difficult to
show, is that

Proposition A.8.6. For matrices Ar×n and Bn×r,

tr(AB) = tr(BA).

We close with a version of the singular value decomposition that applies to ma-
trices that are not square.

Theorem A.8.7. The Singular Value Decomposition.
Let X be an n× p matrix with rank s. Then X can be written as

X =ULV ′,

where U is n× s, L is s× s, V is s× p, and

L ≡ Diag(λ j).

The λ js are the positive square roots of the positive eigenvalues (singular values) of
X ′X and XX ′ (i.e., λ 2

j = δ j). The columns of V are s orthonormal eigenvectors of
X ′X corresponding to the positive eigenvalues with

X ′XV =V L2,

and the columns of U are s orthonormal eigenvectors of XX ′ with

XX ′U =UL2.

This is proven in PA-V. In this result, because eigenvectors are not uniquely de-
fined, if you find V with X ′XV =V L2, you need to take U as U = XV L−1. Similarly,
if you find U with XX ′U =UL2, you need to take V as V = X ′UL−1. Typically, one
would find the eigenvectors from the smaller of the matrices X ′X and XX ′.
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A.9 Differentiation

Typically, to find maxima and minima one uses differential calculus. This involves
finding the derivative of a function. For a function f taking real numbers into real
numbers,

dx f (x)≡ lim
∆→0

f (x+∆)− f (x)
∆

.

Older software for doing minimizations often asked one for both the function and
the derivative. Now, software is often either smart enough to figure out the derivative
or it approximates the derivative by simply choosing a small ∆ .

If f is a (well behaved) function from Rp into Rt with f (x) = [ f1(x), . . . , ft(x)]′,
then the derivative of f at c is the t × p matrix of partial derivatives,

dx f (x)|x=c ≡ [∂ fi(x)/∂x j|x=c].

When the context is clear, we often use simpler notations such as

dx f (x)|x=c ≡ dx f (c)≡ d f (c).

Critical points are points c where d f (c) = 0.
The following results are specific to applications in Appendix D. They use results

on differentiation, Vec operators, and Kronecker products (denoted ⊗) from Ap-
pendix A in ALM-III. The Vec operator simply stacks the columns of a matrix and
we need to vectorize any matrices prior to applying differentiation results to them.
When g is a scalar function applied to any matrix W = [wi j], then g(W )≡ [g(wi j)],
and in turn,

Vec[g(W )] = g[Vec(W )].

For a scalar function g with derivative ġ and v a vector, dvg(v) is the diagonal matrix
with entries ġ(v). In particular, dvv = I.

In Appendix D on neural nets, g[x′B1] is 1× r because B1 is p× r. Thus,

g[x′B1]
′ = Vec{g[x′B1]}
= g[Vec{x′B1}]
= g{[Ir ⊗ x′]Vec(B1)}.

Now, using the chain rule,

dVec(B1)g[x
′B1]

′ = dVec(B1)g{[Ir ⊗ x′]Vec(B1)}
=
{

dvg(v)|v=[Ir⊗x′]Vec(B1)

}
{dVec(B1)[Ir ⊗ x′]Vec(B1)}

=
{

dvg(v)|v=[Ir⊗x′]Vec(B1)

}
{[Ir ⊗ x′]dVec(B1)Vec(B1)}

= Diag(ġ{[Ir ⊗ x′]Vec(B1)})[Ir ⊗ x′]Irp

= Diag(ġ[x′B1])
′[Ir ⊗ x′].





Appendix B
A Three-Factor ANOVA

Table B.1 is derived from Scheffé (1959) and gives the moisture content (in grams)
for samples of a food product made with three kinds of salt (A), three amounts of salt
(B), and two additives (C). The amounts of salt, as measured in moles, are equally
spaced. This has 18 = 3×3×2 treatment cells in the ANOVA. The cells are marked
by vertical and horizontal lines. The two numbers listed for some treatment cells are
replications. We wish to analyze these data.

Table B.1 Moisture content of a food product.

A (salt i) 1 2 3
B (amount salt j) 1 2 3 1 2 3 1 2 3

1 8 17 22 7 26 34 10 24 39
13 20 10 24 9 36

C (additive k)
2 5 11 16 3 17 32 5 16 33

4 10 15 5 19 29 4 34

We can consider these data as a one-way ANOVA with 18 = 3×3×2 groups of
observations where the groups are a unique combination of a salt, an amount of salt,
and an additive. The model for such data can be taken as

yi jkm = µi jk + ei jkm

where together i jk indicates one of the 18 groups. In this example, each group has
either 1 or 2 observations in it. To test whether the 18 groups have different means,
we fit the reduced model

yi jkm = µ + ei jkm

The results from fitting these models and performing the test is usually summarized
in a three-line ANOVA table
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Analysis of Variance: Moisture content data.
Source df SS MS F P
Groups 17 3643.22 214.307 92.32 0.000
Error 14 32.50 2.3214
Total 31 3675.72

With Fobs = 92.32 it is pretty clear that the 18 groups do not all have the same mean
value.

B.1 Three-way ANOVA

We now consider these data as a three-factor ANOVA. From the structure of the
replications the ANOVA has unequal numbers. The general model for a three-factor
ANOVA with replications is

yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm.

For example, Ai indicates a main effect for the type of salt, [AB]i j indicates a two-
factor interaction between type and amount of salt, while [ABC]i jk indicates a three-
factor interaction between type of salt, amount of salt, and the additive. Mathemat-
ically, µi jk and [ABC]i jk are equivalent terms and including the three factor interac-
tion makes all of the main effects and two-factor interactions redundant. Our first
priority is to find out which interactions are important.

Table B.2 contains the sum of squares for error and the degrees of freedom for
error for all the ANOVA models that include all of the main effects. Each model is
identified in the table by the highest-order terms in the model. For example, [AB][AC]
indicates the model

yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik + ei jkm

with only the [AB] and [AC] interactions. In [AB][AC], the grand mean and all of the
main effects are redundant; it does not matter whether these terms are included in
the model. Similarly, [AB][C] indicates the model

yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm

with the [AB] interaction and the C main effect. In [AB][C], the grand mean and
the A and B main effects are redundant. Readers familiar with methods for fitting
log-linear models (cf. Christensen, 1997 or Fienberg, 1980) will notice a corre-
spondence between Table B.2 and similar displays used in fitting three-dimensional
contingency tables. The analogies between selecting log-linear models and selecting
models for unbalanced ANOVA are pervasive.

All of the models have been compared to the full model using F statistics in
Table B.2. It takes neither a genius nor an F table to see that the only models that
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Table B.2 Statistics for fitting models to the data of Table B.1.

Model SSE dfE F* Cp

[ABC] 32.50 14 18.0
[AB][AC][BC] 39.40 18 0.743 13.0
[AB][AC] 45.18 20 0.910 11.5
[AB][BC] 40.46 20 0.572 9.4
[AC][BC] 333.2 22 16.19 131.5
[AB][C] 45.75 22 0.713 7.7
[AC][B] 346.8 24 13.54 133.4
[BC][A] 339.8 24 13.24 130.4
[A][B][C] 351.1 26 11.44 131.2

*The F statistics are for testing each model against the model
with a three-factor interaction, i.e., [ABC]. The denominator
of each F statistic is MSE([ABC]) = 32.50/14 = 2.3214.

fit the data are the models that include the [AB] interaction. The Cp statistics tell the
same story.

In addition to testing models against the three-factor interaction model, there
are a number of other comparisons that can be made among models that in-
clude [AB]. These are [AB][AC][BC] versus [AB][AC], [AB][AC][BC] versus [AB][BC],
[AB][AC][BC] versus [AB][C], [AB][AC] versus [AB][C], and [AB][BC] versus [AB][C].
None of the comparisons show any lack of fit. The last two comparisons are illus-
trated below.

[AB][AC] versus [AB][C]

R(AC|AB,C) = 45.75−45.18 = 0.57

Fobs = (0.57/2)/2.3214 = 0.123

[AB][BC] versus [AB][C]

R(BC|AB,C) = 45.75−40.46 = 5.29

Fobs = (5.29/2)/2.3214 = 1.139.

Here we use the R(·|·) notation that was introduced in Subsection 1.5.1 (along with
the SSR(·|·) notation). The denominator in each test is MSE([ABC]), i.e., the vari-
ance estimate from the biggest model under consideration.

The smallest model that seems to fit the data adequately is [AB][C]. This is indi-
cated by the Cp statistic but also the F statistics for comparing [AB][C] to the larger
models are all extremely small. Writing out the model [AB][C], it is

yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm.
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We need to examine the [AB] interaction. Since the levels of B are quantitative, a
model that is equivalent to [AB][C] is a model that includes the main effects for C,
but, instead of fitting an interaction in A and B, fits a separate regression equation in
the levels of B for each level of A. Let x j, j = 1,2,3 denote the levels of B. There
are three levels of B, so the most general polynomial we can fit is a second-degree
polynomial in x j. Since the amounts of salt were equally spaced, it does not matter
much what we use for the x js. The computations were performed using x1 = 1,
x2 = 2, x3 = 3. In particular, the model [AB][C] was reparameterized as

yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm. (1)

The nature of this model is that for a fixed additive, the three curves for the three
salts can take any shapes at all. However, if you change to the other additive all
three of the curves will shift, either up or down, exactly the same amount due to the
change in additive. The shapes of the curves do not change.

With a notation similar to that used in Table B.2, the SSE and the dfE are re-
ported in Table B.3 for Model (1) and three reduced models. Note that the SSE and
dfE reported in Table B.3 for [A0][A1][A2][C] are identical to the values reported
in Table B.2 for [AB][C]. This, of course, must be true if the models are merely
reparameterizations of one another. First we want to establish whether the quadratic
effects are necessary in the regressions. To do this we drop the Ai2 terms from Model
(1) and test

[A0][A1][A2][C] versus [A0][A1][C]

R(A2|A1,A0,C) = 59.98−45.75 = 14.23

Fobs = (14.23/3)/2.3214 = 2.04.

Since F(.95,3,14) = 3.34, there is no evidence of any nonlinear effects.

Table B.3 Additional statistics for data of Table B.1.

Model SSE dfE

[A0][A1][A2][C] 45.75 22
[A0][A1][C] 59.98 25
[A0][A1] 262.0 26
[A0][C] 3130. 28

At this point it might be of interest to test whether there are any linear effects.
This is done by testing [A0][A1][C] against [A0][C]. The statistics needed for this
test are in Table B.3. Instead of actually doing the test, recall that no models in
Table B.2 fit the data unless they included the [AB] interaction. If we eliminated the
linear effects we would have a model that involved none of the [AB] interaction.
(The model [A0][C] is identical to the ANOVA model [A][C].) We already know that
such models do not fit.
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Finally, we have never explored the possibility that there is no main effect for C.
This can be done by testing

[A0][A1][C] versus [A0][A1]

R(C|A1,A0) = 262.0−59.98 = 202

Fobs = (202/1)/2.3214 = 87.

Obviously, there is a substantial main effect for C, the type of food additive.
Our conclusion is that the model [A0][A1][C] is the smallest model that has been

considered that adequately fits the data. This model indicates that there is an effect
for the type of additive and a linear relationship between amount of salt and mois-
ture content. The slope and intercept of the line may depend on the type of salt.
(The intercept of the line also depends on the type of additive.) Table B.4 contains
parameter estimates and standard errors for the model. All estimates in the example
use the side condition C1 = 0.

Table B.4 yi jkm = Ai0 +Ai1x j +Ck + ei jkm.

Table of Coefficients
Parameter Estimate SE
A10 3.35 1.375
A11 5.85 0.5909
A20 −3.789 1.237
A21 13.24 0.5909
A30 −4.967 1.231
A31 14.25 0.5476
C1 0. none
C2 −5.067 0.5522

Note that, in lieu of the F test given earlier, the test for the main effect C could
be performed from Table B.4 by looking at t =−5.067/.5522 =−9.176. Moreover,
we should have t2 = F . The t statistic squared is 84, while the F statistic reported
earlier is 87. The difference is due to the fact that the SE reported in Table B.4
uses the MSE for the model being fitted, while in performing the F test we used
MSE([ABC]).

Are we done yet? No. The parameter estimates suggest some additional ques-
tions. Are the slopes for salts 2 and 3 the same, i.e., is A21 = A31? In fact, are the
entire lines for salts 2 and 3 the same, i.e., are A21 = A31, A20 = A30? We can fit
models that incorporate these assumptions.

Model SSE dfE
[A0][A1][C] 59.98 25
[A0][A1][C], A21 = A31 63.73 26
[A0][A1][C], A21 = A31, A20 = A30 66.97 27
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It is a small matter to check that there is no lack of fit displayed by any of these
models. The smallest model that fits the data is now [A0][A1][C], A21 = A31, A20 =
A30. Thus there seems to be no difference between salts 2 and 3, but salt 1 has a
different regression than the other two salts. (We did not actually test whether salt 1
is different, but if salt 1 had the same slope as the other two then there would be no
[AB] interaction and we know that interaction exists.) There is also an effect for the
food additives. The parameter estimates and standard errors for the final model are
given in Table B.5.

Table B.5 yi jkm = Ai0 +Ai1x j +Ck + ei jkm, A21 = A31, A20 = A30.

Table of Coefficients
Parameter Estimate SE
A10 3.395 1.398
A11 5.845 0.6008
A20 −4.466 0.9030
A21 13.81 0.4078
C1 0. none
C2 −5.130 0.5602

Figure B.1 shows the fitted values as functions of the amount of salt for each
combination of a salt (with salts 2 and 3 treated as the same) and the additive. The
fact that the slope for salt 1 is different from the slope for salts 2 and 3 constitutes
an AB interaction. The vertical distances between the two lines for each salt are the
same due to the simple main effect for C (additive). The two lines are shockingly
close at x1 = 1, which makes one wonder if perhaps j = 1 is a condition of no salt
being used.

If j = 1 really consists of not adding salt, then, when j = 1, the means should be
identical for the three salts. The additives can still affect the moisture contents and
positive salt amounts can affect the moisture contents. To incorporate these ideas,
we subtract one from the salt amounts and eliminate the intercepts from the lines in
the amount of salt. That makes the effects for the additive the de facto intercepts,
and they are no longer overparameterized,

yi jkm =Ck +Ai1(x j −1)+ ei jkm, A21 = A31.

This model has dfE = 28 and SSE = 67.0 so it fits the data almost as well as the
previous model but with one less parameter. The estimated coefficients are given in
Table B.6 and the results are plotted in Figure B.2. The figure is almost identical to
Figure B.1. Note that the vertical distances between the two lines with “the same”
salt in Figure B.2 are 5.1347 = 9.3162− 4.1815, almost identical to the 5.130 in
Figure B.1.

Are we done yet? Probably not. We have not even considered the validity of the
assumptions. Are the errors normally distributed? Are the variances the same for
every treatment combination? Technically, we need to ask whether C1 = C2 in this
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Fig. B.1 Fitted values for moisture content data treating salts 2 and 3 as the same.

Table B.6 yi jkm =Ck +Ai1(x j −1)+ ei jkm, A21 = A31.

Table of Coefficients
Parameter Estimate SE tobs
C1 9.3162 0.5182 17.978
C2 4.1815 0.4995 8.371
A11 5.8007 0.4311 13.456
A21 13.8282 0.3660 37.786

new model. A quick look at the estimates and standard errors answers the question
in the negative.

B.2 Computing

We now present and contrast R and SAS code for fitting [AB][C] and discuss the
fitting of other models from this section. Table B.7 illustrates the variables needed
for a full analysis. The online data file contains only the y values and indices for
the three groups. Creating X and X2 is generally easy. Creating the variable A2 that
does not distinguish between salts 2 and 3 can be trickier. If we had a huge number
of observations, we would want to write a program to modify A into A2. With the
data we have, in Minitab it is easy to make a copy of A and modify it appropriately
in the spreadsheet. Similarly, it is easy to create A2 in R using A2=A followed by
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Fig. B.2 Fitted values for moisture content data treating salts 2 and 3 as the same and B = 1 as 0
salt.

A2[(A2 == 3)] <- 2. For SAS, I would probably modify the data file so that
I could read A2 with the rest of the data.

Table B.7 Moisture data, indices, and predictors.

A B C X X2 A2 A B C X X2 A2
y i j k x x2 y i j k x x2

8 1 1 1 1 1 1 11 1 2 2 2 4 1
17 1 2 1 2 4 1 16 1 3 2 3 9 1
22 1 3 1 3 9 1 3 2 1 2 1 1 2
7 2 1 1 1 1 2 17 2 2 2 2 4 2

26 2 2 1 2 4 2 32 2 3 2 3 9 2
34 2 3 1 3 9 2 5 3 1 2 1 1 2
10 3 1 1 1 1 2 16 3 2 2 2 4 2
24 3 2 1 2 4 2 33 3 3 2 3 9 2
39 3 3 1 3 9 2 4 1 1 2 1 1 1
13 1 2 1 2 4 1 10 1 2 2 2 4 1
20 1 3 1 3 9 1 15 1 3 2 3 9 1
10 2 1 1 1 1 2 5 2 1 2 1 1 2
24 2 2 1 2 4 2 19 2 2 2 2 4 2
9 3 1 1 1 1 2 29 2 3 2 3 9 2

36 3 3 1 3 9 2 4 3 1 2 1 1 2
5 1 1 2 1 1 1 34 3 3 2 3 9 2
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An R script for fitting [AB][C] follows. R needs to locate the data file, which in
this case is located at E:\Books\ANREG2\DATA2\tab16-1.dat.

scheffe <- read.table("E:\\Books\\ANREG2\\DATA2\\tab16-1.dat",
sep="",col.names=c("y","a","b","c"))

attach(scheffe)
scheffe
summary(scheffe)

#Summary tables
A=factor(a)
B=factor(b)
C=factor(c)
X=b
X2=X*X
sabc <- lm(y ˜ A:B + C)
coef=summary(sabc)
coef
anova(sabc)

SAS code for fitting [AB][C] follows. The code assumes that the data file is the
same directory (folder) as the SAS file.

options ps=60 ls=72 nodate;
data anova;

infile ’tab16-1.dat’;
input y A B C;
X = B;
X2=X*X;

proc glm data=anova;
class A B C ;
model y = A*B C ;
means C / lsd alpha=.01 ;
output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;
plot ehat*yhat sr*R/ vpos=16 hpos=32;

proc rank data=new normal=blom;
var sr;
ranks nscores;

proc plot;
plot sr*nscores/vpos=16 hpos=32;

run;

To fit the other models, one needs to modify the part of the code that specifies
the model. In R this involves changes to “sabc <- lm(y ∼ A:B + C)” and
in SAS it involves changes to “model y = A*B C;”. Alternative model specifi-
cations follow.
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Model Minitab R SAS
[ABC] A|B|C A:B:C A*B*C
[AB][BC] A|B B|C A:B+B:C A*B B*C
[AB][C] A|B C A:B+C A*B C
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C A A*X A*X2 C
[A0][A1][C], A21 = A31 A A2|X C A+A2:X+C-1 A A2*X C
[A0][A1][C], A21 = A31, A20 = A30 A2 A2|X C A2+A2:X+C-1 A2 A2*X C

B.3 Regression fitting

We start by creating 0-1 indicator variables for the factor variables A, B, and C. Call
these, A1, A2, A3, B1, B2, B3, C1, C2, respectively. The values used to identify groups
in factor variable B are measured quantities, so create a measurement variable x ≡ B
and another x2. We can construct all of the models from these 10 predictor variables
by multiplying them together judiciously. (For example, A1x is the product of the
A1 variable and the x variable and A1B2 is a similar product.) Of course there are
many equivalent ways of specifying these models; we present only one. None of the
models contain an intercept.

Model Variables
[ABC] A1B1C1, A1B1C2, A1B2C1, A1B2C2, A1B3C1, . . . , A3B3C1, A3B3C2
[AB][AC][BC] A1B1, A1B2, . . . , A3B3, A1C2, A2C2, A3C2, B2C2, B3C2
[AB][BC] A1B1, A1B2, . . . , A3B3, B1C2, B2C2, B3C2
[AB][C] A1B1, A1B2, . . . , A3B3, C2
[A][B][C] A1, A2, A3, B2, B3, C2
[A0][A1][A2][C] A1, A2, A3, A1x, A2x, A3x, A1x2, A2x2, A3x2, C2
[A0][A1][C] A1, A2, A3, A1x, A2x, A3x, C2
[A0][A1] A1, A2, A3, A1x, A2x, A3x
[A0][C] A1, A2, A3, C2

Constructing the models in which salts 2 and 3 are treated alike requires some addi-
tional algebra.

Model Variables
[A0][A1][C], A21 = A31 A1, A2, A3, A1x, (A2 +A3)x, C2
[A0][A1][C], A21 = A31, A20 = A30 A1, (A2 +A3), A1x, (A2 +A3)x, C2



Appendix C
MANOVA

Table C.1 gives data from Box (1950) on the abrasion resistance of a fabric. The
data are weight loss of a fabric that occurs during the first 1000 revolutions of a
machine designed to test abrasion resistance y1, during the second 1000 revolutions
y2, and during the third 1000 revolutions y3. A piece of fabric is weighed, put on the
machine for 1000 revolutions, and weighed again. The measurement is the change
in weight. This is done three times for each piece of fabric. Fabrics of several dif-
ferent types are compared. They differ by whether a surface treatment was applied,
the type of filler used, and the proportion of filler used. Two pieces of fabric of
each type are examined, giving two replications in the analysis of variance. Here
we view measurements on different pieces of fabric as independent but the three
measurements on each piece as possibly correlated.

Table C.1 Abrasion resistance data.

Proportions
Surf. 25% 50% 75%
treat. Fill 1000 2000 3000 1000 2000 3000 1000 2000 3000

A 194 192 141 233 217 171 265 252 207
A 208 188 165 241 222 201 269 283 191

Yes
B 239 127 90 224 123 79 243 117 100
B 187 105 85 243 123 110 226 125 75
A 155 169 151 198 187 176 235 225 166
A 173 152 141 177 196 167 229 270 183

No
B 137 82 77 129 94 78 155 76 91
B 160 82 83 98 89 48 132 105 67

The data involve three explanatory factors: Surface treatment (yes, no), Fill (A,
B), and Proportion of fill (25%, 50%, 75%). These are referred to as S, F, and P,
respectively. (We hope no confusion occurs between the factor F and the use of F
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statistics or between the factor P and the use of P values!) In analyzing y1,y2,y3,
many aspects are just simple extensions of the analysis on a single yr, cf. Ap-
pendix B.

The multivariate approach to analyzing data that contain multiple measurements
on each subject involves using the multiple measures as separate dependent vari-
ables in a collection of standard analyses each involving a single dependent variable.
The method of analysis known as multivariate analysis of variance (MANOVA), or
with more generality as multivariate linear models, then combines results from the
several linear models. A detailed discussion of MANOVA is beyond the scope of
this book, but we present a short introduction to some of the underlying ideas.

After introducing multivariate linear models in general, for simplicity we focus
on a balanced analysis of variance. There is nothing in the general theory that re-
quires balance except that there be no missing observations among the multiple
measures on a subject. Entirely missing a subject causes few problems. The discus-
sion in ALM is quite general but at a higher mathematical level. Almost all Statistics
books on Multivariate Analysis deal with MANOVA. Johnson and Wichern (2007)
or Johnson (1998) are reasonable places to look for more information on the subject.

C.1 Multivariate Linear Models

The distinction between standard univariate linear models and standard multivariate
linear models is simply that multivariate linear models involve more than one de-
pendent variable. For multivariate data, let the dependent variables be y1, . . . ,yq. The
idea is that all q random variables will be observed on each of n individuals. The
standard assumption is that the random variables have some unknown covariance
matrix Σ that is the same for all individuals but different individuals are uncorre-
lated. If n observations are taken on each dependent variable, we have yi1, . . . ,yiq,
i = 1, . . . ,n. Let Y1 = [y11, . . . ,yn1]

′ and, in general, Yh = [y1h, . . . ,ynh]
′, h = 1, . . . ,q.

For each h, the vector Yh is the vector of n responses on the variable yh and can
be used as the response vector for a linear model. For h = 1, . . . ,q, write the linear
model

Yh = Xβh + eh, E(eh) = 0, Cov(eh) = σhhI, (1)

where X is a known n× p matrix that is the same for all dependent variables (it
depends on the individuals but not on the variable being measured), but βh and the
error vector eh = [e1h, . . . ,enh]

′ are peculiar to the dependent variable. Here we are
using σhh (rather than σ2

h ) to denote the variance associated with yh.
The multivariate linear model consists of fitting the q linear models simultane-

ously. Write the matrices

Yn×q = [Y1, . . . ,Yq], Bp×q = [β1, . . . ,βq], en×q = [e1, . . . ,eq].

The multivariate linear model is
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Y = XB+ e . (2)

The key to the analysis of the standard multivariate linear model is the random
nature of the n× q error matrix e = [eih]. At a minimum, we assume that E(e) = 0
and that different individuals i are uncorrelated,

Cov(eih,ei′h′) =

{
σhh′ if i = i′

0 if i ̸= i′
.

Let

δii′ =

{
1 if i = i′

0 if i ̸= i′ ,

then the covariances can be written simply as

Cov(eih,ei′h′) = σhh′δii′ .

To construct tests and confidence regions, we would assume that the ei js have a mul-
tivariate normal distribution with the previously indicated mean and covariances.
Note that this covariance structure implies that the error vector in model (1) has
Cov(eh) = σhhI, as indicated previously.

An alternative but equivalent way to state the standard multivariate linear model
is by examining the rows of model (2). Write

Y =

y′1
...

y′n

 , X =

x′1
...

x′n

 , and e =

ε ′1
...

ε ′n

 .
The standard multivariate linear model is also

y′i = x′iB+ ε
′
i , i = 1, . . . ,n. (3)

The error vector εi has the properties

E(εi) = 0, Cov(εi) = [σhh′ ]≡ Σq×q,

and, for i ̸= j,
Cov(εi,ε j) = 0.

To construct tests and confidence regions, the vectors εi are assumed to have inde-
pendent multivariate normal distributions.

To reiterate, the multivariate model (2) holds if and only if the q univariate mod-
els (1) hold simultaneously and the multivariate model holds if and only if the n
models in (3) hold simultaneously. All of these models have errors with mean zero
and all models determine the same covariance structure. The unknown covariance
parameters are the unique parameters in Σ . We assume throughout that Σ is positive
definite.
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C.2 MANOVA Example

Again consider the Box (1950) data. In the multivariate approach, we begin by fittin
separate ANOVA models for the data from 1000 rotations, 2000 rotations, and 3000
rotations. The variables yhi jk,1, yhi jk,2, and yhi jk,3 denote the data from 1000, 2000,
and 3000 rotations, respectively. We fit the models

yhi jk,1 = µhi j,1 + εhi jk,1

= µ1 + sh,1 + fi,1 + p j,1

+(s f )hi,1 +(sp)h j,1 +( f p)i j,1 +(s f p)hi j,1 + εhi jk,1,

yhi jk,2 = µhi j,2 + εhi jk,2

= µ2 + sh,2 + fi,2 + p j,2

+(s f )hi,2 +(sp)h j,2 +( f p)i j,2 +(s f p)hi j,2 + εhi jk,2,

and

yhi jk,3 = µhi j,3 + εhi jk,3

= µ3 + sh,3 + fi,3 + p j,3

+(s f )hi,3 +(sp)h j,3 +( f p)i j,3 +(s f p)hi j,3 + εhi jk,3

h = 1,2, i = 1,2, j = 1,2,3, k = 1,2. The first versions of these models (the ones
written with µhi j,m) are one-way ANOVA (regression) models with t = 12 groups.
The three indices hi j together identify the 12 groups. The second version of each
model is equivalent to the first version but the second version exploits the particular
(factorial) nature of how the 12 treatments are defined. The second version involves
main effects for the three factors S, F, and P, two-factor interactions between pairs of
factors, and a three-way interaction between the three factors, which is nothing more
than a renaming of µhi j,m as (s f p)hi j,m. The main effects and two-factor interactions
are only of interest when the (s f p)hi j,ms have been dropped out of the models (and
even then, unless you drop out at least 2 two-factor interactions, the main effects are
all extraneous).

As in standard ANOVA models, we assume that the individuals (on which the
repeated measures were taken) are independent. Thus, for fixed m = 1,2,3, the
εhi jk,ms are independent N(0,σmm) random variables. Again we are using a dou-
ble subscript in σmm to denote a variance rather than writing σ2

m. As usual, the errors
on a common dependent variable, say εhi jk,m and εh′i′ j′k′,m, are independent for dif-
ferent individuals, i.e., when (h, i, j,k) ̸= (h′, i′, j′,k′), but we also assume that the
errors on different dependent variables, say εhi jk,m and εh′i′ j′k′,m′ , are independent
when (h, i, j,k) ̸= (h′, i′, j′,k′). However, not all of the errors for all the variables
are assumed independent. Two observations (or errors) on the same subject are not
assumed to be independent. For fixed h, i, j, k the errors for any two variables are
possibly correlated with, say, Cov(εhi jk,m,εhi jk,m′) = σmm′ .
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The models for each variable m are of the same form but the parameters differ for
the different dependent variables yhi jk,m. All the parameters have an additional sub-
script to indicate which dependent variable m they belong to. The essence of the pro-
cedure is simply to fit each of the models individually and then to combine results.
Fitting individually gives three separate sets of residuals, ε̂hi jk,m = yhi jk,m − ȳhi j·,m
for m = 1,2,3, so three separate sets of residual plots and three separate ANOVA ta-
bles. The three ANOVA tables are given as Tables C.2, C.3, and C.4. Residual plots
for y3 are given as Figures C.1 and C.2 but similar plots for y1 and y2 should also
be examined. Each variable can be analyzed in detail using the ordinary methods
for multifactor ANOVA models illustrated in Appendix B. (The analysis in Ap-
pendix B is more complicated because the ANOVA there is unbalanced.) If we ig-
nored the factorial group structure of the treatments, the one-way ANOVA would
provide a three line ANOVA table with the same Total and Error lines but the rest of
the Source rows would be consolidated into a single row of the ANOVA table and
labeled Groups (or Treatments) with 12− 1 = 1+ 1+ 2+ 1+ 2+ 2+ 2 degrees of
freedom and provide an F test for whether any of the 12 groups were different from
each other.

Table C.2 Analysis of variance for y1.

Source df SS MS F P

S 1 26268.2 26268.2 97.74 0.000
F 1 6800.7 6800.7 25.30 0.000
P 2 5967.6 2983.8 11.10 0.002
S∗F 1 3952.7 3952.7 14.71 0.002
S∗P 2 1186.1 593.0 2.21 0.153
F∗P 2 3529.1 1764.5 6.57 0.012
S∗F∗P 2 478.6 239.3 0.89 0.436
Error 12 3225.0 268.8

Total 23 51407.8

The key to multivariate analysis of variance is to combine results across the three
variables y1, y2, and y3. Recall that the mean squared errors are just the sums of the
squared residuals divided by the error degrees of freedom, i.e.,

MSEmm ≡ smm =
1

dfE ∑
hi jk

ε̂
2
hi jk,m.

This provides an estimate of σmm. We can also use the residuals to estimate covari-
ances between the three variables. The estimate of σmm′ is

MSEmm′ ≡ smm′ =
1

dfE ∑
hi jk

ε̂hi jk,mε̂hi jk,m′ .
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Fig. C.1 Normal plot for y3, W ′ = 0.94.
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Fig. C.2 Residual plots for y3.
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Table C.3 Analysis of variance for y2.

Source df SS MS F P

S 1 5017.0 5017.0 25.03 0.000
F 1 70959.4 70959.4 353.99 0.000
P 2 7969.0 3984.5 19.88 0.000
S∗F 1 57.0 57.0 0.28 0.603
S∗P 2 44.3 22.2 0.11 0.896
F∗P 2 6031.0 3015.5 15.04 0.001
S∗F∗P 2 14.3 7.2 0.04 0.965
Error 12 2405.5 200.5

Total 23 92497.6

Table C.4 Analysis of variance for y3.

Source df SS MS F P

S 1 1457.0 1457.0 6.57 0.025
F 1 48330.4 48330.4 217.83 0.000
P 2 1396.6 698.3 3.15 0.080
S∗F 1 0.4 0.4 0.00 0.968
S∗P 2 250.6 125.3 0.56 0.583
F∗P 2 1740.3 870.1 3.92 0.049
S∗F∗P 2 272.2 136.1 0.61 0.558
Error 12 2662.5 221.9

Total 23 56110.0

We now form the estimates into a matrix of estimated covariances

S =

s11 s12 s13
s21 s22 s23
s31 s32 s33

 .
Note that smm′ = sm′m, e.g., s12 = s21. The matrix S provides an estimate of the
covariance matrix

Σ ≡

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 .
Similarly, we can construct a matrix that contains sums of squares error and sums

of cross products error. Write

emm′ ≡ ∑
hi jk

ε̂hi jk,mε̂hi jk,m′

where emm = SSEmm and
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E ≡

e11 e12 e13
e21 e22 e23
e31 e32 e33

 .
Obviously, E = (dfE)S . For Box’s fabric data,

E =

3225.00 −80.50 1656.50
−80.50 2405.50 −112.00
1656.50 −112.00 2662.50

 .
The diagonal elements of this matrix are the error sums of squares from Tables C.2,
C.3, and C.4.

We can use similar methods for every line in the three analysis of variance tables.
For example, each variable m = 1,2,3 has a sum of squares for S∗P, which is
computed as

SS(S∗P)mm ≡ h(S∗P)mm = 4
2

∑
h=1

3

∑
j=1

(
ȳh· j·,m − ȳh···,m − ȳ·· j·,m + ȳ····,m

)2
,

and where the multiplier of 4 is because the term ȳh· j·,m has been averaged over
4 observations. (The nice algebraic formula only exists because the entire model
is balanced.) We can also include cross products using SS(S∗P)mm′ ≡ h(S∗P)mm′ ,
where

h(S∗P)mm′ =

4
2

∑
h=1

3

∑
j=1

(
ȳh· j·,m − ȳh···,m − ȳ·· j·,m + ȳ····,m

)(
ȳh· j·,m′ − ȳh···,m′ − ȳ·· j·,m′ + ȳ····,m′

)
and create a matrix

H(S∗P)≡

h(S∗P)11 h(S∗P)12 h(S∗P)13
h(S∗P)21 h(S∗P)22 h(S∗P)23
h(S∗P)31 h(S∗P)32 h(S∗P)33

 .
For the fabric data

H(S∗P) =

 1186.0833 −33.166667 526.79167
−33.166667 44.333333 −41.583333

526.79167 −41.583333 250.58333

 .
Note that the diagonal elements of H(S∗P) are the S∗P interaction sums of squares
from Tables C.2, C.3, and C.4. Table C.5 contains the H matrices for all of the
sources in the analysis of variance.

If you want to do just a standard one-way MANOVA for getting a multivariate
test of whether the 12 groups are different, define the 3×3 matrix

H(Grps) = [hmm′ ],
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where

hmm′ = 2
2

∑
h=1

2

∑
i=1

3

∑
j=1

(
ȳhi j·,m − ȳ····,m

)(
ȳhi j·,m′ − ȳ····,m′

)
and the multiplier of 2 is because the term ȳhi j·,m has been averaged over 2 observa-
tions. It turns out that

H(Grps) = H(S)+H(F)+H(P)+H(S∗F)+H(S∗P)+H(F∗P)+H(S∗F∗P).

Table C.5 MANOVA statistics.

H(GRANDMEAN) =

940104.17 752281.25 602260.42
752281.25 601983.37 481935.13
602260.42 481935.13 385827.04



H(S) =

26268.167 11479.917 6186.5833
11479.917 5017.0417 2703.7083
6186.5833 2703.7083 1457.0417



H(F) =

6800.6667 21967.500 18129.500
21967.500 70959.375 58561.875
18129.500 58561.875 48330.375



H(P) =

5967.5833 6818.2500 2646.9583
6818.2500 7969.0000 3223.7500
2646.9583 3223.7500 1396.5833



H(S∗F) =

3952.6667 474.83333 38.500000
474.83333 57.041667 4.6250000
38.500000 4.6250000 0.37500000



H(S∗P) =

 1186.0833 −33.166667 526.79167
−33.166667 44.333333 −41.583333

526.79167 −41.583333 250.58333



H(F∗P) =

3529.0833 4275.5000 2374.1250
4275.5000 6031.0000 2527.2500
2374.1250 2527.2500 1740.2500



H(S∗F∗P) =

478.58333 4.4166667 119.62500
4.4166667 14.333333 −57.750000
119.62500 −57.750000 272.25000



E =

3225.00 −80.50 1656.50
−80.50 2405.50 −112.00
1656.50 −112.00 2662.50


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In the standard (univariate) analysis of y1 that was given in Table C.2, the test for
S∗P interactions was based on

F =
MS(S∗P)11

MSE11
=

SS(S∗P)11

SSE11

1/df (S∗P)
1/dfE

=
h(S∗P)11

e11

dfE
df (S∗P)

.

The last two equalities are given to emphasize that the test depends on the yhi jk,1s
only through h(S∗P)11 [e11]

−1. Similarly, a multivariate test of S∗P is a function
of the matrix

H(S∗P)E−1,

where E−1 is the matrix inverse of E. A major difference between the univariate
and multivariate procedures is that there is no uniform agreement on how to use
H(S∗P)E−1 to construct a test statistic. The generalized likelihood ratio test statis-
tic, also known as Wilks’ lambda, is

Λ(S∗P)≡ 1
|I +H(S∗P)E−1|

where I indicates a 3×3 identity matrix and |A| denotes the determinant of a matrix
A. Roy’s maximum root statistic is the maximum eigenvalue of H(S∗P)E−1, say,
φmax(S∗P). On occasion, Roy’s statistic is taken as

θmax(S∗P)≡ φmax(S∗P)
1+φmax(S∗P)

.

A third statistic is the Lawley–Hotelling trace,

T 2(S∗P)≡ dfE tr
[
H(S∗P)E−1] ,

and a final statistic is Pillai’s trace,

V (S∗P)≡ tr
[
H(S∗P)(E +H(S∗P))−1

]
.

Similar test statistics Λ , φ , θ , T 2 and V can be constructed for all of the other main
effects and interactions and also for the one-way MANOVA. It can be shown that
for H terms with only one degree of freedom, these test statistics are equivalent to
each other and to an F statistic. In such cases, we only present T 2 and the F value.

Table C.6 presents the test statistics for each term. When the F statistic is exactly
correct, it is given in the table. In other cases, the table presents F statistic approx-
imations. The approximations are commonly used and discussed; see, for example,
Rao (1973, chapter 8) or ALM. Degrees of freedom for the F approximations and P
values are also given. 2

To complete a multivariate analysis, additional modeling is needed (or MANOVA
contrasts for balanced data). The MANOVA assumptions also suggest some alter-
native residual analysis. We will not discuss either of these subjects. Moreover, our
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Table C.6 Multivariate statistics.

Effect Statistics F df P

GRAND MEAN T 2 = 6836.64 1899.07 3, 10 0.000
S T 2 = 137.92488 38.31 3, 10 0.000
F T 2 = 612.96228 170.27 3, 10 0.000
P Λ = 0.13732 5.66 6, 20 0.001

T 2 = 65.31504 8.16 6, 18 0.000
V = 0.97796 3.51 6, 22 0.014
φmax = 5.28405

S∗F T 2 = 21.66648 6.02 3, 10 0.013
S∗P Λ = 0.71068 0.62 6, 20 0.712

T 2 = 4.76808 0.60 6, 18 0.730
V = 0.29626 0.64 6, 22 0.699
φmax = 0.37102

F∗P Λ = 0.17843 4.56 6, 20 0.005
T 2 = 46.03092 5.75 6, 18 0.002
V = 0.95870 3.38 6, 22 0.016
φmax = 3.62383

S∗F∗P Λ = 0.75452 0.50 6, 20 0.798
T 2 = 3.65820 0.46 6, 18 0.831
V = 0.26095 0.55 6, 22 0.765
φmax = 0.20472

analysis has exploited the balance in S, F, and P so that we have not needed to ex-
amine various sequences of models that would, in general, determine different H
matrices for the effects. (Balance in, i.e. seeing all of, the “rotations” is required for
the MANOVA).

Finally, a personal warning. One should not underestimate how much one can
learn from simply doing the analyses for the individual variables. Personally, I
would look thoroughly at each individual variable (number of rotations in our ex-
ample) before worrying about what a multivariate analysis can add.





Appendix D
Neural Networks and Deep Learning as
Nonparametric/Nonlinear Regression

Neural Networks (NNs) use nonlinear regression to solve nonparametric regression
problems. Deep Learning is merely a reference to how complicated one makes the
Neural Network/nonlinear regression function. Christensen (1996, Chapter 18 or
2015, Chapter 23) provides a brief introduction to fitting nonlinear regression mod-
els. Seber and Wild (1989, 2003) give a more expansive treatment of the area. In
this appendix we focus on discussing the nonlinear regression models defined by
NNs. NNs provide a special case of nonlinear regression and specialized software
is available for them.

At the beginning of Chapter 7 we categorized various types of (univariate) re-
gression problems into a hierarchy:

Conditional Expectation Regression Type
E(y|x) = x′β Linear Regression
E(y|x) = f (x′β ) Generalized Linear Models
E(y|x) = f (x;β ) Nonlinear Regression
E(y|x) = f (x) Nonparametric Regression.

When it appears, β is a vector of unknown parameters. In both generalized linear
models and nonlinear regression the function f is known but in nonparametric re-
gression f is unknown.

In regression methods involving β , we choose estimates of β based on mini-
mizing some loss function, most often squared error loss. For observations (yi,x′i),
i = 1, . . . ,n, least squares nonlinear regression minimizes

SSE(β )≡
n

∑
i=1

[yi − f (xi;β )]2 .

In the NN literature, people often minimize SSE(β )/2. Sometimes a penalty func-
tion is added to the least squares criterion or other loss function. For least squares
linear regression (and ridge regression) we can find explicit formulae for the es-
timates. When fitting nonlinear regression, like fitting generalized linear models,
we need iterative computer methods to find estimates that minimize the (penal-
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ized/regularized) loss function. You basically have to start with a guess for the best
values of the parameters β and explore the loss function surface until you find a
local minimum. Finding the global minimum can be extremely difficult unless the
loss, as a function of the model parameters, is convex. If you have more parameters
than data points I would be very surprised if there were not a great number (prob-
ably an uncountable number) of global minima to choose from and a far greater
number of local minima, cf. Cooper (2021). (Although penalty functions can solve
this issue, they do so at the price of being arbitrarily chosen.) One convenient way
to shrink regression coefficients towards 0, or more generally to any value β0, is to
add artificial observations ỹk with covariates x̃k that satisfy ỹk ≡ f (x̃k;β0).

Most of Chapter 7 was devoted to using linear regression to solve nonparamet-
ric regression problems. Chapter 9 addressed classification problems using special
cases of generalized linear models and contrasted them with support vector ma-
chines. The models of Chapter 9 can incorporate the nonparametric regression ideas
of Chapter 7. Appendix C considered multivariate responses. We consider NNs for
nonparametric nonlinear univariate regression, classification, and multivariate re-
gression.

A common pedagogical application of NNs is identifying the correct digit in
photographs of the numbers 0 through 9. Typically, the predictor variables are a
constant (for an intercept term) along with the gray scale value for each pixel in
some rectangle of pixels. The response is a 10 dimensional vector y that is used to
identify the true digit, i.e., it has 0s everywhere except a 1 for the dimension as-
sociated with the correct digit. The hope is to feed the NN new pictures of digits
and have them correctly classified. We will examine both univariate and multivari-
ate NNs with an ultimate goal of developing a NN general enough to address this
classification problem. Predicting the correct digit is inherently multivariate in that
it involves associating a probability with each of the 10 possible outcomes (digits).

A philosophical difference between Machine Learning and traditional Statistics
seems to be that statisticians have looked for “best” estimates and been interested in
drawing conclusions about the parameters of their models whereas machine learners
look at much more complicated models and look merely for useful answers (esti-
mates/predictions). It seems that much of the work in NNs is advice on how to find
any workable/good answer, cf. Ng (2018).

D.1 Univariate Neural Networks

In Chapters 1 and 2 we considered (univariate) linear models

yi = x′iβ + εi or E(yi|xi) = x′iβ .

(We sometimes write E(yi) = x′iβ wherein conditioning on xi is implicit.) In Chap-
ters 3 and, especially, 7 we used spanning functions so that we could fit a nonpara-
metric regression using linear models. In particular we fitted models like
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yi = φ
′
i β + εi or E(yi|xi) = φ

′
i β ,

where φ ′
i = [φ0(xi), . . . ,φs−1(xi)] was constructed from the spanning functions. Typ-

ically, the s-vectors φi have much higher dimension than the p-vectors xi.
Neural networks construct a known nonlinear regression function f (xi;β ) that

depends on a large number of parameters in the hope that the function is sufficiently
general that it can serve as a method for fitting nonparametric regressions. The func-
tion f (xi;β ) is constructed in stages and deep learning is merely a reference to hav-
ing many stages in the construction. The ability of NNs to serve as a model for
nonparametric regression depends on the number of stages, the complexity at each
stage, and on the choice of a known nonlinear differentiable activation function g
that maps the real numbers onto the real numbers. (We will use the same g function
for every stage but one could easily use different g functions at different stages.) The
most commonly used g functions currently seem to be the logistic transform and the
function we used to help define splines, called the rectified linear unit (ReLU) in the
NN literature, i.e.,

g(u) =
eu

1+ eu =
1

1+ e−u or g(x) = (x)+ ≡
{

x if x > 0
0 if x ≤ 0

.

(The nondifferentiability of (x)+ at 0 does not seem to worry anyone.) The hyper-
bolic tangent (tanh) is another popular choice but there are a variety of common
options. For any such activation function g we may apply it elementwise to any
matrix. Thus, if W = [wi j] is a matrix,

g(W )≡ [g(wi j)].

If we have another matrix Q = [qi j] that is the same size as W , on occasion we will
want to multiply all of the individual elements in them, so we define the operation
⊙ by

W ⊙Q ≡ [wi jqi j].

This will be useful in writing derivatives.
Beginning with a p vector of predictor variables x, the essence of NNs is using g

to define intermediate r+ 1-dimensional vectors of constructed predictor variables
zk+1 and to use as a final model E(y|x)= z′Dβ . In particular, the constructed predictor
variables are defined recursively as z′k+1 ≡

[
1,g
(
z′kBk

)]
where Bk is a matrix of

unknown parameters, k = 1, . . . ,D−1, where D is the depth of the NN, and where
z1 ≡ x with the understanding that the first component of x is typically 1. It follows
that B1 must be p×r but all remaining Bk are (r+1)×r. In these problems typically
r << p. (One could easily use different dimensions rk at different stages.) The model
involves many linear pieces but is highly nonlinear.

The simplest NNs have D = 2 and the simplest individual NN also has r = 1.
With r = 1, B1 is p× 1 and β is 2× 1. Denote x′ = (x1, . . . ,xp) remembering that
typically x1 ≡ 1. It is not hard to see that the nonlinear regression function is



376 D Neural Networks and Deep Learning as Nonparametric/Nonlinear Regression

f (x;β ,B1) = β1 +β2 g

(
b11 +

p

∑
j=2

b j1x j

)
= β1 +β2g(x′B1) =

[
1,g(x′B1)

]
β .

With D = 2 and r = 2, now B1 = [b1i j] is p × 2 which we can write as two
column vectors B1 = [B11,B12] and β is now 3×1. The nonlinear regression function
becomes

f (x;β ,B1) = β1 +β2 g

(
b111 +

p

∑
j=2

b1 j1x j

)
+β3 g

(
b112 +

p

∑
j=2

b1 j2x j

)
= β1 +β2 g(x′B11)+β3 g(x′B12)

=
[
1,g(x′B1)

]
β .

Note that the terms

β2 g

(
b111 +

p

∑
j=2

b1 j1x j

)
and β3 g

(
b112 +

p

∑
j=2

b1 j2x j

)

are completely interchangeable because the β s and bs are unknown parameters.
Thus the parameters of this model are not identifiable. There can be no unique best
estimates of them. This problem occurs whenever r ≥ 2.

For D = 3 the NN model is

E(y|x) = z′3β = [1,g
(
z′2B2

)
]β = [1,g

(
[1,g

(
z′1B1

)
]B2
)
]β

≡ [1,g
(
[1,g

(
x′B1

)
]B2
)
]β ≡ f (x;β ,B2,B1).

More generally,

E(y|x) = z′Dβ

= [1,g
(
z′D−1BD−1

)
]β

= [1,g
(
[1,g

(
z′D−2BD−2

)
]BD−1

)
]β

= [1,g
(
[1,g

(
· · · [1,g

(
z′1B1

)
]BD−2

)
]BD−1

)
]β

≡ [1,g
(
[1,g

(
· · · [1,g

(
x′B1

)
]BD−2

)
]BD−1

)
]β

≡ f (x;β ,BD−1, . . . ,B1).

The unknown parameter matrices Bk and β altogether involve s ≡ (p× r)+ (D−
2)[(r + 1)× r] + (r + 1) unknown parameters. Nonlinear regressions are typically
fitted by least squares but obviously there is no reason one could not use another
loss function or add a differentiable penalty function, cf. Chapter 8. (Minimizing a
function as complicated as ∑i[yi − f (xi;β ,BD−1, . . . ,B1)]

2 is difficult enough with-
out adding nondifferentiability issues into it but some programs allow incorporation
of the LASSO penalty.)

EXAMPLE D.1.1. Battery Data.
Consider again the battery data of Chapter 7. Figure D.1 diagrams the model
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and provides least squares estimated parameters obtained from one fit of R’s
neuralnet program specifying D = 3, r = 2, and a logistic activation function.
The parameter estimates can be read off the figure and are,

B̂1 =

[
−6.407815 −4.337426
7.293236 13.458036

]
, B̂2 =

−2.1456266 −0.5137351
0.6429814 −8.3132015
2.9668757 2.9781474

 ,

β̂ =

4.061124
6.843595
7.171289

 .

13.45804

7.29324

x

2.97815

2.9
66

88

−8.3132

0.64298

7.17129

6.84359

y
−4.33743

−6.40781

1

−0.51374

−2.14563

1

4.06112

1

Error: 1.873199   Steps: 4816

Fig. D.1 Battery data: D = 3, r = 2, g-logistic neural net. Diagram with one set of estimated
parameters.

Figure D.2 gives the data and the NN fitted values along with the squared corre-
lation between them. Comparing these results with Chapter 7, this model fits s = 13
parameters, yet gives an R2 that is less than that of the 5 parameter (4th degree)
polynomial model, the cosine model with s = 7 parameters, and the s = 7 cubic
spline model having 4 interior knots.

These figures are from just one neuralnet fit to this model. Since r ≥ 2, there
are other fits, some of which are not as good. It is relatively simple to fit this model in
neuralnet. Understanding how and why it gives these fitted values is not simple.
There are many computational issues to be explored with NNs. 2
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Fig. D.2 One neuralnet fit to the battery data: D = 3, r = 2, g-logistic.

EXERCISE D.1. Create a NN diagram similar to Figure D.1 for the following
estimates.

B̂1 =

[
−4.337426 −6.407815
13.458036 7.293236

]
, B̂2 =

−0.5137351 −2.1456266
2.9781474 2.9668757
−8.3132015 0.6429814

 ,

β̂ =

4.061124
7.171289
6.843595

 .
Show that these estimates give precisely the same fitted NN as in Example D.1.1.
How are the numbers rearranged from the earlier estimates?

It is interesting to note that if you were to choose a linear activation function g,
all of the NN structure would be a waste of time because such a NN is equivalent to
fitting a linear model E(y|x) = x′γ . In particular, if g is the identity function and you
eliminate the intercept terms, the NN is quite literally E(y|x) = x′B1B2 · · ·BD−1β

in which almost all of the parameters are completely unidentifiable and which is
clearly equivalent to just fitting E(y|x) = x′γ . (Retaining the intercept terms makes
the expression far more complicated but amounts to the same thing.) This argument
also highlights the importance of picking a nonlinear function g to define the NN.

It will be convenient to combine all of the NN parameters β ,BD−1, . . . ,B1 into
a single vector of parameters, say, β̃ . (For those familiar with the Vec operator
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that stacks the columns of a matrix, β̃ ≡ [β ′,Vec(BD−1)
′, . . . ,Vec(B1)]

′.) We write
SSE(β̃ ) for the criterion being minimized.

D.1.1 Relation to Spanning Functions

We have seen that for D = 2 and B1 ≡ [B11, . . . ,B1r], the NN defines

f (x;β ,B1) = β1 +β2g(x′B11)+ · · ·+βr+1g(x′B1r).

In the NN B1 is a matrix of parameters but imagine now that B1 is known. With B1
known, the NN can be viewed as an application of the spanning function approach
to nonparametric regression discussed in Chapter 7 by setting

φ0(x)≡ 1, φ j(x)≡ g(x′B1 j), j = 1, . . . ,r.

For the spanning function approach to be effective, we typically need r + 1 to be
substantially larger than p. In NNs we typically have r+1 much smaller than p but
we can do that because we are using the data to determine B1, so we are using the
data to determine the best choices of the spanning functions.

In this context it is immediately clear that, when r > 1, the parameters in B1
are not identifiable because if you permute the columns of B1 you get the same
collection of spanning functions and therefore get the same fit to the data. Thus B1
cannot possibly be uniquely determined by the (distribution of the) data.

When D > 2, we are allowing more flexibility in letting the data determine better
spanning functions. It is also quite clear that none of the Bks can be identifiable
because any permutation of the r columns, if applied to all of the Bks, will always
give the same results. (As illustrated in Exercise D.1, if you permute the r columns
of Bk you also need to apply that permutation to the last r rows of Bk+1.)

While the permutation argument clearly demonstrates that the parameters are not
identifiable, permutations are not the only source for nonidentifiability in NNs.

D.2 Nonlinear Regression

As a statistics problem, nonlinear regression has been around a long time. For a non-
linear regression f (x; β̃ ) with independent, mean zero, homoskedastic, normally dis-
tributed errors, the least squares estimates of β̃ are maximum likelihood estimates.
Traditional nonlinear regression is based on using Taylor’s Theorem to get an ap-
proximate linear model. The calculus of Taylor’s Theorem tells us that for β̃ values
close to a known value β̃0,

f (x; β̃ )
.
= f (x; β̃0)+ [d

β̃
f (x; β̃0)](β̃ − β̃0).
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(Derivatives are discussed in Appendix A.9.) Taylor’s Theorem suggests fitting the
approximating model,

yi
.
= f (xi; β̃0)+ [d

β̃
f (xi; β̃0)](β̃ − β̃0)+ εi, i = 1, . . . ,n.

Because β̃0 is known, this is actually a standard linear model that incorporates a pair
of offsets. First, define our predictor variables as

w′
i ≡ d

β̃
f (xi; β̃0).

Now we can remove the known offset terms to the left-hand side and write the
standard linear model

yi − f (xi; β̃0)+w′
iβ̃0

.
= w′

iβ̃ + εi, i = 1, . . . ,n.

If β̃0 minimizes SSE(β̃ ), this approximate linear model can be used in pretty much
the standard way to obtain predictions and inferences about the parameters of the
nonlinear model.

A version of this linearization procedure is also how we traditionally find the
least squares estimates. Writing δ ≡ (β̃ − β̃0), an equivalent approximating model
can we written

yi − f (xi; β̃0)
.
= w′

iδ + εi, i = 1, . . . ,n. (1)

In matrix terms we can write this as

Y −F(β̃0) =Wδ + e.

Here W actually depends on β̃0, so actually

Y −F(β̃0) =W (β̃0)δ + e.

Estimating δ is the key to finding the least squares estimates. As justified in the
earlier references on nonlinear regression, the least squares estimate of δ , i.e.,
δ̂ = (W ′W )−1W ′[Y −F(β̃0)], can be used to move β̃0 closer to the least squares
estimate via β̃1 ≡ β̃0 + δ̂ . Repeating this process with β̃1 replacing β̃0, leads to val-
ues β̃2, β̃3, β̃4, . . . that (we hope) will converge to the least squares estimate. This is
the Gauss-Newton algorithm for finding the least squares estimates. If, instead of
least squares estimation, we use ridge regression to estimate δ , we get β̃1 = β̃0 + δ̂R
where δ̂R = (W ′W + λ I)−1W ′[Y − F(β̃0)]. This method is known as Marquart’s
compromise algorithm. In what sense is this a compromise? The method of steep-
est descent uses δ̂S = (λ I)−1W ′[Y −F(β̃0)] = (1/λ )W ′[Y −F(β̃0)], so Marquart’s
method is a combination of the other two. What these methods have in common is
that to get δ̂ = 0 requires W (β̃0)

′[Y −F(β̃0)] = 0, which makes β̃0 a critical point
of SSE(β̃ ). A variety of other least squares algorithms have been proposed and are
available in various software products.

If Gauss-Newton works, it tends to work very well. (For example, with a lin-
ear model, Gauss-Newton always gets the answer in just one step.) If W displays
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collinearity problems, Gauss-Newton frequently works poorly. We will see that even
in a very simple NN for the battery data, one without identifiability issues, W has
severe collinearity problems. In addition, NNs often have s, the number of param-
eters, very large and W ′W is an s× s matrix, so even without collinearity issues, it
can be difficult to invert the matrix. Not surprisingly, NN programs tend to focus on
the method of steepest descent, thus avoiding large matrix inversions.

How well a NN model works depends on the true structure of E(y|x), the choices
of g, r, and D, and the fitting method. It reminds me of reproducing kernel regression
in which success depends on how the choice of kernel meshes with the choice of
penalty function and the true structure. It is impossible to know ahead of time what
choices will work well.

EXAMPLE D.2.1. I fitted the simplest NN model to the battery data, a logis-
tic D = 2, r = 1. This model does not fit the data very well, but that is irrelevant
to the issues discussed here. The model has r = 1, so it has no identifiability is-
sues. It was fitted using R’s NN programs neuralnet and nnet, and R’s non-
linear least squares program nls. The NN programs were run four times. Running
neuralnet, based on random starting values β̃0, gave estimates

β̃ = (7.703679,4.993587,−7.598368,28.173712)′

β̃ = (7.703560,4.993619,−7.599077,28.177550)′

β̃ = (7.701728,4.995634,−7.582689,28.122157)′

β̃ = (7.702761,4.994409,−7.594703,28.163069)′,

so it looks like neuralnet consistently converges to the unique least squares es-
timates. Running nnet, also based on random starting values, gave

β̃ = (7.711252,4.985046,−7.684437,28.463444)′

β̃ = (7.711415,4.984930,−7.687263,28.472109)′

β̃ = (7.711415,4.984809,−7.685779,28.468946)′

β̃ = (7.711285,4.985015,−7.684596,28.463871)′,

so it also looks like nnet consistently converges to the unique least squares
estimates. Unfortunately, they are not quite the same values as those given by
neuralnet. Finally, nls, for all the starting values I tried, converged to

β̃ = (7.711,4.985,−7.684,28.463)′,

which agrees well with the nnet results. 2

EXAMPLE D.2.2. I attempted to fit the second simplest well-defined NN model
to the battery data, a logistic D = 3, r = 1. (Again, this simple model seems to
be incapable of actually fitting the data well, but that is again irrelevant.) Because
D > 2, nnet will not fit this model. We will see later that neuralnet is incapable
of fitting it in any consistant way. Alas, nls is also not capable of fitting it using the
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Gauss-Newton method. This seems to be due to collinearity problems. To illustrate
this, I obtained an estimate from neuralnet and used it as a starting value β̃0 for
Gauss-Newton. In particular I computed the derivative matrix W (β̃0). Due to the
definition of NNs, the first column of W (β̃0) is a column of 1s. After that, there is
one column for β2, two columns for B2, and two columns for B1. I treated all the
columns after the first as standard predictor variables and looked at the eigenvalues
of their covariance matrix to assess collinearity.

My starting value was

β̃0 = (5.2801397,7.8749274,−0.8069346,3.5837052,−7.1122252,24.2575694).

The eigenvalues for the covariance matrix of all the predictors were 0.5073504,
0.1494210, 0.0008043, 0.00003363, and 0.000001177. With such small eigenval-
ues, it is not surprising that using Gauss-Newton and fitting linear models is prob-
lematic. 2

In traditional applications of nonlinear regression, one could frequently find the
derivative of f (x; β̃ ) with respect to β̃ quite easily. NNs involve fitting a much more
complicated function than in traditional statistical applications. Finding derivatives
in NN’s version of nonlinear regression, which involves recursive use of g, involves
multiple applications of the chain rule. This does not appear difficult but seems ripe
for specialized software. Moreover, like the spanning function approach to nonpara-
metric regression, NNs seem rife with computational issues associated with the very
large number of parameters. (Rather than finding the derivatives, modern software
often approximates them numerically.)

We now find the derivatives of the nonlinear regression function for NNs with
D = 2. Definitions and some additional comments appear in Appendix A.9. Denote

ġ(u)≡ dug(u).

When g is the logistic transform,

ġ(u) = eu/(1+ eu)2.

For D = 2 and r = 1, with f (x;β ,B1) = β1 +β2g
(

b11 +∑
p
j=2 b j1x j

)
,

dβ f (x;β ,B1) =
[
1,g(x′B1)

]
= z′2,

db11 f (x;β ,B1) = β2 ġ

(
b11 +

p

∑
j=2

b j1x j

)
,

and for j = 2, . . . , p

db1 j f (x;β ,B1) = β2 ġ

(
b11 +

p

∑
j=2

b j1x j

)
x j.
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In vector form
dB1 f (x;β ,B1) = β2 ġ(x′B1)x′

For D = 2 and r = 2 with f (x;β ,B1) = β1 +β2g(x′B11)+β3g(x′B12),

dβ f (x;β ,B1) = [1,g(x′B11),g(x′B12)] = [1,g(x′B1)] = z′2,

dB11 f (x;β ,B1) = β2 ġ(x′B11)x′,

dB12 f (x;β ,B1) = β3 ġ(x′B12)x′.

In matrix form,

dVec(B1) f (x;β ,B1) =
[
β2 ġ(x′B11)x′,β3 ġ(x′B12)x′

]
.

For D = 2 and any r we should get

dβ f (x;β ,B1) = [1,g(x′B1)] = z′2

and with β ′ ≡ [β1,β
′
∗]

dVec(B1) f (x;β ,B1) = β
′
∗⊙ ġ(x′B1)⊗ x′.

In addition, the derivatives for the battery data with logistic activation, D = 3, and
r = 1 are programmed in the accompanying manual.

D.2.1 Back Propagation

In standard nonlinear regression, with a model f (x; β̃ ), Gauss-Newton, Steepest
Descent, and Marquart’s Compromise all seek to find a sequence of β̃ values
β̃0, β̃1, β̃2, . . . that converge to some value and when the sequence converges that
value must be the least squares estimate. Each method involves one computation to
move from β̃k to β̃k+1.

In NNs, β̃ is typically a large vector, but one that is naturally partitioned into
smaller parts based on β ,BD−1, ...,B1. It is convenient (and perhaps necessary) to
break up the large computation from β̃k to β̃k+1 into smaller more manageable parts.
That is what back propagation does.

We always start with an initial guess for all the parameters, β̃0 or equivalently
β 0,B0

D−1, ...,B
0
1. In back propagation we start by updating β 0 into β 1 leaving all the

other B0
j ’s fixed. This gives us β 1,B0

D−1, ...,B
0
1. Then with the new β 1, and all the

other B0
js fixed, update BD−1 giving β 1,B1

D−1,B
0
D−2, ...,B

0
1. Work your way through

until you have β 1,B1
D−1, ...,B

1
1 and start all over again.

We now get more explicit. For simplicity, consider a NN with D = 3, so

β̃
′
k = (β k ′,Vec(Bk

2)
′,Vec(Bk

1)
′).
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To simplify notation, rewrite this as

β̃
′
k ≡ (β̃ ′

k3, β̃
′
k2, β̃

′
k1),

so a starting value is
β̃
′
0 = (β̃ ′

03, β̃
′
02, β̃

′
01).

Also write
f (x; β̃k)≡ f (x; β̃k3, β̃k2, β̃k1).

Instead of fitting the model (D.1) all at once, to obtain β̃1 we fit D = 3 models. First,
fit

yi − f (xi; β̃03, β̃02, β̃01)
.
= [d

β̃3
f (xi; β̃03, β̃02, β̃01)]δ3 + εi, i = 1, . . . ,n.

to obtain β̃13 = β̃03 + δ̂3. Then, fit

yi − f (xi; β̃13, β̃02, β̃01)
.
= [d

β̃2
f (xi; β̃13, β̃02, β̃01)]δ2 + εi, i = 1, . . . ,n.

to obtain β̃12 = β̃02 + δ̂2. Finally, fit

yi − f (xi; β̃13, β̃12, β̃01)
.
= [d

β̃1
f (xi; β̃13, β̃12, β̃01)]δ1 + εi, i = 1, . . . ,n.

to obtain β̃11 = β̃01+ δ̂1. Having obtained β̃1 = (β̃ ′
13, β̃

′
12, β̃

′
11)

′, repeat the process to
get β̃2 and so on until they converge (or convince you that they will not converge).

With NNs, δ̂k is generally obtained by steepest descent.

EXAMPLE D.2.2 CONTINUED. For the battery data with D = 3 and r = 1, Gauss-
Newton continues to have collinearity problems even with back propagation. Rather
than updating the predictor variables in turn, I just looked at the predictors associ-
ated with the original starting values, i.e., d

β̃k
f (xi; β̃03, β̃02, β̃01). In other words, I

partitioned the W (β̃0) matrix into three sets of two columns. Fitting a linear model
to get δ3 will not be a problem because the model involves just an intercept and
one predictor. For the predictors associated with just B2 and just B1, I found the
covariance matrices and their eigenvalues. For the B2 predictors, the eigenvalues are
0.3845 and 0.0291, which are not a problem. For the B1 predictors, the covariance
eigenvalues are 0.1760 and 0.0002779, which could be a problem. Remember that
collinearity problems can arise at any step of the Gauss-Newton iterative procedure
and cause it to fail. (Note: The linear models to be fitted for updating B2 and B1
are regressions through the origin but in this case the ratio of eigenvectors for the
covariance matrices was roughly comparable to the ratio of eigenvectors for the
uncentered matrices.) 2
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D.3 Computational Issues

EXAMPLE D.3.1. Earlier we attempted to fit the second simplest well-defined
NN model to the battery data, a logistic D = 3, r = 1. With r = 1, this seems to
be an identifiable model, so there should be a unique set of least squares estimates.
Yet in looking at the neuralnet output, I was surprised to find a great deal of
variability in the reported estimates. So much so that I computed 1000 sets of β̃

estimates, and then computed their mean vector and covariance matrix. The mean
vector is not very interesting,

(5.7504,6.9914,−0.5063,17.9064,−4.7870,11.7851)′.

At best this mean could be used as an improved estimate for β̃ . The covariance
matrix was

0.5754 −0.4894 −0.7770 1.764 −0.2247 −0.3047
−0.4894 2.3580 −0.3858 −3.043 −1.3709 4.4923
−0.7770 −0.3858 4.9928 −10.717 5.7829 −6.3938
1.7640 −3.0432 −10.7167 36.457 −12.4099 7.1190
−0.2247 −1.3709 5.7829 −12.410 8.4314 −10.5457
−0.3047 4.4923 −6.3938 7.119 −10.5457 20.6283

 .

I find the variances to be stunningly large for a process that purports to be converging
to unique estimates. There are even substantial differences in these numbers when
repeating the computation with a different 1000 estimates. 2

For D = 2, both nnet and neuralnet purport to give the least squares esti-
mates. When r > 1, we know the estimates are not identifiable, so the least squares
estimates are not unique. Moreover, there may be different local minima to the
SSE(β̃ ) surface that the different programs may find, so there is no reason to ex-
pect nnet to give the same results as neuralnet. However, if we take the least
squares estimates from neuralnet and feed them as starting values into nnet, we
would expect nnet to recognize them quickly as least squares estimates. The same
should happen when feeding nnet estimates into neuralnet. In Example D.2.1
we saw that even for the simplest NN model, D = 2, r = 1, where the estimates are
identifiable, neuralnet and nnet could not agree on the least squares estimates
for the battery data. It will not be too surprising then, that the two NN programs do
not always agree on what is a least squares estimate in more complicated models.

EXAMPLE D.3.2. For the battery data, there is code in the accompanying manual
for D = 2 and any r feeding neuralnet estimates into nnet and vice versa. Only
a few results are presented here.

Figure D.3 gives the battery data and 4 neuralnet fits of the data on the left
and then 4 nnet fits on the right all using D = 2 and r = 5. The 4 neuralnet
fits come from using different random starting values and they differ radically in the
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quality of their fitted values in that one of the four does a horrible job of fitting the
data for large x values. The difference in fits should be due to using different starting
values, leading to finding different local minima of the SSE(β̃ ) surface, and thus to
different parameter estimates. Figure D.3 by no means exhausts all the possible fits
that can be obtained from either neuralnet or nnet.
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Fig. D.3 Battery data neural net fits: D = 2, r = 5, neuralnet feeding nnet.

Above each plot on the left of Figure D.3 is R2, the squared correlation between
the yi values and the corresponding neuralnet fitted values. There are three dis-
tinct values and one is much lower than the other two. Even among well-fitting
NNs, there typically are slight differences among the fitted values that cause slight
differences in the R2 values.

Above each plot on the right of Figure D.3 are two numbers. The first number is
the square root of the sum of squared differences between the neuralnet fitted
values and the nnet fitted values. This number should be 0 if the two programs
have found the same local minimum for the SSE(β̃ ) surface. With r > 1 we expect
an infinite number of β̃ values that give the same local minima. The second number
above each plot on the right is the square root of the sum of squared differences
between the neuralnet parameter estimates and the nnet parameter estimates.
This should be 0 if the second program has recognized the first program’s estimates
as being values that minimize SSE(β̃ ). Sometimes the values are small and some-
times they are not. In my experience it seems that neuralnet is more likely to
accept nnet estimates as correct than vice versa. In the figure the fitted value dif-
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ferences are all distinct but are all reasonably small. The parameter differences vary
a great deal.

The first and third neuralnet plots might have resulted from finding the same
local minimum to SSE(β̃ ), since they have the same R2 to five digits. They certainly
did not have the same parameter estimates because if they did, the numbers above
the corresponding nnet plots would have to be the same. (Identical starting values
should lead to identical results.)

The differences in parameter estimates might be a result of the step sizes used
when searching the SSE(β̃ ) surface for local minima. Due to nonidentifiability when
r > 1, the SSE(β̃ ) surface should have troughs of values that give the same local
minimum. If so, you can move around the trough, changing the estimates, but not
changing the fitted values very much.

I have created a lot of these plots and in my experience, as r gets larger, you
are less likely to get NN fitted values that fit the battery data poorly. (For r = 5, I
chose a figure with one bad fit because that seemed about the correct proportion.)
For r = 1,2,3, I have rarely seen a good fit to the battery data. 2

D.4 Classification

If we are doing a classification problem with y = 0,1, rather than a standard regres-
sion problem, then E(y|x) needs to be a probability between 0 and 1, so we want to
specify a cumulative distribution function F and use

E(y|x) = F(z′Dβ )

= F
(
[1,g

(
z′D−1BD−1

)
]β
)

= F
(
[1,g

(
[1,g

(
z′D−2BD−2

)
]BD−1

)
]β
)

= F
(
[1,g

(
[1,g

(
· · · [1,g

(
z′1B1

)
]BD−2

)
]BD−1

)
]β
)

= F
(
[1,g

(
[1,g

(
· · · [1,g

(
x′iB1

)
]BD−2

)
]BD−1

)
]β
)

≡ f (x;β ,BD−1, . . . ,B1).

One the most popular choices for F is the logistic transform which is also one of the
most popular choices for g.

Often it makes sense to fit a classification NN by maximum likelihood with the
yis distributed as independent Bernoulli variables having probability E(yi|xi), but
my impression is that classification NNs are often fitted using least squares.

Classification NNs are regression procedures, similar to logistic regression, so
they require modification if being used on discrimination data as discussed in Chap-
ter 10.



388 D Neural Networks and Deep Learning as Nonparametric/Nonlinear Regression

D.5 Generalized Weights

Weights is a term often used in the NN literature for the parameters other than the
intercepts involved at each stage. The intercepts are often referred to as biases. For
a standard nonlinear regression

E(y|xi) = f (xi;β ),

we fit linear models based on the Taylor’s expansion of β around some fixed points
β0. We need to keep changing the fixed point β0 until it becomes the least squares
estimate β̂ .

Generalized weights involve Taylor’s expansions of f (x; β̂ ) around the fixed
points xi, i = 1, . . . ,n. Taylor’s theorem says that for x in a neighborhood of xi,
an approximating linear model holds,

E(y|x) .
= f (xi; β̂ )+ [dx f (xi; β̂ )](x− xi)≡ γ0 + x′γ∗.

Here the regression coefficients are γ∗ ≡ [dx f (xi; β̂ )]′ and the intercept is γ0 =

f (xi; β̂ )− [dx f (xi; β̂ )]xi. The regression coefficient vector [dx f (xi; β̂ )]′ is often
called the vector of generalized weights (w̃i) at xi.

For a binomial regression they do it a little differently. For a cdf F , a typical
model is

E(y|xi) = f (xi;β )≡ F [h(xi;β )],

where h is defined as
h(xi;β )≡ F−1[ f ((xi;β )].

Instead of getting a linear model approximation to the nonlinear regression, we do
a generalized linear model approximation so that

f (xi;β ) = F [h(xi;β )]
.
= F(γ0 + x′γ)

The Taylor’s approximation is applied to h rather than f , so the generalized weights
are the regression coefficients of the approximating “linear predictor.”

D.6 Multivariate Neural Networks

In Appendix C.1 we discussed multivariate linear models Y = XB+ e wherein Y is
an n× q response matrix on n independent individuals with q (presumably) corre-
lated measurements per individual. B is a p×q matrix of unknown parameters. The
model can also be written on an individual basis for i = 1, . . . ,n as

y′i = x′iB+ ε
′
i or E(y′i|xi) = x′iB.
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It is a trivial generalization to use spanning functions φ j(·) to turn this into a multi-
variate nonparametric regression model Y = ΦB+ e which can also be written as

y′i = φ
′
i B+ ε

′
i or E(y′i|xi) = φ

′
i B.

Here again φ ′
i ≡ [φ0(xi), . . . ,φs−1(xi)]

′.
The multivariate generalization of the univariate NN is straightforward, with the

vector β being replaced by a matrix, say BD, having q columns,

E(y′|x) = z′DBD

= [1,g
(
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)
]BD
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(
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]BD
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(
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(
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]BD−2

)
]BD−1

)
]BD

≡ f (x;BD,BD−1, . . . ,B1).

Like multivariate linear models these are often fitted using least squares although
the justification for using least squares seems less clear than it is in either multi-
variate linear models or univariate nonlinear regression. In both of those cases, least
squares is known to provide maximum likelihood estimates for individuals having
(multivariate) normal errors.

If y is a vector of 0-1 classification responses rather than a standard regression
problem, the components of E(y|x) need to be probabilities between 0 and 1, so we
again want to specify a (univariate) cdf F and use

E(y′|x) = F(z′DBD)

= F
(
[1,g

(
z′D−1BD−1

)
]BD
)

= F
(
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)
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(
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(
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(
· · · [1,g

(
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)
]BD−2

)
]BD−1

)
]BD
)

≡ f (x;BD,BD−1, . . . ,B1).

Again, one the most popular choices for F is the logistic transform which is also
one of the most popular choices for g. This form of a NN is one that I have seen
(inappropriately) used for classifying photographs of digits.

Again, these classification NNs seem to get fitted often by least squares (rather
than by maximum likelihood). As a classification procedure least squares seems
rather crude.

This NN seems most applicable for analyzing, say, a collection of 0-1 tests on
an individual (e.g. high cholesterol, high blood pressure, covid-19 positive, HIV
positive). It seems less appropriate for identifying an individual’s correct category
from a single test with multiple outcomes. For example, an individual photograph
of a digit belongs in only one of 10 categories. Ideally, the fitted probabilities for
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each of the 10 categories should not only be all between 0 and 1 but they should
add up to 1. The multivariate NN model as described earlier gives an estimated
F(z′DBD) vector with entries between 0 and 1 but no reason for them to add up to 1.
To this end, for such multinomial data the “softmax” generalized activation is often
recommended, where for a q-vector v,

F(v) = g(v) =
1

∑
q
h=1 evh

(ev1 , . . . ,evq)′.

Recall that in our NNs g is typically being applied to vectors and in multivariate
NNs F is also applied to vectors.
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