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Abstract

The use of Fourier transforms for deriving probability densities of sums

and differences of random variables is well known. The use of Mellin

transforms to derive densities for products and quotients of random vari-

ables is less well known. We present the relationship between the Fourier

and Mellin transform, and discuss the use of these transforms in deriv-

ing densities for algebraic combinations of random variables. Results are

illustrated with examples from reliability analysis.

1 Introduction

For the purposes of this paper, we may loosely define a random variable (RV)
as a value in some domain, say R, representing the outcome of a process based
on a probability law. An example would be a real number representing the
height in inches of a male chosen at random from a population in which height
is distributed according to a Gaussian (normal) law with mean 71 and variance
25. Then we can say, for example, that the probability of the height of an
individual from the population being between 66 and 76 inches is about .68.

For deriving such information about “nice” probability distributions (e.g.,
the height distribution above), we integrate the probability density function

(pdf); in the case of the Gaussian the pdf is f
�
x� � 1

σ�2π
exp �� 1

2

�
x�µ�2

σ2 	, where

µ is the mean and σ2 is the variance.1

A question that frequently arises in applications is, given RVs X,Y with
densities f

�
x�, g �y�, what is the density of the random variable X 
 Y ? (The

answer is not f
�
x� 
 g

�
y�.) A less frequent but sometimes important question

is, what is the density of the product XY ? In this paper, after some brief
background on probability theory, we provide specific examples of these ques-
tions and show how they can be answered with convolutions, using the Fourier
and Mellin integral transforms. In fact (though we will not go into this level

1In this paper “nice” means RVs whose range is R
n, with finite moments of all orders,

and which are absolutely continuous with respect to Lebesgue measure, which implies that
their pdfs are smooth almost everywhere and Riemann integrable. We will only deal with nice
distributions.
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of detail), using these transforms one can, in principle, compute densities for
arbitrary rational functions of random variables [15].

1.1 Terminology

To avoid confusion, it is necessary to mention a few cases in which the termi-
nology used in probability theory may be confusing:

• “Distribution” (or “law”) in probability theory means a function that as-
signs a probability 0 � p � 1 to every Borel subset of R; not a “generalized
function” as in the Schwartz theory of distributions.

• For historical reasons going back to Henri Poincaré, the term “characteris-
tic function” in probability theory refers to an integral transform of a pdf,
not to what mathematicians usually refer to as the characteristic function.
For that concept, probability theory uses “indicator function”, symbolized
I; e.g., I �0,1� �x� is 1 for x � �0, 1	 and 0 elsewhere. In this paper we will
not use the term “characteristic function” at all.

• We will be talking about pdfs being in L1
�
R�, and this should be taken

in the ordinary mathematical sense of a function on R which is absolutely
integrable. More commonly, probabilists talk about random variables be-
ing in L1, L2, etc., which is quite different—in terms of a pdf f , it means
that � �x �f �x�dx, � �x �2f �x�dx, etc. exist and are finite. It would require
an excursion into measure theory to explain why this makes sense; suf-
fice it to say that in the latter case we should really say something like
“L1

�
Ω,F , P �”, which is not at all the same as L1

�
R�.

2 Probability background

For those with no exposure to probability and statistics, we provide a brief
intuitive overview of a few concepts. Feel free to skip to the end if you are
already familiar with this material (but do look at the two examples at the end
of the section).

Probability theory starts with the idea of the outcome of some process, which
is mapped to a domain (e.g., R) by a random variable, say X. We will ignore
the underlying process and just think of x � R as a “realization” of X, with a
probability law or distribution which tells us how much probability is associated
with any interval �a, b	 � R. “How much” is given by a number 0 � p � 1.

Formally, probabilities are implicitly defined by their role in the axioms
of probability theory; informally, one can think of them as degrees of belief
(varying from 0, complete disbelief, to 1, complete belief), or as ratios of the
number of times a certain outcome occurs to the total number of outcomes (e.g.,
the proportion of coin tosses that come up heads).

A probability law on R can be represented by its density, or pdf, which is
a continuous function f

�
x� with the property that the probability of finding x
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in �a, b	 is P
�
x � �a, b	 � � �b

a
f
�
x�dx. The pdf is just like a physical density—it

gives the probability “mass” per unit length, which is integrated to measure
the total mass in an interval. Note the defining characteristics of a probability
measure on R:

1. For any �a, b	, 0 � P
�
x � �a, b	 � � 1.

2. P �x � ��� ,� �	 � 1.

3. if �a, b	� �c, d	 � �
, then P

�
x � �a, b	� �c, d	 � � P

�
x � �a, b	 �
P �

x � �c, d	 �.
From these properties and general properties of the integral it follows that if f
is a continuous pdf, then f

�
x� � 0 and ���� f

�
x�dx � 1.

Though we don’t need them here, there are also discrete random variables,
which take values in a countable set as opposed to a continuous domain. For
example, a random variable representing the outcome of a process that counts
the number of students in the classroom at any given moment takes values only
in the nonnegative integers. There is much more to probability, and in particular
a great deal of measure-theoretic apparatus has been ignored here, but it is not
necessary for understanding the remainder of the paper.

The Gaussian or normal density was mentioned in section 1. We say that
X � N

�
µ, σ2 � if it is distributed according to a normal law with mean or average

µ and variance σ2. The mean µ determines the center of the normal pdf, which
is symmetric; µ is also the median (the point such that half the probability mass
is above it, half below), and the mode (the unique local maximum of the pdf). If
the pdf represented a physical mass distribution over a long rod, the mean µ is
the point at which it would balance. The variance is a measure of the variability
or “spread” of the distribution. The square root of the variance, σ, is called the
standard deviation, and is often used because it has the same unit of measure
as X.

Formally, given any RV X with pdf f , its mean is µ � ���� xf
�
x�dx (the

average of x over the support of the distribution, weighted by the probability
density). This is usually designated by E

�
X �, the expectation or expected value

of X. The variance of X is E ��X � µ�2	 = ����
�
x � µ�2f �x�dx (the weighted

average of the squared deviation of x from its mean value).
Figure 1 plots the N

�
71, 25� density for heights mentioned in Section 1. The

central vertical line marks the mean, and the two outer lines are at a distance
of one standard deviation from the mean. The definite integral of the normal
pdf can’t be solved in closed form; an approximation is often found as follows:
It is easy to show that if X � N

�
µ, σ2 �, then X�µ

σ
� N

�
0, 1�; also from the

properties of a probability measure, for any random variable X,

P
�
a � X � b� � P

��� � X � b� � P
��� � X � a�.

It therefore suffices to have a table of values for P
��� � X � b� for the

N
�
0, 1� distribution. (Viewed as a function of b, P

�
b� is called the cumulative

distribution function.) Such tables are found in all elementary statistics books,
and give, e.g., P

�
66 � X � 76� � .682.
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Figure 1: N
�
71, 25� pdf for the distribution of heights

Many applications use random variables that take values only on �0,� �, for
example to represent incomes, life expectancies, etc. A frequently used model
for such RVs is the gamma distribution with pdf

f
�
x� � 1

Γ
�
α�βα

xα�1e�x�β if x � 0, 0 otherwise.

(Notice that aside from the constant 1
Γ
�
α�βα , which normalizes f so it integrates

to 1, and the extra parameter β, this is the kernel of the gamma function Γ
�
α� �

��
0
xα�1e�xdx, which accounts for the name.) Figure 2 shows a gamma(4, 2)

pdf (α � 4, β � 2). Because a gamma density is never symmetric, but skewed to
the right, the mode, median and mean occur in that order and are not identical.
For an incomes distribution this means that the typical (most likely) income is
smaller than the “middle” income which is smaller than the average income (the
latter is pulled up by the small number of people who have very large incomes).

Independence is profoundly important in probability theory, and is mainly
what saves probability from being “merely” an application of measure theory.
For the purposes of this paper, an intuitive definition suffices: two random
variables X, Y are independent if the occurrence or nonoccurrence of an event
X � �a, b	 does not affect the probability of an event Y � �c, d	, and vice versa.
Computationally, the implication is that “independence means multiply”. E.g.,
if X, Y are independent,

P
�
X � �a, b	 & Y � �c, d	 � � P

�
X � �a, b	 �P �

Y � �c, d	 �.
In this paper, we will only consider independent random variables.
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Figure 2: gamma(4, 2) pdf

Extending the example with which we began, suppose we consider heights
of pairs of people from a given population, where each member of the pair is
chosen at random, so we can assume that their heights are independent RVs
X, Y . Then for any given pair

�
x, y� we can ask, for example, about the

probability that both 66 � x � 76 and 66 � y � 76. This requires a joint or
bivariate densityf

�
x, y� of X and Y . Using the “independence means multiply”

rule above and taking limits as the interval sizes go to 0, it should be fairly
obvious that f

�
x, y� � fX

�
x�fY

�
y�, where fX and fY are the densities of X and

Y . It follows that

P
�
X � �66, 71	 & Y � �66, 71	 � �

� 71

66

fX

�
x�dx

� 71

66

fY

�
y�dy �

� 71

66

� 71

66

f
�
x, y�dxdy.

By substituting ��� , � 	 for either of the intervals of integration, it is also
readily seen that

� b

a

fX

�
x�dx

�
�
��

fY

�
y�dy �

� b

a

�
�
��

f
�
x, y�dxdy �

� b

a

fX

�
x�dx.

And it follows that by “integrating out” one of the variables from the joint
density f

�
x, y�, we recover the marginal density of the other variable:

�
�
��

f
�
x, y�dx � fY

�
y�.

This is true whether or not X and Y are independent.
Figure 3 illustrates this. The 3-D plot is a bivariate standard normal density,

the product of two N
�
0, 1� densities. On the right is the marginal density of Y ,
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fY

�
y� ,which results from aggregating the density from all points x correspond-

ing to a given y—i.e., integrating the joint density along the line Y � y parallel
to the x-axis. (The marginal density fY

�
y� is N

�
0, 1�, as expected.) Later, in

discussing convolution, we will see that it is also useful to integrate the joint
density along a line that is not parallel to one of the coordinate axes.
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Figure 3: Bivariate normal pdf f
�
x, y�, with marginal density fY

�
y�

2.1 Examples

With this background, here are two examples illustrating the need to compute
densities for sums and products of RVs.

Example 1 (Sum of random variables): Suppose you carry a backup
battery for a cellphone. Both the backup and the battery in the phone, when
fully charged, have a lifetime that is distributed according to a gamma law
f
�
x� � gamma

�
α, β �, α � 25, β � .2, where x is in hours; αβ � 5 hours is the

mean (average) life and αβ2 � 1 is the variance. This density is shown in Figure
4; it looks similar to a bell-shaped Gaussian, but it takes on only positive values.2

What is the probability that both batteries run down in less than 10 hours? To
answer questions like this we need the distribution of the sum of the random
variables representing the lifetimes of the two batteries. E.g., if the lifetimes of

2Another difference: The Gaussian, as we know, is in the Schwartz class; the gamma pdf
is not, since it is not C� at the origin.
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the two batteries are represented by X � gamma
�
25, .2�, Y � gamma

�
25, .2�,

integrating the density of X 
 Y from 0 to 10 will give the probablity that both
batteries die in 10 hours or less.

2 4 6 8 10

0.1

0.2

0.3

0.4

Figure 4: gamma(25, .2) pdf for Battery life

Example 2 (Product of random variables): The drive ratio of a pair of
pulleys connected by a drive belt is (roughly) the ratio of the pulley diameters,
so, e.g., if the drive ratio is 2, the speed is doubled and the torque is halved from
the first pulley to the second. In practice, the drive ratio is not exact, but is
a random variable which varies slightly due to errors in determining the pulley
dimensions, slippage of the belt, etc.

Figure 5 shows an example: suppose a motor is turning the left-hand drive-
shaft at 800 rpm, which is connected to another shaft using a sequence of two
belt and pulley arrangements. The nominal drive ratios are 2 and 1.5; thus
the shaft connected to the pulley on the right is expected to turn at 2400 rpm
(2 � 1.5 � 800).

Suppose the motor speed is taken to be constant, and we are told in the
manufacturer’s specifications that the first drive ratio is 2

�
.05 and the second

is 1.5
�
.05. Given only this information, we might model the drive ratios

as uniform random variables, which distribute probability evenly over a finite
interval; if the interval is �a, b	, the uniform

�
a, b� pdf is f

�
x� � 1

b�a
I �a,b� �x�. So

the two drive ratios in this case are given by RVs X � uniform
�
1.95, 2.05� and

Y � uniform
�
1.45, 1.55�. If the reliability of the system requires that the speed

of the driven shaft be within a certain tolerance, then we need to know the
probability distribution describing the actual speed of the driven shaft. This
will be answered by computing the probability density for the product XY .
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Figure 5: Product of random variables: Belt and pulley drive

3 Transforms for sums of random variables

Suppose that the RV X has pdf fX

�
x� and Y has pdf fY

�
y�, and X and Y

are independent. What is the pdf fZ

�
z� of the sum Z � X 
 Y ? Consider

the transformation ψ : R
2 �

R
2 given by ψ

�
x, y� � �

x, x 
 y� � �
x, z �. If we

can determine the joint density fXZ

�
x, z�, then the marginal density fZ

�
z � �

�
R
fXZ

�
x, z�dx. The transformation ψ is injective with ψ�1

�
x, z � � �

x, z � x�
and has Jacobian identically equal to 1, so we can use the multivariate change
of variable theorem to conclude that

fZ

�
z� �

�
R

fXZ

�
x, z �dx

�
�

R

fXY

�
ψ�1

�
x, z��dx

�
�

R

fXY

�
x, z � x�dx

�
�

R

fX

�
x�fY

�
z � x�dx by the independence of X and Y

� fX
�
fY

�
z�.

The next-to-last line above is intuitive: it says that we find the density
for Z � X 
 Y by integrating the joint density of X,Y over all points where
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X 
Y � Z, i.e., where Y � Z �X. Figure 6 illustrates this for z � 1: f �g
�
1� �

�
R
f
�
1 � z�g �z�dz is the integral of the joint density fXY

�
x, y� � fX

�
x�fY

�
y�

over the line y � 1 � x.

Figure 6: Integration path for f �g
�
1� � �

R
f
�
1�z�g �z�dz along the line y � 1�x

In general, computation of the convolution integral is difficult, and may be
intractable. It is often simplified by using transforms, e.g., the Fourier trans-
form: �

fX
�
fY

�
ξ� �

�
fX

�
ξ�
�
fY

�
ξ�

The transform is then inverted to get fZ

�
z�.

As an example, consider the gamma
�
α, β � pdf, whose Fourier transform is

given by:

�
R

1

Γ
�
α�βα

xα�1e� x
β e�2πiξxdx � 1

Γ
�
α�βα

�
R

xα�1e�x
1
�
2πiξβ
β dx

� 1

Γ
�
α�βα

Γ
�
α�
�

β

1 
 2πiξβ �α
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� 1�
1 
 2πiξβ �α

There is a trick here in passing from the first to the second line. Recall that
the kernel of the gamma

�
α, β � pdf integrates to Γ

�
α�βα; Then notice that the

integrand is the kernel of a gamma
�
α, β

1�2πiξβ
� pdf, which therefore integrates

to Γ
�
α�

�
β

1�2πiξβ �α

.

Thus the Fourier transform of the convolution of two independent gamma
�
α, β �

RVs is �
fX

�
fY

�
ξ� � 1�

1 
 2πiξβ �2α

which by inspection is the Fourier transform of a gamma
�
2α, β � random variable.

This answers the question posed in Example 1: If X, Y � gamma
�
25, .2�,

then X 
 Y � gamma
�
50, .2�. By integrating this numerically (using Mathe-

matica) the probability that both batteries die in 10 hours or less is found to
be about .519.

In practice, we don’t require the Fourier transform; we can use any integral
transform T with the convolution property Tf �g � TfTg. In particular, since
densities representing lifetimes are supported on �0,� �, the Laplace transform
Lf

�
s� � ��

0
exp

��st�f �t�dt, s � R, is often used in reliability analysis.
Note that the convolution result is extensible; it can be shown by induction

that the Fourier transform of the pdf of a sum of n independent RVsX1
 � � �
Xn

with pdfs f1, . . . , fn is given by3

�
f1
� � � � � fn ���ξ� �

�
f1

�
ξ� � � ��fn

�
ξ�

4 Transforms for products of random variables

We now motivate a convolution for products, derive the Mellin transform from
the Fourier transform, and show its use to compute products of random vari-
ables. This requires a digression into algebras on spaces of functions.

4.1 Convolution algebra on L
1 �R�

The general notion of an algebra is a collection of entities closed under opera-
tions that “look like” addition and multiplication of numbers. In the context of
function spaces (in particular L1

�
R�, which is where probability density func-

tions live) functions are the entities, addition and multiplication by scalars have
the obvious definitions, and we add an operation that multiplies functions.

For linear function spaces that are complete with respect to a norm (Banach
spaces4) the most important flavor of algebra is a Banach algebra [2, 12], with

3An application of this result is the famous central limit theorem, which says that under
very general conditions, the average of n independent and identically distributed random vari-
ables with any distribution whatsoever converges to a Gaussian distributed random variable
as n � 	 . See [8], p. 114 ff., for a proof.

4If the norm is given by an inner product, the Banach space is a Hilbert space.
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the following properties (� is the multiplication operator, which is undefined for
the moment, λ is a scalar, and ‖ is the norm on the space):

i) f � �
g � h� � �

f � g� � h
ii) f � �

g 
 h� � �
f � g� 
 �

f � h�
iii)

�
f 
 g� � h � �

f � g� 
 �
f � h�

iv) λ
�
f � g� � �

λf � � g � f � �
λg�

v) ‖ f � g ‖ � ‖ f ‖‖ g ‖

We can’t use the obvious definition of multiplication to define an algebra
over L1

�
R�, because f, g � L1

�
R� does not imply fg � L1

�
R�. For example,

one can verify that f
�
x� � 1

2
�

π �x �e� �x � is in L1
�
R� (in fact, it is a pdf), but

�
R

�f �x� �2dx � � .
Since L1 is not closed under ordinary multiplication of functions, we need a

different multiplication operation, and convolution is the most useful possibility.
To verify closure, if f, g � L1

�
R�,

‖ f � g ‖ �
�

R

�����
R

f
�
y � x�g �x�dx

����dy
�

�
R

�
R

�f �y � x� ��g �x� �dxdy

�
�

R

��
R

�f �y � x� �dy� �g �x� �dx by Fubini’s theorem

�
�

R

��
R

�f �z � �dz� �g �x� �dx by the substitution z � y � x

�
�

R

‖ f ‖ �g �x� �dx
� ‖ f ‖‖ g ‖ .

This also verifies property (v), the norm condition, and is sometimes called
Young’s inequality.5 The remainder of the properties are easily verified, as well
as the fact that the convolution algebra is commutative: f � g � g

�
f.

4.2 A product convolution algebra

Consider the operator T : f
�
x� �� f

�
ex � for f � L1

�
R�. Define a norm for

T -transformed functions by

‖ f ‖T �
�
�

0

�f �ex � �dx �
�
�

0

�f �y� �1
y
dy

5This is one of two different results that are called Young’s inequality—see
http://en.wikipedia.org/wiki/Young’s inequality.
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where the last expression follows from the substitution y � ex. Note that
f � L1

�
R� does not imply finiteness of the T -norm; for example, the pdf e�x is

in L1
�
R�, but ��

0
�e�y �1

y
dx does not converge. This is also true for many other

pdfs, including the Gaussian.
In order to salvage the T -norm for a function space that includes pdfs, we

use a modified version, the Mc-norm defined by

‖ f ‖Mc
�

�
�

0

�f �x� �xc�1dx

where c is chosen to insure convergence for the class of functions we are interested
in. All pdfs f

�
x� satisfy ��

0
�f �x� �dx � � , and nice ones decay rapidly at infinity

so ��
0
xp �f �x� �dx � � for p � 1; therefore ‖ f ‖Mc

� � if c � 1 for f in the
class of “nice” pdfs.

We can define a convolution for T -transformed functions by transforming
the functions in the standard convolution f � g

�
x� � ���� f

�
x � u�g �u�du:

f � g �z � :� �
Tf � � �

Tg� �ex � where z � ex

�
�
�

0

f
�
ex�u �g �eu �du

�
�
�

0

f
�
elog z�log w �g �elog w � 1

w
dw

�
�
�

0

f
�
z

w � g �w� 1

w
dw.

(The next-to-last line follows from the substitutions z � ex, w � eu). This is
called the Mellin convolution. It is, like the Fourier convolution, commutative:
f � g � g � f .

Now for fixed c � R let Mc

�
R� � be the space of functions on

�
0,� � with

finite Mc-norm. Using the obvious definitions of addition and multiplication by
scalars and the � convolution for multiplication of functions, it can be shown
that

�
Mc

�
R� �, 
, � � is a Banach algebra. Verifying closure under addition and

scalar multiplication, and properties (i)–(iv), involves simple computations. The
proof of property (v) and closure under � is lengthy, and we also need to prove
that Mc

�
R� � is a Banach space relative to the Mc-norm, i.e., that any Cauchy

sequence of functions with finite Mc-norms converges to a function with finite
Mc-norm. We omit these here; for detailed proofs, see [5].

4.3 The Mellin transform, and its relation to the Fourier

transform

If f � Mc

�
R� � for all c � �a, b	, we will say that f � M �a,b� �R� � (our “nice” pdfs

are in M �1,� �
�
R� �). Then we define the Mellin transform of f with argument
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s � C as

F
�
s� � M �f 	 �s� �

�
�

0

f
�
u�us�1du

where a � Re
�
s� � b. (It is easy to show that if the integral converges for

s � c � R, it converges for s � c 
 it, t � R�. The subscript on M is usually
omitted, with the assumption that the integral converges for the given s.

For F
�
s� � M �f 	 �s�, the inverse Mellin transform is

f
�
x� � M�1

�
M �f 	 ��x� � 1

2πi

� c�i�
c�i�

F
�
s�x�sds

The condition that the inverse exists is that F
�
s�x�s is analytic in a strip�

a, b� � ��i� , i� � such that c � �
a, b� [5].

The Mellin transform can be derived from the Fourier transform

f̂
�
ξ� �

�
R

f
�
x�e�2πiξxdx

using the transformation T and the substitution ξ � � η�c
2πi

for real c � 0:

�
Tf

�
ξ � �

�
�
��

f
�
ex �e�2πiξxdx�

Tf

�
� η � c

2πi � �
�
�
��

f
�
ex �e �η�c�xdx for c � 0

�
�
�

0

f
�
y�e��η�c� log y 1

y
dy with the substitution y � ex

�
�
�

0

f
�
y�y�cyη 1

y
dy

�
�
�

0

f �
�
y�yη�1dy for f �

�
y� � f

�
y�y�c.

(An aside on the substitution ξ � � η�c
2πi

: The factor of 2π is a consequence
of the way we define the Fourier transform. In statistics, and in many engineer-
ing texts, the Fourier transform is defined as f̂

�
ξ� � ���� f

�
x�eiξxdx (essentially

measuring frequency in radians per time unit instead of cycles per time unit),
which simplifies the derivation of the Mellin transform from the Fourier trans-
form. For a summary of the different ways the Fourier transform and its inverse
are represented, see [13], Appendix D.)

The same technique is used to derive the Mellin inversion formula from the
Fourier inversion:

f
�
y� � T �1 �

�
f̂
���	 �y�

�
�
�
��

f̂
�
ξ�e2πi log

�
y�ξdξ

13



� 1

2πi

� c�i�
c�i�

f̂

�
� η � c

2πi � e��η�c� log �y�dη with the substitution ξ � � η � c
2πi

� 1

2πi

� c�i�
c�i�

f
�
� η

2πi� ycy�ηdη

f
�
y�y�c � 1

2πi

� c�i�
c�i�

f

�
� η

2πi� y�ηdη

� f �
�
y�.

In some cases the transformation T provides an easier way to invert Mellin
transforms, through the use of Fourier inversion techniques.

For computing the pdf of a product of random variables, the key result will
be that the Mellin transform of a Mellin convolution is the product of the Mellin
transforms of the convolved functions:

M �f � g	 �s� �
�
�

0

��
�

0

f
� z
w

�g �w� 1

w
dw� zs�1dz

�
�
�

0

��
�

0

f
� z
w

�zs�1dz� g �w� 1

w
dw by Fubini’s theorem

�
�
�

0

��
�

0

f
�
y�ys�1ws�1w dy� g �w� 1

w
dw substituting y � z

w

�
�
�

0

��
�

0

f
�
y�ys�1dy� g �w�ws�1dw

� M �f 	 �s�M �g	 �s�

As with the Fourier convolution, this result is extensible; it can be shown by
induction that the Mellin transform of the Mellin convolution of of f1, . . . , fn is
given by

M �f1 � � � � � fn	 �s� � M �f1	 �s� � � �M �fn	 �s� (1)

4.4 Products of random variables

Suppose we have random variables X,Y with pdfs fX , fY , and the product
Z � XY is to be determined. Consider the transformation ψ : R

2 �
R

2

given by ψ
�
x, y� � �

x, xy� �
�
x, z�. Except at x � 0,6 ψ is injective with�

x, y� � ψ�1
�
x, z� � �

x, z
�
x� and the Jacobian of ψ�1 is

J �

���������
�
ψ�1

1�
x

�
ψ�1

2�
x

�
ψ�1

1�
z

�
ψ�1

2�
z

��������� �
���������
1 � 1

x2

0
1

x

��������� �
1

x
.

6This can be handled gracefully using Lebesgue integration theory, but here we ignore the
problem.
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Then using the multivariate change of variable theorem, the marginal density
of Z is computed from the joint density of X and Z as

fZ

�
z � �

�
R

fXZ

�
x, z�dx

�
�

R

fXY

�
ψ�1

�
x, z�� 1

x
dx

�
�

R

fXY

�
x,
z

x� 1

x
dx

�
�

R

fX

�
x�fY

�
z

x� 1

x
dx by the independence of X and Y

� fX � fY

�
z�.

This is precisely the Mellin convolution of fX and fY . In principle, this
plus the extensibility result (1) provides a way of finding product densities for
arbitrary numbers of random variables.

Note that the Mellin transform is defined only for functions supported on the
positive half-line R� , whereas many pdfs (e.g., the Gaussian) do not satisfy this
requirement. For such cases, the problem can be worked around by separating
the positive and negative parts of the pdf; see [15] for details.

4.5 An example

As a simple illustration of the use of the Mellin transform, we use the belt and
pulley example (Example 2, p. 7). Recall that X � uniform

�
1.95, 2.05�, Y �

uniform
�
1.45, 1.55� and we seek the pdf of the product XY .

The problem can be simplified by using the fact that a uniform
�
α, β � random

variable can be expressed as α 
 �
α � β �U , where U is a uniform

�
0, 1� random

variable with pdf I �0,1� �x�. In this case, X � 1.95 
 .1U, Y � 1.45 
 .1U . Then
XY � 2.8275 
 .34U 
 .01U2. Since we already know how to compute sums, the
problem reduces to finding the pdf for the product of two uniform

�
0, 1� random

variables.
For Z � U2, the Mellin convolution evaluates to

fZ

�
z� �

�
R

fX

�
x�fY

�
z

x� 1

x
dx

�
� 1

z

1

x
dx

� log
�
x� �1z

� � log
�
z �, 0 � z � 1.

The bounds for the integration come from x � 1 and y � 1 � x � z.
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This result can also be obtained as M�1
�
M �fU 	 �s�2 ��x�, where fU is the

pdf of U . We have

M �fU 	 �s� �
� 1

0

xs�1dx � 1

s

so we need

M�1

�
1

s2 � �
z� � 1

2πi

� c�i�
c�i�

z�s

s2
ds

which evaluates to the same result after an exercise in using the residue theorem
of complex analysis.

In this simple case of the product of two uniform(0,1) RVs it is easier to
compute the Mellin convolution directly; but the use of Mellin transforms allows
computation of the pdf for a product of n uniform(0,1) RVs almost as easily,

yielding
� log

�
z�n�1

�
n � 1�! (another exercise in residue calculus).

The difficulty of either directly integrating the Mellin convolution or invert-
ing a product of Mellin transforms escalates quickly for less simple distributions
such as the gamma or normal. In particular, whereas the transforms of Fourier
convolutions of pdfs can often be evaluated by inspection (possibly using tables),
this is not the case for Mellin transforms, though extensive tables do exist [3].
This seems to be a consequence of the fact that sums of RVs often have pdfs
with mathematical forms similar to the individual RVs (e.g., a sum of normal
RVs is normal), unlike products of RVs (e.g., the uniform example above).

The reader is referred to [15] for realistic examples, which are too lengthy
to reproduce here.

5 Summary

We have presented some background on probability theory, and two examples
motivating the need to compute probability density functions for sums and
products of random variables. The use of the Fourier or Laplace transform to
evaluate the convolution integral for the pdf of a sum is relatively straightfor-
ward. The use of the Mellin transform to evaluate the convolution integral for
the pdf of a product is less well-known, but equally straightforward, at least in
theory.

In practice, though the use of Fourier or Laplace transforms for sums of
random variables is widely used and explained in every advanced statistics text,
the Mellin transform remains obscure. Aside from Epstein’s seminal paper of
1948 [9], there was a brief flurry of activity in the 1960s and 70s by Springer
and Thompson (e.g., [16]) culminating in Springer’s book [15]. Current texts in
probability and statistics, however, do not mention the Mellin transform, and
its appearance in current literature is rare.

To some extent the relative lack of interest in products of random variables
is due to the lesser importance of products in applications. It probably also is
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a consequence of the greater difficulty of working with the integrals involved—
particularly the fact that inverting the Mellin transform requires a strong knowl-
edge of complex variable methods, which are not part of the standard graduate
curriculum in statistics. Nevertheless, it seems worthwhile for any statistician to
develop at least a nodding acquaintance with Mellin transform methods. Math-
ematicians and engineers will also find interesting applications (see the further
reading below).

5.1 Further reading

[11] is a nice summary of all the transform techniques used in probability theory.
[15] is the ultimate reference on transform techniques for algebraic combinations
of random variables.

For the use of integral transforms to compute sums of random variables, see
any graduate textbook on probability and statistics, e.g., [4, 6].

[1], [19], [11], and [15] all cover the Mellin transform, the last two in the
probability context. [3] contains an extensive table of Mellin transforms (as
well as Fourier, Laplace, and other transforms). [5] contains a very complete
treatment of properties of the Mellin transform, with proofs.

[1] and [19] provide considerable depth on integral transforms generally, ori-
ented towards applied mathematics. A more abstract view is provided by [20],
which includes a treatment of integral transforms of (Schwartz) distributions.

The algebraic properties of Fourier and Mellin transforms are (briefly) worked
out in a series of exercises in [8] (ex. 9–15, pp. 41–43; ex. 2, p. 88; ex. 3, p.
103). For the more algebraically inclined, one can develop an abstract theory of
convolution and Fourier analysis on groups. See [7], “Appendix: functions on
groups” for an elementary introduction, or [14] for a full treatment.

Probability and statistics is only one application area for the Mellin trans-
form, and it is not the most important. The Mellin transform is used in com-
puter science for analysis of algorithms (see, for example, [17, ch. 9-10]); it has
applications to analytic number theory [10]; and Mellin himself developed it in
connection with his researches in the theory of functions, number theory, and
partial differential equations [18].

References

[1] Andrews, L. C., and B. K. Shivamoggi. Integral Transforms for Engineers

and Applied Mathematicians. New York: Macmillan Publishing, 1988.

[2] Arveson, William. A Short Course on Spectral Theory. New York: Springer,
2002.

[3] Batemen, Harry. Tables of Integral Transforms, Vol. I. New York: McGraw-
Hill, 1954.

[4] Bauer, Heinz. Probability Theory. Berlin: Walter de Gruyter, 1996.

17



[5] Butzer, Paul L., and Stefan Jansche. “A direct approach to the Mellin trans-
form”. The Journal of Fourier Analysis and Applications 3 (1997), pp. 325–
376.

[6] Cramér, Harald. Mathematical Methods of Statistics. Princeton, NJ: Prince-
ton University Press, 1946.

[7] Davis, Harry F. Fourier Series and Orthogonal Functions. New York: Dover
Publications, 1989.

[8] Dym, H., and H. P. McKean. Fourier Series and Integrals. New York: Aca-
demic Press, 1972.

[9] Epstein, Benjamin. “Some applications of the Mellin transform in statistics”.
The Annals of Mathematical Statistics 19 (1948), pp. 370–379.

[10] Flajolet, Philippe, et al. “Mellin transforms and asymptotics: Harmonic
sums”. Theoretical Computer Science 144 (1995), pp. 2-58.

[11] Giffin, Walter C. Transform Techniques for Probability Modeling. New
York: Academic Press, 1975.

[12] Goffman, Casper, and George Pedrick. First Course in Functional Analysis.
Englewood Cliffs, NJ: Prentice-Hall, 1965.

[13] Hubbard, Barbara Burke. The World According to Wavelets, 2nd Edition.
Natick, MA: A K Peters, 1998.

[14] Rudin, Walter. Fourier Analysis on Groups. New York: Wiley-Interscience,
1962.

[15] Springer, M. D. The Algebra of Random Variables. New York: John Wiley
& Sons, 1979.

[16] Springer, M. D., and W. E. Thompson. “The distribution of products of
independent random variables”. SIAM Journal on Applied Mathematics 14
(1966), pp. 511–526.

[17] Szpankowski, Wojciech. Average Case Analysis of Algorithms on Sequences.
New York: Wiley-Interscience, 2001.

[18] University of St. Andrews. “Robert Hjalmar Mellin” (biography).
http://www-history.mcs.st-andrews.ac.uk/Biographies/Mellin.html.

[19] Wolf, Kurt B. Integral Transforms in Science and Engineering. New York:
Plenum Press, 1979.

[20] Zemanian, A. H. Generalized Integral Transforms. New York: Interscience,
1968.

18


