Exercise 20
Show that there exist closed sets A and B s.t. $m(A) = m(B) = 0$ but

$$m(A + B) > 0$$

Proof
Let A be the cantor set, we already know that $m(A) = 0$. Let $B = \frac{1}{2}A = \{\frac{x}{2}, x \in A\}$, then $m(B) = \frac{1}{2}m(A) = \frac{1}{2}0 = 0$, which means that A and B have measure zero. It is not hard to see that A and B are closed sets. Let L the union of all open intervals that are excluded from $[0, 1]$ in the process of construction of the Cantor set, then $A = L^c \cap [0, 1]$. Since L^c is closed, then A is closed, which implies that B is closed also.

Now let $A + B = \{z = x + y, x \in A, y \in B\}$, we have to show that $m(A + B) > 0$. Observe that $A + B$ is closed and the it is measurable. To show that $m(A + B) > 0$, we will prove that $[0, 1] \subset A + B$, which implies that $m(A + B) \geq m([0, 1]) \geq 1$.

Given $z \in [0, 1]$, we can write the ternary expansion of z.

$$z = 0.a_1a_2a_3a_4...,\quad a_i \in \{0, 1, 2\} \forall i.$$ Let

$$x = 0.b_1b_2b_3b_4...,\quad b_i = 0 \textrm{ if } a_i = 1 \textrm{ and } b_i = a_i \textrm{ if } a_i \neq 1$$ and

$$y = 0.c_1c_2c_3c_4...,\quad c_i = 1 \textrm{ if } a_i = 1 \textrm{ and } c_i = 0 \textrm{ if } a_i \neq 1,$$

where $z = x + y$. But observe that the ternary expansion of x has just digits 0’s and 2’s, which implies that $x \in A$ and the ternary expansion of y has just digits 0’s and 1’s, which implies that $2y \in A$, which imply $y \in B$. Therefore, $z \in A + B \Rightarrow [0, 1] \subset A + B \Rightarrow m(A + B) \geq 1$.

Exercise 32a
Let \mathcal{N} denote the nonmeasurable subset of $I = [0, 1]$ constructed in section 1.3 of Stein and Shakarchi. If $E \subset \mathcal{N}$, $E \in \mathcal{M}$, then $m(E) = 0$.

Proof
Consider the union of the rational translates $E_k = E + r_k$ of E, where $\{r_k\}_{k=1}^{\infty} = \mathbb{Q} \cap [-1, 1]$.
Now take the exterior measure on both sides:

\[m_* \left(\bigcup_{k=1}^{\infty} E_k \right) \leq m_* ([{-1, 2}]) \]

Since \(E \in \mathcal{M} \) and therefore \(E_k \in \mathcal{M} \), since \(E_k \cap E_l = \emptyset \ \forall k \neq l \) and since the measure is translational invariant, we have

\[m_* \left(\bigcup_{k=1}^{\infty} E_k \right) = m \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m(E_k) = \sum_{k=1}^{\infty} m(E) \leq 3 \]

\[\Rightarrow m(E) = 0 \]

Exercise 32b

For all \(G \) s.t \(G \subset \mathbb{R} \), \(m_* (G) > 0 \) there exist \(E \subset G \), such that \(E \not\in \mathcal{M} \).

Proof

We are going to split up this claim into two. We are going to prove a "light version" of our claim, i.e. assume \(G \) to be bounded. But if we show that this assumption is made without loss of generality, we are done.

This is the w.l.o.g.-claim:
\[\forall G \subset \mathbb{R}, \ m_* (G) > 0 \ \exists \ \hat{G} \subseteq G, 0 < m_* (\hat{G}) < \infty, \hat{G} \text{ bounded.} \]

We write \(G \) as a countable union of bounded sets:
\[G = \bigcup_{j=-\infty}^{+\infty} (G \cap [j, j+1)) := \bigcup_{j=-\infty}^{+\infty} G_j, \]

since \(\bigcup_{j=-\infty}^{+\infty} [j, j+1) = \mathbb{R} \). Taking the countable subadditivity of the exterior measure into account, this leads to:

\[m_* (G) \leq \sum_{j=-\infty}^{+\infty} m_* (G_j) \quad (1) \]

All \(G_j \) are bounded subsets of \(G \). So we only have to prove that one of them has exterior measure \(> 0 \). We are going to do this by assuming the contrary:

Assume: \(m_* (G_j) = 0 \ \forall j. \)

Because of (1) this yields \(m_* (G) = 0 \). So we have reached contradiction and therefore at least one of the \(G_j \) must have \(m_* (G_j) > 0 \).
Now we claim the "light version" of 32 b). This is always without loss of
generality, since we always can find a bounded $\tilde{G} \subset G$ if G itself is not bounded.
If a nonmeasurable set is contained in \tilde{G}, then it must be contained in G too.

For every $\tilde{G} \subset \mathbb{R}$, bounded, $m_*(\tilde{G}) > 0 \ni E \subset \tilde{G}$, such that $E \notin \mathcal{M}$.

Consider the equivalence classes defined in section 1.3 of Stein, Shakarchi.
According to the axiom of choice, for a collection of nonempty subsets \{E$_\alpha$\} of \tilde{G} \exists a choice function $f_{ch} : \alpha \to x_\alpha$, where $x_\alpha \in E_\alpha$. Let the subsets be $E_\alpha = \{ x : x \in \tilde{G}, x - \alpha \in \mathbb{Q} \}$ and define $\mathcal{E} = \{ x_\alpha \}$.

Since \tilde{G} is bounded, $\exists I = [a, b]$, such that $\tilde{G} \subset I$. Consider now the rational translates $E_k = \mathcal{E} + r_k$ of \mathcal{E}, where $(r_k)_{k=1}^\infty = \mathbb{Q} \cap [-(b-a), b-a]$. So now we have:

$$\tilde{G} \subset \bigcup_{j=1}^\infty E_j \subset [2a-b, 2b-a]$$

Now we take the exterior measure:

$$0 < m_*(\tilde{G}) \leq m_*\left(\bigcup_{j=1}^\infty E_j \right) \leq 3(b-a)$$

Now assume $E \in \mathcal{M} \Rightarrow E_j \in \mathcal{M}$. Since the measure is translation invariant and the E_j are disjoint, we get

$$0 < \sum_{j=1}^\infty m(E_j) = \sum_{j=1}^\infty m(\mathcal{E}) \leq 3(b-a).$$

The inequality sign on the left hand side contradicts the one on the right hand side, since the first implies $m(\mathcal{E}) > 0$ and the latter $m(\mathcal{E}) = 0$. Therefore, $\mathcal{E} \notin \mathcal{M}$.

Exercise 33
Show that $\mathcal{N}^c = I - \mathcal{N}$ satisfies $m_*(\mathcal{N}^c) = 1$ and

$$m_*(\mathcal{N}^c) + m_*(\mathcal{N}) \neq m_*(\mathcal{N}^c \bigcup \mathcal{N})$$

Proof
Assume $m_*(\mathcal{N}^c) < 1$ then given $\epsilon > 0 \exists$ an open set U s.t. $U \subset I$, $\mathcal{N}^c \subset U$ and $m_*(U) < 1 - \epsilon$. If $\mathcal{N}^c \subset U$ then $U^c \subset \mathcal{N}$ and since U is measurable then U^c is also measurable. So, by the previous exercise, $m(U^c) = 0$.

However, $I = U \bigcup U^c \Rightarrow 1 = m(I) = m(U) + m(U^c) < 1$, absurd. Therefore $m_*(\mathcal{N}^c) = 1$. Since \mathcal{N} is nonmeasurable the $m_*(\mathcal{N}) > 0$. Then

$$1 = m_*(I) = m_*\left(\{N\} \bigcup \{N\}^c \right) \neq m_*(\{N\}^c) + m_*(\mathcal{N}) > 1 + 0 = 1.$$