34. Let \(C_1 \) and \(C_2 \) be any two Cantor sets (constructed in Exercise 3). Show that there exists a function \(F: [0,1] \to [0,1] \) with the following properties:

i) \(F \) is continuous and bijective.

ii) \(F \) is monotonically increasing.

iii) \(F \) maps \(C_1 \) surjectively onto \(C_2 \).

[Hint: Copy the construction of the standard Cantor-Lebesgue function.]

Proof. Let \(I_1, I_2, \ldots \) be the intervals removed from \([0,1]\) in the construction of \(C_1 \) and let \(J_1, J_2, \ldots \) be the intervals deleted from \([0,1]\) in the construction of \(C_2 \), arranged in the same order. That is, \(I_1 \) and \(J_1 \) are the middle intervals removed in the first step; \(I_2 \) and \(J_2 \) are the “left middles” and \(I_3, J_3 \) are the “right middles” removed in the second step; and so on. Then map the interval \(I_n \) onto the interval \(J_n \) linearly and increasingly, for \(n=1,2,\ldots \) (see graph below).

Note that \([0,1] \setminus C_1\) is dense in \([0,1]\). Indeed, take \(x \in [0,1] \); if \(x \in [0,1] \setminus C_1 \) there is nothing to prove. If \(x \in C_1 \) then by Exercise 4 there is a sequence \(\{x_n\}_{n \geq 1} \) such that \(x_n \in [0,1] \setminus C_1 \) and \(x_n \to x \). Thus any neighborhood of \(x \) contains one element of \([0,1] \setminus C_1 \) (in fact infinitely many) different from \(x \). Hence \(x \) is a limit point of \([0,1] \setminus C_1 \). This proves that \([0,1] \setminus C_1\) is dense in \([0,1]\).

A similar argument shows that \([0,1] \setminus C_2\) is also dense in \([0,1]\).
Hence $F: [0,1] \setminus C_1 \to [0,1] \setminus C_2$ is defined and strictly increasing on a dense subset of $[0,1]$. Since the range of F is also dense on $[0,1]$, the domain of F can be extended to $[0,1]$ so that F is increasing and continuous on $[0,1]$ with range $[0,1]$.

We extend the domain of definition of F to all of $[0,1]$ by putting

$$F(0) = 0, \ F(1) = 1,$$

and

$$F(x_0) = \operatorname{Sup}\{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \}. $$

We see that F is now defined on all of $[0,1]$ since F is bounded on $[0,1] \setminus C_1$.

Property (ii). F is monotonically increasing.

Let $x_0, x_1 \in [0,1]$ such that $x_0 < x_1$. We must consider several cases:

a) Both x_0 and x_1 are in $[0,1] \setminus C_1$. Then, by construction, $F(x_0) < F(x_1)$.

b) x_0 is in $[0,1] \setminus C_1$ and x_1 is in C_1. Then

$$F(x_0) \leq \operatorname{Sup}\{ F(x) : x \in [0,1] \setminus C_1, x < x_1 \} = F(x_1)$$

c) x_0 is in C_1 and x_1 is in $[0,1] \setminus C_1$. Then x_1 is in some interval I_k and therefore for all x in $[0,1] \setminus C_1$ such that $x < x_0$ we have that $x < x_0 < x_1$ and x is in some interval J_l at the left of I_k and thus, by construction, $F(x) < F(x_1)$ for all x in $[0,1] \setminus C_2$ with $x < x_0$. But this implies that

$$\operatorname{Sup}\{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \} \leq F(x_1), \ \text{i.e.,} \ F(x_0) \leq F(x_1). $$

Thus, in any case, F is monotonically increasing. In fact F is strictly increasing, since in cases (a) and (b) above, if $F(x_0) = F(x_1)$, then this value is in some interval J_k, but F is injective there which implies that $x_0 = x_1$; but this contradicts that $x_0 < x_1$.

Property (i). F is continuous and bijective.

Let us show that F is continuous. Since F is monotonically increasing on $[0,1]$, then by a well known theorem of real analysis (see for example Rudin’s Principle of Mathematical Analysis, Theorem 4.29, p.95) we have that for any $x_0 \in (0,1)$,

$$F(x_0^+) := \lim_{x \to x_0^+} F(x) = \inf\{ F(x) : x \in [0,1] \setminus C_1, x > x_0 \}$$

$$F(x_0^-) := \lim_{x \to x_0^-} F(x) = \sup\{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \}$$
We claim that
\[\sup \{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \} = \inf \{ F(x) : x \in [0,1] \setminus C_1, x > x_0 \}. \]

Notice that if for any \(x < x_0 \) and any \(t > x_0 \), such that \(x, t \in [0,1] \setminus C_1 \), we have
\[F(x) \leq F(t) \text{ and } F(x) \leq \sup \{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \} \]
which implies that \(\sup \{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \} \leq F(t) \) for any \(t > x_0 \) and therefore
\[\sup \{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \} \leq \inf \{ F(t) : t \in [0,1] \setminus C_1, t > x_0 \} \]
\[= \inf \{ F(x) : x \in [0,1] \setminus C_1, x > x_0 \} \]

For the reverse inequality, suppose that \(\sup \{ F(x) : x < x_0 \} < \inf \{ F(x) : x > x_0 \} \). Since \([0,1] \setminus C_2\) is dense in \([0,1]\) then any sub-interval of \([0,1]\) contains points of \([0,1] \setminus C_2\), i.e., values of \(F \) in \([0,1] \setminus C_2\). Then the sub-interval
\[(\sup \{ F(x) : x < x_0 \}, \inf \{ F(x) : x > x_0 \}) \]
must contain values of \(F \). Let \(y = F(x_1) \) be one of such values.
If \(x_1 > x_0 \), then \(y = F(x_1) \leq \inf \{ F(x) : x > x_0 \} \), a contradiction. If \(x_1 < x_0 \), then \(y = F(x_1) \geq \sup \{ F(x) : x < x_0 \} \), again a contradiction.

Thus we conclude that
\[\sup \{ F(x) : x \in [0,1] \setminus C_1, x < x_0 \} = \inf \{ F(x) : x \in [0,1] \setminus C_1, x > x_0 \} \]
i.e., \(\lim_{x \to x_0} F(x) = \lim_{x \to x_0} F(x) = F(x_0) \).

This proves that \(F \) is continuous at \(x_0 \).

By a similar argument we can prove that \(F \) is continuous at 0 and at 1. Therefore \(F \) is continuous on \([0,1]\).

Let us now show that \(F \) is bijective. Since \(F \) is increasing and continuous on \([0,1]\) then \(F \) is injective. For the surjectivity, take any \(y \) in \([0,1]\). Since \(f \) is continuous on \([0,1]\), then by the intermediate value theorem there is an \(x \) in \([0,1]\) such that \(F(x) = y \). Hence \(F \) maps \([0,1]\) onto \([0,1]\) and therefore \(F : [0,1] \to [0,1] \) is bijective.
Property (iii). F maps C_1 surjectively onto C_2.

Notice that:
- by construction $F: [0,1] \setminus C_1 \to [0,1] \setminus C_2$ is bijective
- by property (i), $F: [0,1] \to [0,1]$ is bijective.

Therefore $F: C_1 \to C_2$ is bijective, i.e., F maps C_1 surjectively onto C_2.

Remark. Since F is a continuous one-one mapping of the compact metric space $[0,1]$ onto the metric space $[0,1]$, then the inverse mapping F^{-1} defined by $F^{-1}(F(x)) = x$ is a continuous mapping (see for example Rudin’s Principles of Mathematical Analysis, Theorem 4.17, p.90). This implies that any two Cantor sets are homeomorphic.

35. Give an example of a measurable function f and a continuous function Φ so that $f \circ \Phi$ is non-measurable.

[Hint: Let $\Phi: C_1 \to C_2$ as in Exercise 34, with $m(C_1) > 0$ and $m(C_2) = 0$.

Let $N \subset C_1$ be non-measurable, and take $f = \chi_{\Phi(N)}$.

Use the construction in the hint to show that there exists a Lebesgue measurable set that is not a Borel set.

Proof. Following the hint, let $\Phi: C_1 \to C_2$ as in Exercise 34, with $m(C_1) > 0$ and $m(C_2) = 0$. Since $m(C_1) > 0$, there exists a non-measurable set $N \subset C_1$. Now take

$$f(x) = \chi_{\Phi(N)}(x) = \begin{cases} 1, & x \in \Phi(N) \\ 0, & x \notin \Phi(N) \end{cases}.$$

Since $\Phi(N) \subset C_2$ (by 34.(iii)) and $m(C_2) = 0$, then $m(\Phi(N)) = 0$, so $\Phi(N)$ is measurable and therefore f is measurable.

Now consider $f \circ \Phi$. Notice that $(f \circ \Phi)^{-1}((0,\infty)) = N$ is non-measurable and therefore $f \circ \Phi$ is non-measurable.

**** $(f \circ \Phi)^{-1}((0,\infty)) = N$. Indeed:

\[x \in N \Rightarrow \Phi(x) \in \Phi(N) \Rightarrow f(\Phi(x)) = 1 \in (0,\infty) \Rightarrow x \in (f \circ \Phi)^{-1}((0,\infty)) \]

\[x \in (f \circ \Phi)^{-1}((0,\infty)) \Rightarrow (f \circ \Phi)(x) \in (0,\infty) \Rightarrow f(\Phi(x)) \in (0,\infty) \]

\[\Rightarrow f(\Phi(x)) = 1 \Rightarrow \Phi(x) \in \Phi(N) \Rightarrow x \in \Phi^{-1}(\Phi(N)) = N \]

"
For the second statement, let $\Phi : C_1 \to C_2$ as in Exercise 34, with $m(C_1) = 0$ and $m(C_2) > 0$.

Since $m(C_2) > 0$, there exists a non-measurable set $V \subset C_2$. Then $A = \Phi^{-1}(V) \subset C_1$ and since $m(C_1) = 0$ then $m(A) = 0$ and therefore A is measurable.

Now suppose that A is a Borel set. Then $\Phi(A) = \Phi(\Phi^{-1}(V)) = V$ is also a Borel set since Φ is a continuous one-one function and continuous one-one functions map Borel sets onto Borel sets (see proof of this below). But if V is a Borel set, then V is measurable, a contradiction.

Theorem. If f is a one-one continuous mapping of R onto R, then f maps Borel sets onto Borel sets.

Proof. Recall that if f is a one-one map of X onto Y, then for $A, B \subset X$,

$$f(A \cap B) = f(A) \cap f(B) \text{ and } f(A \setminus B) = f(A) \setminus f(B).$$

Now set

$$\mathcal{U} = \{ A \subset R : f(A) \in \mathcal{B} \},$$

where \mathcal{B} denotes the collection of Borel sets. We claim that \mathcal{U} is a σ-algebra. Indeed, if $A \in \mathcal{U}$, then $A^c \in \mathcal{U}$, because $f(A^c) = f(R \setminus A) = R \setminus f(A)$. Also, if $\{A_n\}$ is a sequence of sets in \mathcal{U}, then $f(\bigcup_{n=1}^\infty A_n) = \bigcup_{n=1}^\infty f(A_n)$, which shows that $\bigcup_{n=1}^\infty A_n \in \mathcal{U}$. Now since f is strictly monotonic (because it is one-one and continuous), we have that

$$f([a,b]) = [f(a), f(b)] \text{ or } f([a,b]) = [f(b), f(a)].$$

Hence \mathcal{U} contains all closed intervals and therefore all Borel sets.
Exercise 36

This exercise provides an example of a measurable function f on $[0, 1]$ such that every function g equivalent to f (in the sense that f and g differ only on a set of measure zero) is discontinuous at every point.

(a) Construct a measurable set $E \subset [0, 1]$ such that for any non-empty open sub-interval I in $[0, 1]$, both sets $E \cap I$ and $E^c \cap I$ have positive measure.

(b) Show that $f = \chi_E$ has the property that whenever $g(x) = f(x)$ a.e x, then g must be discontinuous at every point in $[0, 1]$.

Solution to part (a)

Let $\{u_k\}_{k=1}^\infty$ be a sequence of all intervals with rational endpoints. We will denote $u_1 = (\alpha_1, \beta_1)$, where α_1, β_1 are rational numbers in $[0, 1]$. Because u_1 is an open interval, we can construct a Cantor-like set A_1 of positive measure entirely inside u_1. Since Cantor (and Cantor-like) sets are nowhere dense, we can always find an open interval (a, b) inside u_1, such that (a, b) is disjoint from A_1. Therefore we can construct another Cantor-like set A_2, such that $A_2 \subset (a, b) \subset u_1$.

Now let’s take an open interval $u_2 = (\alpha_2, \beta_2)$. We can construct Cantor-like set A_3 entirely inside u_2 such that A_3 is disjoint from all previously constructed sets and, by the same argument we construct A_4 inside u_2 such that it is disjoint from all previous Cantor-like sets. Notice that sets A_k and A_j satisfy the following conditions:

(i) A_k and A_j are disjoint and nowhere dense,

(ii) $A_{2k-1} \subset u_k$ and $A_{2k} \subset u_k$.

Repeating this process indefinitely we get a sequence A_k that has the properties:

(i) A_{2k-1} and A_{2k} are disjoint and nowhere dense $\forall k \in \mathbb{N},$
(ii) $A_{2k-1} \subset u_k$ and $A_{2k} \subset u_k$.

Let’s take $E = \bigcup_{k=1}^\infty A_{2k}$ then $\forall I \exists k : u_k \subseteq I$.

\[
E \cap I = (\bigcup_{k=1}^\infty A_{2k}) \cap I \supset A_{2k} \cap I = A_{2k}
\] \hspace{1cm} (1)

\[
m(E \cap I) \geq m(A_{2k}) > 0
\] \hspace{1cm} (2)

To show the second inequality let’s notice that $\bigcup_{k=1}^\infty A_{2k-1}$ is not a subset of E.

1
This means that $\bigcup_{k=1}^{\infty} A_{2k-1} \subset E^c$.

$$E^c \cap I \supset (\bigcup_{k=1}^{\infty} A_{2k-1}) \cap I = A_{2k-1}$$

$$m(E^c \cap I) \geq m(A_{2k-1}) > 0$$

This concludes the proof of part (a).

Solution to part (b)

To show that the claim is valid, we will need to use the following Theorem (without proof):

The Baire Category Theorem: Let X be a complete metric space,
(a) If $\{U_n\}_{n=1}^{\infty}$ is a sequence of open dense subsets of X, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X,
(b) X is not a countable union of nowhere dense sets.

Let $f(x) = \chi_E$ and let $g(x) = f(x)$ almost everywhere. By definition of continuity $g(x)$ is continuous if and only if:

$$\lim_{\tilde{x} \to x} g(\tilde{x}) = g(x)$$

Without loss of generality, let’s assume that $x \in I$, where I is an open interval in $[0,1]$. Let F be the set where $f(x)$ is different from $g(x)$, so that $m(F) = 0$. We see that x has no other option, but to satisfy one of the following:

1. $x \in (E \cap I \cap F^c)$
2. $x \in (E^c \cap I \cap F^c)$
3. $x \in F$.

As we already proved $m(E \cap I) > 0$ and $m(E^c \cap I) > 0$.

Using the result of part (a) we know that $m(E \cap I) > 0$ and $m(E^c \cap I) > 0$ therefore $g(x) = f(x)$ on $E \cap I \cap F^c$ and $E^c \cap I \cap F^c$.

2
First, let’s show that if case (1) is true, then \(g \) is discontinuous:

Suppose \(x \in E \cap F^c \).

Because \(E^c = (\bigcup A_{2k})^c = \bigcap A_{2k}^c \), where \(A_{2k}^c \) are dense in \([0,1]\), according to Baire Cathegory Theorem, \(E^c \) is dense in \([0,1]\) and \(E^c \cap F^c \) is also dense in \([0,1]\).

Because \(E^c \cap F^c \) is dense we can find a sequence \(\{x_n\}_{n=1}^\infty \in E^c \cap F^c \) converging to \(x \), then \(g(x_n) = f(x_n) = \chi_{E}(x_n) \equiv 0 \), but \(g(x) = f(x) = \chi_{E}(x) = 1 \). This implies discontinuity of \(g \).

Now, let’s show that if case (2) is true, then \(g \) is discontinuous, too:

Suppose \(x \in (E^c \cap I) \cap F^c \). Then \(g(x) = f(x) = \chi_{E}(x) \equiv 0 \).

Now let’s find a sequence \(\{x_n\}_{n=1}^\infty \) convergent to \(x \), such that \(g(x_n) \) does not converge to \(g(x) \equiv 0 \).

Among the sequence of intervals with rational endpoints \(\{u_k\} \), let’s choose a subsequence of shrinking, nested intervals \(\{u_{k_j}\} \), so that:

\[
\alpha_{k_j} < \alpha_{k_{j+1}} \leq x \leq \beta_{k_{j+1}} < \beta_{k_j},
\]

(6)

this can be done, because as we know that, any number can be approximated arbitrarily close by a rational number.

Constructing Cantor-like sets \(A_{2k_j} \) in each of the open intervals \(\{u_{k_j}\} \) as suggested in part (a), and by choosing a sequence \(\{x_{k_j}\}_{j}^\infty \in A_{2k_j} \subset u_{k_j} \), we obtain a sequence, converging to \(x \), that is entirely inside \(E \cap F^c \).

Note \(g(x_{k_j}) = \chi_{E}(x) \equiv 1 \ \forall j \) and so \(g(x_{k_j}) \) does not converge to \(g(x) \equiv 0 \), this implies that \(g \) is discontinuous.

Therefore \(g(x) = f(x) \) a.e. \(x \) is discontinuous almost everywhere.

Using case (1) and case (2) we notice for case (3) the following fact:

Suppose \(x \in F \), then in any neighborhood of \(x \) we have points from both \(E \) and \(E^c \) and thus, the sequence constructed by taking points from each of the sets \(E \) and \(E^c \) such that \(x_{2n-1} \in E \) and \(x_{2n} \in E^c \) we construct a sequence convergent to \(x \), that has no limit. This contradicts the definition of continuity.

The conclusion for these three cases gives us the result that \(g \) has to be discontinuous everywhere.