Exercise: Let \(f : [1, \infty) \to \mathbb{R} \) be a decreasing, continuous function such that \(\exists M > 0 \) such that for all \(N > 0 \)

\[
\left| \int_{[1,N]} f(x) \, dx \right| < M
\]

Show that \(\lim_{x \to \infty} xf(x) = 0 \).

Sketch of the proof:
- First we will show that \(f(x) \geq 0 \ \forall \ x \)
- Then we will show that \(\lim_{x \to \infty} f(x) = 0 \)
- Next we will give a “hard” proof that \(\lim_{x \to \infty} xf(x) = 0 \) (by contradiction)
- Then we will give an “easy” proof that \(\lim_{x \to \infty} xf(x) = 0 \) (by cleverness)
- Finally we will crack open a couple beers and call it a night.

Lemma 1. \(f(x) \geq 0 \ \forall x \).

Proof. Assume not. That is, assume \(f(x) < 0 \) for some \(x \). So we have say, \(f(x_0) = -a \) for \(a > 0 \).

But since \(f \) is decreasing we have that \(f(x) \leq -a \ \forall \ x > x_0 \).

Thus we get the following:

\[
\int_1^N f(x) \, dx = \int_1^{x_0} f(x) \, dx + \int_{x_0}^N f(x) \, dx \\
\leq L + \int_{x_0}^N (-a \, dx) \\
= L - a(N - x_0)
\]

So, \(\int_1^N f(x) \, dx \leq L - a(N - x_0) \)

Now if we let \(N \to \infty \) we get that:

\[
\int_1^\infty f(x) \, dx \leq -\infty
\]

But this contradicts that the integral is bounded. Hence our assumption that there is some \(x \) such that \(f(x) < 0 \) is wrong, and therefore \(f(x) \geq 0 \ \forall x \). \(\square \)

Lemma 2. \(\lim_{x \to \infty} f(x) = 0 \)

Proof. Assume not. That is, \(\lim_{x \to \infty} f(x) \neq 0 \) or does not exist. Note that since \(f \) is continuous, decreasing, and bounded from below, we have that the limit does exist (Proposition 6.3.8).

From Lemma 1 we know that \(f(x) \geq 0 \ \forall x \). So assume that \(\lim_{x \to \infty} f(x) = a > 0 \). But since \(f \) is decreasing, we have that \(f(x) > a/2 > 0 \ \forall x \) (as if it were otherwise then the limit would not approach \(a \)). Now let us look at the following integral:
\[
\int_1^N f(x)dx > \int_1^N (a/2)dx = (a/2)(N-1)
\]

Now if we let \(N \to \infty \) we get that:
\[
\int_1^\infty f(x)dx > \infty
\]

But this contradicts that the integral is bounded.

Hence our original assumption that \(\lim_{x \to \infty} f(x) \neq 0 \) was false. And therefore \(\lim_{x \to \infty} f(x) = 0 \). \(\square \)

Now we will give the “hard” proof that \(\lim_{x \to \infty} xf(x) = 0 \):

Proof. We will prove this by contradiction. That is, assume \(\exists \epsilon > 0 \) such that \(\forall N > 0 \ \exists x_n > N \) such that \(|x_n f(x_n)| > \epsilon \).

Note that by passing through a subsequence we can assume that \((x_n) \) is increasing. And since we have the above inequality for all \(N > 0 \) we can choose \(x_n \geq 2x_{n-1} \) (Just by repeatedly taking \(N \) large enough), and we will define \(x_0 = 1 \).

Thus \(x_n - x_{n-1} \geq \frac{x_n}{2} \).

Since \(f \) is decreasing we have \(\int_{x_{n-1}}^{x_n} f(x)dx \geq f(x_n)(x_n - x_{n-1}) \) \(\forall n \geq 1 \)

And from the Integral test we have:
\[
\int_1^\infty f(x)dx = \sum_{n=1}^{\infty} \int_{x_{n-1}}^{x_n} f(x)dx
\]
\[
\geq \sum_{n=1}^{\infty} f(x_n)(x_n - x_{n-1})
\]
\[
\geq \sum_{n=1}^{\infty} f(x_n) \frac{x_n}{2} \quad \text{Since } x_n - x_{n-1} \geq \frac{x_n}{2}
\]
\[
= \frac{1}{2} \sum_{n=1}^{\infty} f(x_n)x_n
\]
\[
> \frac{1}{2} \sum_{n=1}^{\infty} \epsilon = \infty
\]

So we have \(\int_1^\infty f(x)dx > \infty \), a contradiction.

Thus our original assumption was wrong, and therefore we must have \(\lim_{x \to \infty} xf(x) = 0 \). \(\square \)

Here is an interesting way to prove that \(\lim_{x \to \infty} xf(x) \neq 0 \). Assume \(\lim_{x \to \infty} xf(x) = c > 0 \). Note that this is not quite sufficient for what we wanted to show above, as the limit might not exist, and this does not take care of that.

Since \(f \) is decreasing we can use the integral test and we get that:
\[0 \leq \sum_{n=2}^{\infty} f(n) \leq \int_{1}^{N} f(x)dx\]

Since \(f\) is decreasing we also get the following:

\[
\underbrace{f(2) + f(3) + f(4) + \cdots + f(7)} + \underbrace{f(8) + \cdots + f(16)} + \cdots \\
\geq 2f(4) + 4f(8) + 8f(16) + \cdots + 2^n f(2^{n+1}) + \cdots
\]

So we have:

\[
\int_{1}^{\infty} f(x)dx \geq \sum_{n=2}^{\infty} f(n) \geq \frac{1}{2} \sum_{n=1}^{\infty} 2^{n+1} f(2^n+1)
\]

But \(2^{n+1} f(2^{n+1})\) is \(a_{n+1}\), and from our assumption \(\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} (2^{n+1} f(2^{n+1})) = c > 0\)

But from the Divergence test, this sum diverges. This is a contradiction since our integral is bounded.

Now we will give Cristina’s clever proof:

Proof. Since \(f\) is a decreasing function and since \(f(x) \leq f(t)\) for \(x/2 \leq t \leq x\), we get the following inequalities:

\[
\int_{x/2}^{x} f(t)dt \geq f(x)(x - x/2) = f(x)\frac{x}{2} \geq 0
\]

Let \(x \to \infty\). Since the tail of \(\int_{0}^{\infty} f(x)dx\) goes to zero we have that \(\int_{x/2}^{x} f(t)dt \to 0\) as \(x \to \infty\).

Therefore \(\lim_{x \to \infty} xf(x) = 0\). \(\square\)