Exercise 1: (a) Let \(g : X \to \mathbb{R} \), assume \(f \) is a bounded function on \(X \subset \mathbb{R} \), let \(x_0 \) be an adherent point of \(X \). Show that if \(\lim_{x \to x_0} g(x) = 0 \), then \(\lim_{x \to x_0} g(x)f(x) = 0 \) as well.

Proof. We know given \(\epsilon' > 0 \) \(\exists \delta' > 0 \) such that \(|g(x)| \leq \epsilon' \) for \(|x - x_0| < \delta \) and also that \(\exists M \in \mathbb{R} \) with \(|f(x)| \leq M \ \forall x \in X \) as \(f \) is bounded.

Given \(\epsilon > 0 \) take \(\epsilon' = \frac{\epsilon}{M} > 0 \) then \(\exists \delta > 0 \) with \(|x - x_0| < \delta \) such that

\[
|g(x)f(x) - 0| < \epsilon
\]

\[\lim_{x \to x_0} g(x)f(x) = 0\]

(b) Use the \(\epsilon-\delta \) definition of continuity to show that the linear function \(f(x) = ax + b \) is continuous at every point \(x \in \mathbb{R} \).

Proof. Given \(\epsilon > 0 \) take \(\delta = \frac{\epsilon}{|a|} \) and consider \(x \in \mathbb{R} \) such that \(|x - x_0| < \delta \)

\[
|a||x - x_0| < \epsilon
\]

\[
|ax - ax_0| < \epsilon
\]

\[
|ax + b - ax_0 - b| < \epsilon
\]

\[
|(ax + b) - (ax_0 + b)| < \epsilon
\]

\[
|f(x) - f(x_0)| < \epsilon
\]

Hence \(f \) is continuous at all \(x_0 \in \mathbb{R} \).

Exercise 2: Let \(f : \mathbb{R} \to \mathbb{R} \) that satisfies the multiplicative property \(f(x + y) = f(x)f(y) \) for all \(x, y \in \mathbb{R} \). Assume \(f \) is not identically equal to zero.

(i) Show that \(f(0) = 1 \) and that \(f(-x) = \frac{1}{f(x)} \) for all \(x \in \mathbb{R} \). Show that \(f(x) > 0 \) for all \(x \in \mathbb{R} \).

First let us prove two simple Lemmas.

Lemma 1. \(f(0) \neq 0 \)

Proof. Suppose \(f(0) = 0 \) then we have that \(f(x) = f(x + 0) = f(x)f(0) = 0 \ \forall x \in \mathbb{R} \) which is a contradiction since \(f \) is not identically equal to zero. Hence \(f(0) \neq 0 \).

Lemma 2. \(f(x) \neq 0 \ \forall x \in \mathbb{R} \).
Proof. Suppose not, that is, assume that there is some \(x \) with \(f(x) = 0 \). Then we have that
\[f(0) = f(x-x) = f(x)f(-x) \Rightarrow f(0) = 0 \] a contradiction from Lemma 1. Thus we have that \(f(x) \neq 0 \ \forall x \in \mathbb{R} \).

Now let us prove the results in the exercise

Proof. If we take \(x = y = 0 \) then we get that \(f(0) = f(0)f(0) \) and since \(f(0) \neq 0 \) we can divide through to get \(f(0) = 1 \).

For the next part, let us take \(y = -x \). Then we have that:
\[
f(0) = f(x-x) = f(x)f(-x) \Rightarrow 1 = f(x)f(-x) \Rightarrow f(x) = \frac{1}{f(-x)}.
\]

To show that \(f(x) > 0 \ \forall x \in \mathbb{R} \) note that \(f(x) = f(x/2 + x/2) = f(x/2)f(x/2) = (f(x/2))^2 \) and from Lemma 2 we have that \(f(x) \neq 0 \ \forall x \in \mathbb{R} \).
Therefore \(f(x) > 0 \ \forall x \in \mathbb{R} \).

(ii) Let \(a = f(1) \) (by (i) \(a > 0 \)). Show that \(f(n) = a^n \) for all \(n \in \mathbb{N} \). Use (i) to show that \(f(z) = a^z \) for all \(z \in \mathbb{Z} \).

Proof. (By induction on \(n \))
Base Case: \((n = 0) \).
\(a^0 = 1 \) and from (i) \(f(0) = 1 \) this proves the base case.
Inductive Step: Assume for some \(n \in \mathbb{N} \) that \(f(n) = a^n \), then show true for \(n+1 \).
\[
f(n+1) = f(n)f(1) = (a^n)a = a^{n+1}
\]
Thus, by induction, we have that \(f(n) = a^n \ \forall n \in \mathbb{N} \).

For the second part note that if \(z \geq 0 \) then we are done, so assume \(z < 0 \). Then by definition we have \(-z = n \) for some \(n \in \mathbb{N} \).
Hence we have, \(f(z) = \frac{1}{f(-z)} = \frac{1}{f(n)} = \frac{1}{a^n} = \frac{1}{a^{-z}} = a^z \)
Thus, we have that \(f(z) = a^z \ \forall z \in \mathbb{Z} \).

(iii) Show that \(f(r) = a^r \) for all \(r \in \mathbb{Q} \).

Proof. Let \(r = p/q \ p, q \in \mathbb{Z}, q \neq 0 \)
So, \(f(1) = f(\underbrace{1/q + 1/q + ... + 1/q}_{q \ \text{times}}) = f(1/q)f(1/q)...f(1/q) = (f(1/q))^q \)
\[
\Rightarrow (f(1/q))^q = a \Rightarrow f(1/q) = a^{1/q}
\]
Now \(f(p/q) = f(\underbrace{1/q + 1/q + ... + 1/q}_{p \ \text{times}}) = f(1/q)f(1/q)...f(1/q) = (f(1/q))^p \)
\[
\Rightarrow f(p/q) = (f(1/q))^p = (a^{1/q})^p = a^{p/q} = a^r
\]
Thus \(f(r) = a^r \).

(iv) Show that if \(f \) is continuous at \(x = 0 \), then \(f \) is continuous at every point in \(\mathbb{R} \)
Proof. Since f is continuous at $x = 0$ we have that $\lim_{x \to 0} f(x) = f(0) = 1$.
From the multiplicative property of f and part (i) we get:

$$
\lim_{x \to x_0} \frac{f(x)}{f(x_0)} = \lim_{x \to x_0} f(x)f(-x_0) = \lim_{x \to x_0} f(x - x_0) = \lim_{(x-x_0) \to 0} f(x - x_0) = f(0) = 1
$$

So we have that $\lim_{x \to x_0} \frac{f(x)}{f(x_0)} = 1$ which implies that $\lim_{x \to x_0} f(x) = f(x_0)$.

Therefore f is continuous at every point in \mathbb{R}.

(v) Assume f is continuous at zero, use (iii) and (iv) to conclude that $f(x) = ax$ for all $x \in \mathbb{R}$

Proof. Let $x \in \mathbb{R}$ and let us take a sequence $(r_n)_{n=0}^\infty$ of rationals that approaches x. That is, $\lim_{n \to \infty} r_n = x$. From (iv) we have continuity and so we have $\lim_{n \to \infty} f(r_n) = f(x)$. But from (iii) we have that $f(r_n) = a^{r_n}$ hence we get that $\lim_{n \to \infty} f(r_n) = a^x$. Thus $f(x) = a^x$.

Exercise 3: A function $f : \mathbb{R} \to \mathbb{R}$ satisfies a Lipschitz condition with constant $M > 0$ if for all $x, y \in \mathbb{R}$,

$$
|f(x) - f(y)| \leq M|x - y|
$$

Assume $h, g : \mathbb{R} \to \mathbb{R}$ each satisfy a Lipschitz condition with constant M_1 and M_2 respectively.

(a) Show that $(h + g)$ satisfies a Lipschitz condition with constant $(M_1 + M_2)$.

Proof.

$$\begin{align*}
|(h + g)(x) - (h + g)(y)| &= |h(x) + g(x) - (h(y) + g(y))| \\
&= |h(x) - h(y) + g(x) - g(y)| \\
&\leq |h(x) - h(y)| + |g(x) - g(y)| \\
&\leq M_1|x - y| + M_2|x - y| \\
&= (M_1 + M_2)|x - y|
\end{align*}$$

(b) Show that the composition $(h \circ g)$ satisfy a Lipschitz condition. With what constant?

Proof. $|h(g(x)) - h(g(y))| \leq M_1|g(x) - g(y)| \leq M_1M_2|x - y|$.

Constant is M_1M_2

(c) Show that the product (hg) does not necessarily satisfy a Lipschitz condition. However, if both functions are bounded then the product satisfies a Lipschitz condition.
Proof. From our Review we have that Lipschitz \(\Rightarrow \) Uniformly Continuous. Hence Not Uniformly Continuous \(\Rightarrow \) Not Lipschitz.
Using this take \(h, g = x \) certainly \(h, g \) satisfy Lipschitz, but \(hg \) is not uniformly continuous, and hence does not satisfy Lipschitz.

Let \(h, g \) be bounded by \(A, B \) respectively. That is, \(|h(x)| \leq A \forall x \in \mathbb{R} \) and \(|g(x)| \leq B \forall x \in \mathbb{R} \).

\[
|h(x)g(x) - h(y)g(y)| = |h(x)g(x) - h(x)g(y) + h(x)g(y) - h(y)g(y)|
\leq |h(x)||g(x) - g(y)|| + |g(y)||h(x) - h(y)||
\leq |h(x)||M_2|x - y| + |g(y)||M_1|x - y|
= (M_1|g(y)| + M_2|h(x)||)|x - y|
\leq (M_1B + M_2A)|x - y|
\]

Hence we have that if \(h, g \) are bounded then the product \(hg \) satisfies a Lipschitz condition. \(\square \)

Exercise 4: (a) Assume that \(f : [0, \infty) \rightarrow \mathbb{R} \) is continuous at every point on its domain. Show that if there exists \(b > 0 \) such that \(f \) is uniformly continuous on the set \([b, \infty) \), then \(f \) is uniformly continuous on \([0, \infty) \).

Proof. Since \(f \) is continuous on \([0, b] \) we can use Theorem 9.9.16 to conclude that \(f \) is uniformly continuous on \([0, b] \).

And now since \(f \) is uniformly continuous on \([0, b] \) we know for every \(\varepsilon' > 0 \) there is some \(\delta' \) such that \(|f(x) - f(y)| < \varepsilon' \) whenever \(x, y \in [0, b] \) such that \(|x - y| < \delta' \)

And since \(f \) is also uniformly continuous on \([b, \infty) \) we know that for every \(\varepsilon'' > 0 \) there is some \(\delta'' \) such that \(|f(x) - f(y)| < \varepsilon'' \) whenever \(x, y \in [b, \infty) \) such that \(|x - y| < \delta'' \)

Now given \(\varepsilon > 0 \) take \(\varepsilon' = \varepsilon/2 \) and \(\varepsilon'' = \varepsilon/2 \) and then take \(\delta = \min(\delta', \delta'') \) so that \(|x - y| < \delta \) for \(x, y \in [0, \infty) \).

Now we have three cases:
(i): \(x, y \in [0, b] \)
(ii): \(x, y \in [b, \infty) \)
(iii): \(x < b < y \)

For case (i): Since \(f \) is uniformly continuous on \([0, b] \) we have \(|f(x) - f(y)| < \varepsilon' < \varepsilon \)

For case (ii): Since \(f \) is uniformly continuous on \([b, \infty) \) we have \(|f(x) - f(y)| < \varepsilon'' < \varepsilon \)

For case (iii): Since \(x, b \in [0, b] \) we have \(|f(x) - f(b)| < \varepsilon' = \varepsilon/2 \) and since \(b, y \in [b, \infty) \) we have \(|f(b) - f(y)| < \varepsilon'' = \varepsilon/2 \)

Thus we have:
\[
|f(x) - f(y)| = |f(x) - f(b) + f(b) - f(y)|
\leq |f(x) - f(b)| + |f(b) - f(y)| \quad (\text{triangle inequality})
\leq \varepsilon/2 + \varepsilon/2
= \varepsilon
\]
So \(|f(x) - f(y)| < \epsilon\)

In each case we have \(|f(x) - f(y)| < \epsilon\) thus \(f\) is uniformly continuous on \([0, \infty)\). \(\square\)

(b) Prove that \(f(x) = \sqrt{x}\) is uniformly continuous on \([0, \infty)\).

Proof. First let us show that \(f\) is uniformly continuous on \([1, \infty)\).

Given \(\epsilon > 0\) take \(\delta = \epsilon\) so that \(|x - x_0| < \delta\), for \(x, x_0 \in [1, \infty)\).

\[
\Rightarrow \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} < \epsilon \quad \text{(as } \sqrt{x} + \sqrt{x_0} > 1)\]

\[
\Rightarrow \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| < \epsilon
\]

\[
\Rightarrow \left| \frac{\sqrt{x} - \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}} \right| < \epsilon
\]

\[
\Rightarrow |\sqrt{x} - \sqrt{x_0}| < \epsilon
\]

Thus, \(f(x) = \sqrt{x}\) is uniformly continuous on \([1, \infty)\). Now from **Proposition 9.4.11** we know that \(f\) is continuous on \([0, \infty)\) so with this and our proof that \(f\) is uniformly continuous on \([1, \infty)\) we can use part (a) to conclude that \(f\) is uniformly continuous on \([0, \infty)\). \(\square\)

Exercise 5: Let \(\{a_j\}_{j \geq 0}\) be a sequence of real numbers. Assume known that the derivative of \(f(x) = e^x\) equals \(f\), that is, \(f\) is differentiable on \(\mathbb{R}\) and \(f'(x) = e^x\).

(a) Show that \(f : \mathbb{R} \rightarrow (0, \infty)\) is invertible, and that its inverse \(f^{-1} : (0, \infty) \rightarrow \mathbb{R}\) is differentiable. Find the derivative of the inverse function.

Proof. Since \(e > 1\) we know that \(f(x) = e^x\) is strictly increasing on \((0, \infty)\) thus we can use **Proposition 9.8.3** to conclude that its inverse exists and is continuous. And since we have that \(f'(x) = f(x) \neq 0 \ \forall x \in \mathbb{R}\) we can use the **Inverse Function Theorem** to conclude that \(f^{-1}\) has a derivative and that for \(f(x) = y\) we have:

\[
(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{y}
\]

\(\square\)

(b) Define a function \(F_n : \mathbb{R} \rightarrow \mathbb{R}\) for each \(n \in \mathbb{N}\) by

\[
F_n(x) = \begin{cases}
\sum_{j=0}^{n} (n-j)x^je^{-jx} & \text{if } x > 0 \\
\alpha_n x + \beta_n & \text{if } x \leq 0
\end{cases}
\]

Can you choose \(\alpha_n, \beta_n \in \mathbb{R}\) so that \(F_n\) is differentiable on \(\mathbb{R}\)? Justify your answer.
Proof. First let us note that F_n is clearly continuous for $x > 0$ as we have a finite sum of continuous functions (exponentials) products, and for $x < 0$ since we have a line. The problem is at $x = 0$.

For F_n to be continuous at $x = 0$ we need:

$$\alpha_n \times 0 + \beta_n = \lim_{x \to 0^+} \sum_{j=0}^{n} (n-j)x^je^{-jx}$$

$$\Rightarrow \beta_n = \lim_{x \to 0^+} \left[(n)x^0e^0 + \sum_{j=1}^{n} (n-j)x^je^{-jx} \right]$$

$$\Rightarrow \beta_n = n + 0 = n.$$

Now we have that F_n is continuous whenever $\beta_n = n$.

For differentiability we will need α_n, the slope of our line (when $x \leq 0$), to have the same slope as our sum when $x \to 0^+$.

That is, we need:

$$\alpha_n = \frac{d}{dx} \left(\sum_{j=0}^{n} (n-j)x^je^{-jx} \right)_{x=0}$$

$$\Rightarrow \alpha_n = \frac{d}{dx} \left(n + (n-1)x^{-1}e^{x-1} + \sum_{j=2}^{n} (n-j)x^j e^{-jx} \right)_{x=0}$$

$$\Rightarrow \alpha_n = \left(0 + (n-1)(e^{-1} - xe^{-x}) + \sum_{j=2}^{n} (n-j)\left(jx^{j-1}e^{-jx} - jx^je^{-jx} \right) \right)_{x=0}$$

$$\Rightarrow \alpha_n = n - 1$$

So if we take $\alpha_n = n - 1$ and $\beta_n = n$ then we have that F_n is differentiable on \mathbb{R}. \Box

Exercise 6: Let h be a differentiable function defined on the interval $[0, 3]$, and assume that $h(0) = 1$, $h(1) = 2$ and $h(3) = 2$.

(a) Show that there exists a point $d \in [0, 3]$ such that $h(d) = d$.

Proof. Let us look at $g : [1, 3] \to \mathbb{R}$ defined by $g(x) = h(x) - x$. Note that g is continuous by continuity properties as both h and x are continuous.

$$g(1) = h(1) - 1 = 2 - 1 = 1$$

$$g(3) = h(3) - 3 = 2 - 3 = -1$$

Thus we have that $g(3) \leq 0 \leq g(1)$ so take $y = 0$ and then by the Intermediate Value Theorem we know that there exist $d \in [1, 3]$ with $g(d) = y = 0$.

Hence, $h(d) - d = 0 \Rightarrow h(d) = d$ \Box
(b) Show that there exists a point \(c \in (0, 3) \) such that \(h'(c) = 1/3 \).

Proof. This follows directly from the **Mean Value Theorem** which tells us that there is a \(c \in (0, 3) \) such that

\[
h'(c) = \frac{h(3) - h(0)}{3 - 0} = \frac{2 - 1}{3} = \frac{1}{3}
\]

(c) Show that there exists a point \(b \in (0, 3) \) such that \(h'(b) = 1/4 \).

Proof. From **Rolle’s Theorem** on the interval \([1, 3]\) there is a point \(a \in [1, 3] \) such that

\[
h'(a) = 0
\]

Using this and the point \(c \) from part (b) we have for \(\alpha = 1/4 \) that

\[
h'(a) < \alpha < h'(c)
\]

hence by **Darboux’s Theorem** there is a point \(b \in (a, c) \) or \(b \in (c, a) \) such that \(h'(b) = \alpha = 1/4 \). But \((a, c) \subset (0, 3) \) or \((c, a) \subset (0, 3) \) as \(a, c \in (0, 3) \).

Therefore \(\exists b \in (0, 3) \) with \(h'(b) = 1/4 \). □

Exercise 7: Decide whether the following statements are true or false. Justify your answers with a couple sentences, an example, or a reference.

(a) Continuous functions take bounded closed intervals to bounded closed intervals

True from Lemma 9.6.3.

(b) The inverse image of a convergent sequence under a continuous function is necessarily a convergent sequence.

False. Take \(f(x) = 1/x \) for \(x > 0 \), then \(f^{-1}(y) = 1/y \). Now if we take \(y_n = 1/n \to 0 \) (as \(n \to \infty \)), then \(f^{-1}(1/n) = n \to \infty \).

(c) There is a continuous function on an interval that takes exactly two values.

False. Assume there is such a function, say \(f \), and let \(f(a) \neq f(b) \) be the two distinct values of \(f \). Since \(f \) is continuous we can use the **Intermediate Value Theorem** to get any value \(y \) with \(f(a) < y < f(b) \) or \(f(b) < y < f(a) \) contradicting that the function took on exactly two values.

(d) If \(f \) is differentiable on \([a, b]\), then between any two zeroes of \(f \) there must be a zero of its derivative \(f' \).

True from Rolle’s Theorem.

(e) There is a differentiable function at \(x_0 \) that is not continuous at \(x_0 \).

False by Proposition 10.1.10.

Bonus: Let \(f : [a, b] \to [a, b] \), assume there is \(c \) with \(0 < c < 1 \) such that

\[
|f(x) - f(y)| \leq c|x - y| \forall x, y \in [a, b]
\]

(a) Show that \(f \) is uniformly continuous on \([a, b]\).

Proof. Give \(\epsilon > 0 \) take \(\delta = \epsilon/c \)

Then for \(x, y \in [a, b] \) with \(|x - y| < \delta \) we have that \(|x - y| < \epsilon/c \Rightarrow c|x - y| < \epsilon \).

But by hypothesis, \(|f(x) - f(y)| \leq c|x - y| \) hence \(|f(x) - f(y)| < \epsilon \).

Therefore \(f \) is uniformly continuous. □
(b) Pick some \(y_0 \in [a, b] \) and given \(y_n \) define inductively \(y_{n+1} = f(y_n) \). Show that the sequence \((y_n)_{n=0}^\infty\) is a Cauchy sequence. Show that there is some \(y \in [a, b] \) such that \(\lim_{n \to \infty} y_n = y \).

Proof. Let \(n, m > N \)

\[
|f(y_{n-1}) - f(y_{m-1})| = |y_n - y_m| \\
= |y_n - y_{n-1} + y_{n-1} - y_{n-2} + \ldots + y_{m+1} - y_m| \\
\leq c^{n-1}|y_1 - y_0| + c^{n-2}|y_1 - y_0| + \ldots + c^{n-m}|y_1 - y_0| \\
= |y_1 - y_0|(c^{n-m} + c^{n-m+1} + \ldots + c^{n-1})
\]

But the latter part is the tail end of a geometric series with \(|c| < 1 \) and thus goes to 0. So with \(N \) large enough we can say that \(|y_n - y_m| < \epsilon \). Hence \((y_n)_{n=0}^\infty\) is Cauchy.

For the second part, we use **Theorem 6.4.18** to get that \((y_n)_{n=0}^\infty\) is a convergent sequence and then we can use **Corollary 9.1.17** to conclude that \((y_n)_{n=0}^\infty\) converges in \([a, b]\) hence \(\exists y \in [a, b] \) with \(\lim_{n \to \infty} y_n = y \). \[\square\]

(c) Prove that \(y \) is a fixed point, that is, \(f(y) = y \).

Proof. This is a result of part (b).

Since \(f \) is continuous we have \(\lim_{n \to \infty} f(y_n) = f(y) \) but \((f(y_n)) \sim (y_n) \) hence \(\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} y_n = y \) Thus \(f(y) = y \). \[\square\]

(d) Finally, prove that given any \(x \in [a, b] \), then the sequence defined inductively by:

\[
x_0 = x, \quad x_{n+1} = f(x_n)
\]

converges to \(y \) as defined in part (b).

Proof. Since \(y_0 \) was arbitrarily chosen from \([a, b]\) we know that every sequence defined this way is Cauchy and converges to a fixed point. \[\square\]