Every interval in \mathbb{R} of the form $I=[a, b)$ belongs to infinitely many random dyadic grids $\mathcal{D}^{r, \beta}$. The scaling parameter is unique, and the random parameter $\beta=\left\{\beta_{i}\right\}_{i \in \mathbb{Z}}$ is determined for all integers i less than $-m$, where m is a fixed integer to be determined below. For $i \geq-m, \beta_{i}$ can be 0 or 1 , since there is a binary choice for the parent of I : the parent could be the interval $[a, b+|I|)$ so that I is the right child, or it could be $[a-|I|, b)$ so that I is the left child, likewise I will have four choices for grandparent (each parent has two choices for their respective parent), etc.

To be more precise, let $|I|=b-a>0$ and let m be the unique integer such that $2^{-m} \leq|I|<2^{-m+1}$. Let $r:=2^{m}|I|=2^{m}(b-a)$, by our choice of $m, 1 \leq r<2$ and this will be the scaling parameter for all grids that contain the interval I. There is also a unique integer k such that $k 2^{-m} \leq a / r<(k+1) 2^{-m}$. Let $x_{m}=a / r-k 2^{-m}$, by our choice of k then $0 \leq x_{m}<2^{-m}$. Moreover $a=r x_{m}+r k 2^{-m}$ and $|I|=r 2^{-m}$ therefore

$$
I=a+[0,|I|)=r\left(x_{m}+k 2^{-m}+\left[0,2^{-m}\right)\right)=r\left(x_{m}+\left[k 2^{-m},(k+1) 2^{-m}\right) .\right.
$$

So that $I=r\left(x_{m}+J\right)$ where $J:=\left[k 2^{-m},(k+1) 2^{-m}\right) \in \mathcal{D}_{m}^{0}$. The non-negative real number x_{m} has a binary expansion of the form $x_{m}=\sum_{i<-m} \beta_{i}^{\prime} x^{i}$, hence $I \in \mathcal{D}_{m}^{r, \beta}$ for all $\beta=\left\{\beta_{i}\right\}_{i \in \mathbb{Z}} \in\{0,1\}^{\mathbb{Z}}$ such that $\beta_{i}=\beta_{i}^{\prime}$ for all $i \leq-m$.

When $r=1$ and $\beta=\{0\}_{i \in \mathbb{Z}}$, the initial grid is the standard grid $\mathcal{D}^{1,0}=\mathcal{D}^{0}$. Then $\mathcal{D}^{\tau_{h}(1,0)}=\mathcal{D}^{0}+h$, the standard grid translated by $h ; \mathcal{D}^{\delta_{a}(1,0)}=(1 / a) \mathcal{D}^{0}$, the standard grid dilated by the reciprocal of a; and $\mathcal{D}^{(1,0)^{\sim}}=\breve{\mathcal{D}}^{0}$ is the mirror standard grid.

