Real Analysis Quiz 2 Solutions (or outlines at least)

1. Let $a \in \mathbb{R}$ be a positive real number. Let $\left\{x_{n}\right\}$ be the sequence defined by

$$
x_{0}=0, \quad x_{n+1}=a+x_{n}^{2}, \quad n \geq 0
$$

If the sequence converges what will it converge to? If you are feeling slightly more ambitious find all possible values of a for which the sequence converges and prove your claim.
Solution: If the limit exists, call it x_{∞}, we must have $x_{\infty}=a+x_{\infty}^{2}$. So using the quadratic equation we get

$$
x_{\infty}=\frac{1 \pm \sqrt{1-4 a}}{2}
$$

Therefore, $a \leq 1 / 4$. For the convergence part assume $0<a \leq 1 / 4$, by hypothesis. The sequence is nondecreasing. Using the value for x_{∞} we see that

$$
x_{n+1}=a+x_{n}^{2}<\frac{1}{4}+\frac{1}{4}=\frac{1}{2} .
$$

Therefore, we see that the sequence is bounded. So we have a bounded sequence that is non-decreasing. Hence is must converge.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two Cauchy sequences of real numbers. Then show that the sequence $\left\{\left|a_{n}-b_{n}\right|\right\}$ is Cauchy. Solution: Since $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both Cauchy sequences there exists an N such that for all $n>N$ we have

$$
\left|a_{n}-a_{n+1}\right|<\frac{\epsilon}{2}
$$

and

$$
\left|b_{n}-b_{n+1}\right|<\frac{\epsilon}{2}
$$

Now it follows that

$$
\left|a_{n+1}-b_{n+1}\right|+\left|a_{n}-a_{n+1}\right|+\left|b_{n}-b_{n+1}\right|>\left|a_{n}-b_{n}\right|
$$

and also

$$
\left|a_{n}-b_{n}\right|+\left|a_{n}-a_{n+1}\right|+\left|b_{n}-b_{n+1}\right|>\left|a_{n+1}-b_{n+1}\right|
$$

by the triangle inequality. So we get that

$$
\epsilon>\left|a_{n}-a_{n+1}\right|+\left|b_{n}-b_{n+1}\right|>\left|\left|a_{n+1}-b_{n+1}\right|-\left|a_{n}, b_{n}\right|\right|
$$

That is, $\left\{\left|a_{n}-b_{n}\right|\right\}$ is a Cauchy sequence as claimed.
3. (6.6.2) Find two sequences such that each is a subsequence of the other, but they are not equal.

Solution: The sequences $\{1,2,1,2,1,2, \ldots\}$ and $\{2,1,2,1,2,1, \ldots\}$ work. If you know of a more interesting example please tell me.
4. (7.3.2) Let x be a real number with $|x|<1$. Then show that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

What can you say when $|x| \geq 1$?
Solution: Let $S_{n}=1+x+\cdots+x^{n}$. Then $(1-x) S_{n}=S_{n}-x S_{n}=1-x^{n+1}$. Therefore,

$$
S_{n}=\frac{1-x^{n+1}}{1-x}
$$

Letting $n \rightarrow \infty$ we see that $x^{n+1} \rightarrow 0$ as $|x|<1$. Which proves our claim. For $|x| \geq 1$, the series diverges.
5. (7.2.1) Does the series

$$
\sum_{n=0}^{\infty}(-1)^{n}
$$

converge or diverge? If it converges can you find its value?
Solution: The series does not converge as the sequene $\left\{(-1)^{n}\right\}$ does not go to zero as $n \rightarrow \infty$, by corollary 7.2.6. For the second part use the ratio test to conclude that the series converges for $|x|<1 / 3$. To deal with the end-points, apply the p-series test. I got the series converges for $x \in(-1 / 3,1 / 3]$.
6. Construct a sequence $\left\{x_{n}\right\}$ of real numbers satisfying:

$$
\limsup _{n} x_{n}=2006 \text { and } \liminf _{n} x_{n}=-\infty
$$

Solution: The sequence $\{2006,-1,2006,-2,2006,-3, \ldots, 2006,-n, \ldots\}$ works.
7. Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers. Show that the sequence $\left\{y_{n}\right\}$ given by

$$
y_{n}=\sup _{m \geq n} x_{m}
$$

converges.
Solution: Since the sequence $\left\{x_{n}\right\}$ is bounded we know the sequence $\left\{y_{n}\right\}$ is. Also the sequence $\left\{y_{n}\right\}$ is monotonically decreasing as we have less terms to take the supremum of each time we increase n. Therefore, it converges.
8. Let $x \in \mathbb{Q}$ with $x^{2} \leq 2$. Show that we can find a $y \in \mathbb{Q}$ with $x<y$ and $y^{2} \leq 2$. Hence, the set $\left\{x \in \mathbb{Q}: x^{2}<2\right\}$ has no supremum in \mathbb{Q}. Hint: write $x=a / b$ and compare

$$
\frac{a}{b} \text { with } \frac{3 a+4 b}{2 a+3 b}
$$

This comparison was known to Euclid.
Solution: A quick computation shows that if $x=a / b$ and $x^{2} \leq 2$, then taking y to be $\frac{3 a+4 b}{2 a+3 b}$ gives us the y we are looking for in the problem. That is,

$$
\frac{a}{b}<\frac{3 a+4 b}{2 a+3 b}
$$

