Real Analysis Quiz 2

1. Let $a \in \mathbb{R}$ be a positive real number. Let $\{x_n\}$ be the sequence defined by

$$x_0 = 0, \ x_{n+1} = a + x_n^2, \ n \ge 0.$$

If the sequence converges what will it converge to? If you are feeling slightly more ambitious find all possible values of *a* for which the sequence converges and prove you claim.

- 2. Let $\{a_n\}$ and $\{b_n\}$ be two Cauchy sequences of real numbers. Then show that the sequence $\{|a_n b_n|\}$ is Cauchy.
- 3. (6.6.2) Find two sequences such that each is a subsequence of the other, but they are not equal.
- 4. (7.3.2) Let *x* be a real number with |x| < 1. Then show that

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

What can you say when $|x| \ge 1$?

5. (7.2.1) Do the series

$$\sum_{n=0}^{\infty} (-1)^n \text{ and } \sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{\sqrt{n}} x^n$$

converge or diverge? For the second one what can you say about its radius of convergence?

6. Construct a sequence $\{x_n\}$ of real numbers satisfying:

$$\limsup_{n} x_n = 2006 \quad \text{and} \quad \liminf_{n} x_n = -\infty.$$

7. Let $\{x_n\}$ be a bounded sequence of real numbers. Show that the sequence $\{y_n\}$ given by

$$y_n = \sup_{m \ge n} x_m$$

converges.

8. Let $x \in \mathbb{Q}$ with $x^2 \le 2$. Show that we can find a $y \in \mathbb{Q}$ with x < y and $y^2 \le 2$. Hence, the set $\{x \in \mathbb{Q} : x^2 < 2\}$ has no supremum in \mathbb{Q} . Hint: write x = a/b and compare

$$\frac{a}{b}$$
 with $\frac{3a+4b}{2a+3b}$.

This comparison was known to Euclid.