Real Analysis Quiz 2

1. Let $a \in \mathbb{R}$ be a positive real number. Let $\left\{x_{n}\right\}$ be the sequence defined by

$$
x_{0}=0, \quad x_{n+1}=a+x_{n}^{2}, \quad n \geq 0
$$

If the sequence converges what will it converge to? If you are feeling slightly more ambitious find all possible values of a for which the sequence converges and prove you claim.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two Cauchy sequences of real numbers. Then show that the sequence $\left\{\left|a_{n}-b_{n}\right|\right\}$ is Cauchy.
3. (6.6.2) Find two sequences such that each is a subsequence of the other, but they are not equal.
4. (7.3.2) Let x be a real number with $|x|<1$. Then show that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

What can you say when $|x| \geq 1$?
5. (7.2.1) Do the series

$$
\sum_{n=0}^{\infty}(-1)^{n} \text { and } \sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}}{\sqrt{n}} x^{n}
$$

converge or diverge? For the second one what can you say about its radius of convergence?
6. Construct a sequence $\left\{x_{n}\right\}$ of real numbers satisfying:

$$
\limsup _{n} x_{n}=2006 \text { and } \liminf _{n} x_{n}=-\infty
$$

7. Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers. Show that the sequence $\left\{y_{n}\right\}$ given by

$$
y_{n}=\sup _{m \geq n} x_{m}
$$

converges.
8. Let $x \in \mathbb{Q}$ with $x^{2} \leq 2$. Show that we can find a $y \in \mathbb{Q}$ with $x<y$ and $y^{2} \leq 2$. Hence, the set $\left\{x \in \mathbb{Q}: x^{2}<2\right\}$ has no supremum in \mathbb{Q}. Hint: write $x=a / b$ and compare

$$
\frac{a}{b} \text { with } \frac{3 a+4 b}{2 a+3 b}
$$

This comparison was known to Euclid.

