FINAL EXAM - MATH 401/501 - Fall 2016 December 13, 2016

Instructor: C. Pereyra

There are 8 problems for a total of 110 points. Justifications and well thought arguments are expected. You can use your textbook, no notebooks or calculators are allowed. Good Luck!!

- 1. (15 points) Given a statement do as indicated in each case.
 - (a) Given the statement, where here $f : \mathbb{R} \to \mathbb{R}$:

 $\forall \epsilon > 0 \ \exists \delta > 0 \ such \ that \ \forall x \in \mathbb{R} \ with \ |x - x_0| \leq \delta \ we \ have \ |f(x) - L| \leq \epsilon.$

Write the **negation** of the given statement:

The **given statement** is the definition of:

(b) Write the **contrapositive** of the following statement:

If the series $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$.

Is the contrapositive a true or a false statement?	TRUE \Box	False \Box
Is the original statement a true or a false statement?	TRUE \Box	False \Box

(c) Write the **converse** of the following statement: If a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable then it is continuous.

Is the converse a true or a false statement?	TRUE \Box	False \Box
Is the original statement a true or a false statement?	TRUE \Box	False \Box

- 2. (10 points) Let $a, b \in \mathbb{R}$, and let $f : \mathbb{R} \to \mathbb{R}$ be the function f(x) = ax + b.
 - (a) Use the ϵ - δ definition of continuity to show that f is continuous at a point $x_0 \in \mathbb{R}$.

(b) Use the definition of derivative to calculate $f'(x_0)$ at a point $x_0 \in \mathbb{R}$.

3. (10 points) Let
$$f : [-1,1] \to \mathbb{R}$$
 be given by $f(x) = \begin{cases} 1 & \text{if } -1 \le x \le 0\\ (3x+1)^2 & \text{if } 0 < x \le 1 \end{cases}$
(a) Is f is differentiable on $[-1,1]$? Explain. YES \Box NO \Box

(b) Find $f'(x_0)$ for each point $x_0 \in [-1, 1]$ at which f is differentiable.

- 4. (10 points) Let $f, g : \mathbb{R} \to \mathbb{R}$. and let $x_0 \in \mathbb{R}$. Assume that $\lim_{x \to x_0} g(x) = 0$.
 - (a) Show that if $\lim_{x \to x_0} f(x)$ exists then $\lim_{x \to x_0} g(x) f(x) = 0$.

(b) Show that if $\lim_{x \to x_0} f(x)$ does not exist but f is a bounded function on \mathbb{R} then

 $\lim_{x \to x_0} g(x) f(x) = 0.$

- 5. (10 points) Assume $f, g : \mathbb{R} \to \mathbb{R}$ are uniformly continuous on \mathbb{R} .
 - (a) Use the ϵ - δ definition of uniform continuity to show that f + g is uniformly continuous on \mathbb{R} .

(b) Show that the composition $(g\circ f)$ is uniformly continuous on $\mathbb R$.

6. (30 points) Decide whether the following statements are true or false. All the functions and sequences considered are defined on R, unless stated differently. Justify your answers with a couple sentences, a counterexample, or a reference. If the statement is false, modify it to make it true.

(a) If a series of real numbers
$$\sum_{k=0}^{\infty} a_k$$
 converges then $\sum_{k=0}^{\infty} |a_k|$ also converges.
 \Box True \Box False

(b) Continuous functions attain their maximum and minimum values on their domain. $\hfill \Box$ True \Box False

(c) Given an increasing sequence $\{a_n\}_{n\geq 1}$ bounded above, and given a continuous decreasing function $f: \mathbb{R} \to \mathbb{R}$, then $f(\sup\{a_n\}_{n\geq 1}) = \inf\{f(a_n)\}_{n\geq 1}$.

 \Box True \Box False

(d) If f is a differentiable and strictly decreasing function then f'(x) < 0 for all $x \in \mathbb{R}$. \Box True \Box False

(e) There is some $x \in [0, 1]$ such that $f(x) = 2^x - 3x = 0$.

 \Box True \Box False

(f)
$$\int_0^1 \frac{x}{(x^2+1)^2} dx = \frac{1}{4}$$

 \Box True \Box False

7. (15 points) Assume the function $f : \mathbb{R} \to \mathbb{R}$ satisfies the following additive property

f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

(a) Show that f(0) = 0 and that f(-x) = -f(x) for all $x \in \mathbb{R}$.

(b) Let a := f(1). Show (by induction) that f(n) = an for all natural numbers $n \in \mathbb{N}$.

(c) Show that f(k) = ak for all integer numbers $k \in \mathbb{Z}$, where a = f(1).

(d) Show that f(1/m) = a/m for all $m \neq 0$ and $m \in \mathbb{N}$, where a = f(1). Now show that f(r) = ar for all rational numbers $r \in \mathbb{Q}$.

(e) Show¹ that if f is continuous on \mathbb{R} then f(x) = ax for all real numbers $x \in \mathbb{R}$.

¹For each part of this and the next problem you can assume the previous parts are true.

8. (10 points) Given function $f : [a, b] \to [a, b]$.

The function f is a contraction on [a, b] if there is $0 < \alpha < 1$ such that

$$|f(x) - f(y)| \le \alpha |x - y| \quad \text{for all } x, y \in [a, b].$$

(a) A point $x \in [a, b]$ is a *fixed point* for f if and only if f(x) = x. Show that if f is a contraction on [a, b] then there is at most one fixed point for f. [Hint: Assume there are two different fixed points $x, y \in [a, b]$ and reach a contradiction.]

(b) If f is a contraction on [a, b], pick any point $x_0 \in [a, b]$, let $x_1 := f(x_0) \in [a, b]$, and given $x_n \in [a, b]$ define recursively $x_{n+1} := f(x_n) \in [a, b]$. Show that the sequence $\{x_n\}_{n\geq 0}$ in [a, b] is convergent to a point $x \in [a, b]$. [Hint: show that the sequence is a Cauchy sequence.]

(c) Let $\{x_n\}_{n\geq 0}$ be the convergent sequence defined in (b). Show that $x = \lim_{n \to \infty} x_n$ is a *fixed point* for f, that is, show that f(x) = x.

•

1 a.	b.	c.	2 a.	b.	3 a.	b.	4 a.	b.	5 a.	b.	6 a.	b.	с.	d.	e.	f.	7 a.	b.	с.	d.	e.	8 a.	b.	c.	Total