FINAL EXAM - MATH 401/501 - Fall 2016

December 13, 2016
Instructor: C. Pereyra
There are 8 problems for a total of 110 points. Justifications and well thought arguments are expected. You can use your textbook, no notebooks or calculators are allowed. Good Luck!!

1. (15 points) Given a statement do as indicated in each case.
(a) Given the statement, where here $f: \mathbb{R} \rightarrow \mathbb{R}$:
$\forall \epsilon>0 \exists \delta>0$ such that $\forall x \in \mathbb{R}$ with $\left|x-x_{0}\right| \leq \delta$ we have $|f(x)-L| \leq \epsilon$.

Write the negation of the given statement:

The given statement is the definition of:
(b) Write the contrapositive of the following statement:

If the series $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=0$.

Is the contrapositive a true or a false statement?
Is the original statement a true or a false statement?

TRUEFALSE
TRUEFALSE \square
(c) Write the converse of the following statement:

If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable then it is continuous.

Is the converse a true or a false statement?
Is the original statement a true or a false statement?

TRUEFALSE

TRUEFALSE
2. (10 points) Let $a, b \in \mathbb{R}$, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=a x+b$.
(a) Use the $\epsilon-\delta$ definition of continuity to show that f is continuous at a point $x_{0} \in \mathbb{R}$.
(b) Use the definition of derivative to calculate $f^{\prime}\left(x_{0}\right)$ at a point $x_{0} \in \mathbb{R}$.
3. (10 points) Let $f:[-1,1] \rightarrow \mathbb{R}$ be given by $f(x)=\left\{\begin{array}{clr}1 & \text { if } & -1 \leq x \leq 0 \\ (3 x+1)^{2} & \text { if } & 0<x \leq 1\end{array}\right.$
(a) Is f is differentiable on $[-1,1]$? Explain.

YESNO
(b) Find $f^{\prime}\left(x_{0}\right)$ for each point $x_{0} \in[-1,1]$ at which f is differentiable.
4. (10 points) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$. and let $x_{0} \in \mathbb{R}$. Assume that $\lim _{x \rightarrow x_{0}} g(x)=0$.
(a) Show that if $\lim _{x \rightarrow x_{0}} f(x)$ exists then $\lim _{x \rightarrow x_{0}} g(x) f(x)=0$.
(b) Show that if $\lim _{x \rightarrow x_{0}} f(x)$ does not exist but f is a bounded function on \mathbb{R} then

$$
\lim _{x \rightarrow x_{0}} g(x) f(x)=0
$$

5. (10 points) Assume $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous on \mathbb{R}.
(a) Use the $\epsilon-\delta$ definition of uniform continuity to show that $f+g$ is uniformly continuous on \mathbb{R}.
(b) Show that the composition $(g \circ f)$ is uniformly continuous on \mathbb{R}.
6. (30 points) Decide whether the following statements are true or false. All the functions and sequences considered are defined on \mathbb{R}, unless stated differently. Justify your answers with a couple sentences, a counterexample, or a reference. If the statement is false, modify it to make it true.
(a) If a series of real numbers $\sum_{k=0}^{\infty} a_{k}$ converges then $\sum_{k=0}^{\infty}\left|a_{k}\right|$ also converges. True \square False
(b) Continuous functions attain their maximum and minimum values on their domain.

True \square False
(c) Given an increasing sequence $\left\{a_{n}\right\}_{n \geq 1}$ bounded above, and given a continuous decreasing function $f: \mathbb{R} \rightarrow \mathbb{R}$, then $f\left(\sup \left\{a_{n}\right\}_{n \geq 1}\right)=\inf \left\{f\left(a_{n}\right)\right\}_{n \geq 1}$.TrueFalse
(d) If f is a differentiable and strictly decreasing function then $f^{\prime}(x)<0$ for all $x \in \mathbb{R}$. True \squareFalse
(e) There is some $x \in[0,1]$ such that $f(x)=2^{x}-3 x=0$.True \square False
(f) $\quad \int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{2}} d x=\frac{1}{4}$True \square False
7. (15 points) Assume the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following additive property

$$
f(x+y)=f(x)+f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

(a) Show that $f(0)=0$ and that $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
(b) Let $a:=f(1)$. Show (by induction) that $f(n)=$ an for all natural numbers $n \in \mathbb{N}$.
(c) Show that $f(k)=a k$ for all integer numbers $k \in \mathbb{Z}$, where $a=f(1)$.
(d) Show that $f(1 / m)=a / m$ for all $m \neq 0$ and $m \in \mathbb{N}$, where $a=f(1)$. Now show that $f(r)=a r$ for all rational numbers $r \in \mathbb{Q}$.
(e) Show ${ }^{1}$ that if f is continuous on \mathbb{R} then $f(x)=a x$ for all real numbers $x \in \mathbb{R}$.

[^0]8. (10 points) Given function $f:[a, b] \rightarrow[a, b]$.

The function f is a contraction on $[a, b]$ if there is $0<\alpha<1$ such that

$$
|f(x)-f(y)| \leq \alpha|x-y| \quad \text { for all } x, y \in[a, b] .
$$

(a) A point $x \in[a, b]$ is a fixed point for f if and only if $f(x)=x$. Show that if f is a contraction on $[a, b]$ then there is at most one fixed point for f. [Hint: Assume there are two different fixed points $x, y \in[a, b]$ and reach a contradiction.]
(b) If f is a contraction on $[a, b]$, pick any point $x_{0} \in[a, b]$, let $x_{1}:=f\left(x_{0}\right) \in[a, b]$, and given $x_{n} \in[a, b]$ define recursively $x_{n+1}:=f\left(x_{n}\right) \in[a, b]$. Show that the sequence $\left\{x_{n}\right\}_{n \geq 0}$ in $[a, b]$ is convergent to a point $x \in[a, b]$. [Hint: show that the sequence is a Cauchy sequence.]
(c) Let $\left\{x_{n}\right\}_{n \geq 0}$ be the convergent sequence defined in (b). Show that $x=\lim _{n \rightarrow \infty} x_{n}$ is a fixed point for f, that is, show that $f(x)=x$.

1			2		3		4																		
a.	b.	c.	a.	b.	c.	d.	e.	f.	a.	b.	c.	d.	e.	a.	b.	c.	Total								

[^0]: ${ }^{1}$ For each part of this and the next problem you can assume the previous parts are true.

