Given the vector field \(\vec{F} = (x + x^2) \hat{i} + xy \hat{j} + y^2 \hat{k} \), evaluate \(\text{div } \vec{F} \), \(\text{curl } \vec{F} \).

\[
\text{div } \vec{F} = \nabla \cdot \vec{F} = 1 + z^2 + x + y
\]

\[
\text{curl } \vec{F} = \nabla \times \vec{F} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_x & F_y & F_z
\end{vmatrix} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \hat{i} - \left(\frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right) \hat{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \hat{k}
\]

Need \(\frac{\partial F_x}{\partial y} = 2z \)

\(\frac{\partial F_y}{\partial z} = y \)

\(\frac{\partial F_z}{\partial x} = 2 \)

\(\frac{\partial F_z}{\partial y} = 0 \)

Thus, \(\text{curl } \vec{F} = 2 \hat{i} + 2xz \hat{j} + y \hat{k} = \text{curl } \vec{F} \).

Can you find a vector field whose \(\text{curl } \vec{F} \) is \(\vec{A} = \vec{y} \times \vec{x} \)?

(a) \(\text{curl } \vec{F} = \vec{y} \times \vec{x} \)

(b) \(\frac{\partial F_x}{\partial y} = 0 \) and \(\frac{\partial F_y}{\partial x} = 0 \)

Guessing: let \(F_x = xy^2 \)

Then \(\frac{\partial F_x}{\partial z} = x \)

Choose \(F_y = z \) and \(F_z = xz \)
Sec 3.4

p132 #9 (a) Can you find a vector field whose curl is $y\vec{i}$?

(b) Can

(a) Looking for $F = (F_1, F_2, F_3)$ st $\text{curl} F = y\vec{i}$

If such field exists then

1. $\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z} + y$
2. $\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}$
3. $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$

We will try to guess one component and use 1 2 3

Set $F_1 = xy\vec{z}$

The other

Similarly F_2, F_3 and use 1 to try to get our hands on C_1, C_2

Differentiate F_2, F_3 and use 1 to try to get our hands on C_1, C_2

\[
\begin{align*}
\frac{\partial F_2}{\partial z} &= \frac{x^2}{2} + \frac{2}{2} \frac{\partial}{\partial z} C_1(y, z) \\
\frac{\partial F_2}{\partial y} &= \frac{x^2}{2} + \frac{2}{2} \frac{\partial}{\partial y} C_2(y, z)
\end{align*}
\]

Choose $C_2(y, z) = \frac{y^2}{2}$, $C_1(y, z) = 0$

\[
\begin{align*}
\text{Claim} & \quad F = (xy^2)\vec{i} + \left(\frac{x^2z}{2}\right)\vec{j} + \left(\frac{xy}{2} + \frac{y^2}{2}\right)\vec{k} \\
\text{has} & \quad \text{curl} F = y\vec{i} \\
\text{Pf:} & \quad \nabla \times F = \left(\begin{array}{ccc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} & \frac{\partial}{\partial x} \\
xy^2 & \frac{x^2}{2} & \frac{x^2}{2} \\
\frac{x^2y}{2} & \frac{x^2}{2} & \frac{x^2}{2} + \frac{y^2}{2}
\end{array}\right) = \left(\begin{array}{ccc}
0 & 1 & 0 \\
z & 0 & 1 \\
-xy & 0 & 0
\end{array}\right) = y\vec{i}
\end{align*}
\]
(b) Can we repeat assuming this time \(\text{curl} \mathbf{F} = x \mathbf{e}_x \)?

This time

1. \(\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z} + y \)
2. \(\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} \)
3. \(\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y} \)

Same guess \(F_1 = xyz \) since \(2 \) and \(3 \) are like in part (a)

\[F_2 = \frac{x^2 y}{2} + C_1(y, z) \]
\[F_3 = \frac{x^2 y}{2} + C_2(y, z) \]

Differentiating and using \(1' \) we get this time

\[\frac{\partial}{\partial y} \left(\frac{C_2(y, z)}{y} \right) - \frac{\partial}{\partial z} \left(\frac{C_1(y, z)}{z} \right) = x \]

But this time \(\frac{\partial C_2}{\partial z} \neq \neq \neq \frac{\partial C_1}{\partial y} \) so \(\frac{\partial C_2}{\partial z} \neq \neq \frac{\partial C_1}{\partial y} \)

but now we have a problem because

\(C_2, C_1 \) are functions of only \(y \) and \(z \).

Regardless of who \(F_1 \) is we will encounter this problem, \(2 \) and \(3 \) imply

\[F_3 = \int \frac{\partial F_1}{\partial z} \, dz + C(y, z) \]
\[F_2 = \int \frac{\partial F_1}{\partial y} \, dy + C_2(y, z) \]

We get

\[\frac{\partial F_3}{\partial y} = \int \frac{\partial F_1}{\partial z} \, dz + \frac{\partial C_1}{\partial y} \]
\[\frac{\partial F_2}{\partial z} = \int \frac{\partial F_1}{\partial y} \, dy + \frac{\partial C_2}{\partial z} \]

Differentiating with respect to \(y \) and \(z \) to apply \(1' \)

\[\text{most hold in general} \]
Math 311 - Homework #13 - Solutions - Fall 2005

We are using two facts that only are true if we assume \(F \) has continuous second-order partial derivatives:

1. \(\frac{2}{y} \int \frac{dF}{d\bar{z}} \, dx = \int \frac{\partial^2 F}{\partial y \partial z} \, dx \)

 derivative can be interchanged with integral

 \(\frac{2}{z} \int \frac{dF}{d\bar{y}} \, dx = \int \frac{\partial^2 F}{\partial z \partial y} \, dx \)

2. Mixed partial derivatives are equal

 \(\frac{\partial^2 F}{\partial z \partial y} = \frac{\partial^2 F}{\partial y \partial z} \)

Sec 3.6
Find \(\nabla^2 f \) given \(f(x,y,z) = \frac{1}{x^2 + y^2 + z^2} \)

\(\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \)

Remember \(\frac{\partial}{\partial x} \frac{1}{R} = \frac{1}{R^3} \frac{\partial R}{\partial x} \)

\(\frac{\partial f}{\partial x} = -2x \frac{1}{R^3} \)

\(\frac{\partial f}{\partial y} = -2y \frac{1}{R^3} \)

\(\frac{\partial f}{\partial z} = -2z \frac{1}{R^3} \)

\(\Rightarrow \nabla^2 f = \Delta f = 3 \frac{(x^2 + y^2 + z^2) - 3R^2}{R^5} = 0 = \nabla^2 f \)

(f is a harmonic function)
Sec 3.6
p. 140 # 4

Which of the following functions satisfies Laplace's eqn?

(a) \(f(x, y, z) = e^z \sin y \)

\[
\frac{\partial^2 f}{\partial x^2} = 0 \\
\frac{\partial^2 f}{\partial y^2} = e^z \sin y \\
\frac{\partial^2 f}{\partial z^2} = -e^z \\
\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = e^z \sin y + e^z \sin y = 0
\]

(b) \(f(x, y, z) = \sin x (\sinh y) + \cos x (\cosh z) \)

\[
\frac{\partial^2 f}{\partial x^2} = -\sin x (\sinh y) \\
\frac{\partial^2 f}{\partial y^2} = \sin x (\sinh y) \\
\frac{\partial^2 f}{\partial z^2} = \cos x (\cosh z) \\
\Delta f = \nabla^2 f = 0
\]

(c) \(f(x, y, z) = \sin(px) \sinh(qy) \)

\[
\frac{\partial^2 f}{\partial x^2} = 0 \\
\frac{\partial^2 f}{\partial y^2} = -p^2 \sin(px) \sinh(qy) \\
\frac{\partial^2 f}{\partial z^2} = q^2 \sin(px) \sinh(qy) \\
\Delta f = \nabla^2 f = (q^2 - p^2) \sin(px) \sinh(qy) = 0 \iff q = \mp p
\]

f(x, y, z) = \sin(px) \sinh(qy) satisfies \(\Delta f = 0 \iff q = \mp p \)

p. 140 # 5

(a) \(\nabla f \) vector field
(b) \(\nabla \cdot F \) scalar field
(c) \(\nabla \times F \) vector field
(d) \(\nabla \cdot (\nabla f) \) scalar field
(e) \(\nabla \times (\nabla f) = 0 \) vector
(f) \(\nabla \times F \) vector field
(g) \(\nabla^2 F = \nabla \cdot (\nabla F) \) vector field
(h) \(\nabla \times (\nabla^2 f) \) non-sense
(i) \(\nabla \times (\nabla^2 f) \) scalar field
(j) \(\nabla (\nabla^2 f) \) vector field