Problems in Schaum’s Book: (p. 133-134) 61*, 71*, 72*

61. Show that Green’s second identity can be written

\[
\iiint_V \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) \, dV = \iint_S \left(\phi \frac{d\psi}{dn} - \psi \frac{d\phi}{dn} \right) \, dS.
\]

71. Prove

\[
\iiint_V \nabla \phi \cdot \vec{A} \, dV = \iint_S \phi \vec{A} \cdot \vec{n} \, dS - \iiint_V \phi \nabla \cdot \vec{A} \, dV.
\]

72. Let \(\vec{r} \) be the position vector of any point relative to an origin \(\vec{O} \). Suppose \(\phi \) has continuous derivatives of order two, at least, and let \(S \) be a closed surface bounding a volume \(V \). Denote \(\phi \) at \(\vec{O} \) by \(\phi_0 \). Show that

\[
\oiint_S \left[\frac{1}{r} \nabla \phi - \phi \nabla \left(\frac{1}{r} \right) \right] \cdot d\vec{S} = \iiint_V \frac{\nabla^2 \phi}{r} \, dV + \alpha,
\]

where \(\alpha = 0 \) or \(4\pi \phi_0 \) according as \(\vec{O} \) is outside or inside \(V \). Remember \(r = |\vec{r}| \).