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Chapter 1

 LOGICAL SYSTEMS AND
BASIC LAWS OF REASONING

Because of the vast amount of material now classified as geometry
and because of the hundreds of years in which this material has been
accumulating, it is impossible in discussing modern theories to do
justice to all phases of the science. Yet, to specialize is to lose the per-
spective necessary for gaining a proper understanding of the nature,
the scope, and the importance of geometry in the twentieth century.
For this reason, it has been deemed advisable to consider first the under-
lying structure or foundation of geometry. Specialization will then
come later.

Attention is focused first on logical systems, the pattern for which
was set over 2,000 years ago when Euclid performed the amazing feat
of collecting and organizing into a logical sequence practically all the
existing facts about geometry. Eueclid’s geofnetry is but one example
of a logical system. Algebra, which is based on axioms about the num-
ber system, is another example. Projective geometry and elementary
non-Euclidean geometries are still other examples that are to be studied
here.

In.a logical system, a set of elements is given. Some of these ele-
ments are undefined, and certain facts or statements called axioms are
assumed in connection with these undefined elements. The body of
conclusions obtained by reasoning logically from these axioms and
definitions represents the content of the system.

When a geometry is developed in this manner, it is called ““ axiomatic
geometry,” and the method employed is the “axiomatic method.”

The axiomatic approach to a science has spread, like fire, throughout
the whole of mathematics. In studying such an approach, one learns,
perhaps in the most natural manner, of the far deeper problems which
lie at the foundations of all mathematics.
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4 FOUNDATIONS AND SELECTED EUCLIDEAN GEOMETRY

Each of the basic topies, undefined elements, axioms, and reasoning,
will now be considered in greater detail.

1.1 Undefined Elements and Axioms

The basic elements of a logical system are those in terms of which all
the others are to be defined. Point and line are usually the undefined
elements of elementary geometry, but there exist geometries in which
the undefined elements are circles and spheres, or number pairs in a
plane, or even other elements, depending upon the particular type of
geometry to be studied.

To say that point and line are undefined elements may be puzzling,
particularly since definitions for these terms can be found in any stand-
ard dictionary. However, a definition simply gives the meaning of one
word in terms of others whose meaning is already clear. Simpler
words may be defined in still more simple terms, and so on. Such a
process would, therefore, lead to an endless regression if it were not
agreed that certain basic words are to be left undefined.

For example, a line segment is, by definition, that portion of a line
lying between two given points on the line. Here, point and {ine are
undefined, as is also the word belween.

Euclid defined a line as “length without breadth,” and a straight
line as a “line which lies evenly between two of its points.”  Here, the
terms length, breadth, and lies evenly are all undefined; hence Euclid
could just as well have used line as an undefined term.

Just as certain simple elements are chosen as fundamental ones, in
terms of which all others are to be defined, so too some simple state-
ments concerning the undefined elements are chosen as fundamental,
in the sense that all other statements of the system are to be deduced
from them by logical reasoning. These fundamental statements which
are aceepled withoul proof are called axioms. Their role and significance
will be brought out after the reasoning process has been analyzed.

EXERCISES

1. Why must there be undefined terms in a logical system?

2. Define a circle, explaining which of the terms used are undefined.

3. Using the undefined elements point, line, distance, and angle, define (a) a
parallelogram, (b) a rhombus, (e) a polygon.

1.2 Inductive Reasoning

Reasoning plays an important role in everyday life. In fact, were
it not for man’s ability to reason, it is doubtful if he could ever have
advanced much beyond the primitive stage. Certainly the keener, the
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more penetrating, the more inclusive the operation of the mind, the
oreater is the likelihood of man’s being able to mold his world into an
environment satisfying his needs.

Reagoning also plays a dominant role in the development of a logical
system, tnductive reasoning in discovering theorems, and deductive rea-
soning in proving them. Inductive reasoning will be discussed first.

Necessity and curiosity have at all times caused people to investigate
phenomena and to attempt to find the laws governing the physical uni-
verse. The inundations of the Nile and the need for reestablishing
landmarks led the ancient Egyptians to develop simple properties of
right triangles. Curiosity concerning the heavens brought forth vari-
ous complicated theories about the actions of the planets and the sun.
Cures are still being sought for the dread disease cancer.

Very much the same type of reasoning isused in all of these investiga-
tions. A doctor, for instance, arrives at a diagnosis of a specific disease
by a careful, systematic investigation of all factors attendant upon the
disease. He notes all symptoms, however trivial, excluding none
until it has been proved irrelevant. e classifies, examines, and com-
bines pertinent facts until he finally reaches the diagnosis which enables
him to effect a cure. Reasoning of this kind is inductive.

Often, to verify a conclusion reached by inductive reasoning, the
investigator makes repeated experiments. Sometimes they are carried
on for a period of years, as was the case in establishing the laws of
astronomy and the laws of heredity. Galileo also used induetive rea-
soning when he repeatedly dropped objects from the top of the leaning
tower of Pisa to determine his famous law of falling bodies: s = git?,
where s is the distance in feet a body falls in ¢ seconds and ¢ is the
gravitational constant whose value is about 32.2 feet per second.

Many other examples may be cited. There is, for instance, the con-
stantly recurring phenomenon of the sun’s rising and setting each day,
from which it has been concluded that the sun will rise and set every
day in the future. This does not mean, however, that it is absolutely
certain that the sun will rise tomorrow, or a week, or a year, or a million
years from now. Conclusions reached by induection are only state-
ments of what is more or less likely to happen. If an exception is ever
found, either the conclusion is discarded, or laws of probahility are used
to determine its reliability for future prediction.

EXERCISES

1. Give an original example of the use of induction in arriving at commonly
accepted conclusions.
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2. If, for the past twenty years, the average temperature in July is higher than
that for December, can one conclude that the average temperature for July is
always higher than that for December? Give reasons for your answer.

3. If, in each of 500 cases treated, treatment A cured disease B, can one conclude
that treatment A will always cure disease B? If treatment A failed to cure
disease B on the 501st treatment, should it be abandoned? Give reasons for your

ANSWET.

1.3 Some Elementary Logic

To attempt to introduce any but the most elementary principles of
logic would be a formidable task, since this science, like geometry, has
had a long, interesting period of growth. More than 2,000 years have
elapsed since Aristotle first formulated his laws for human reasoning,
and in that time radical changes have taken place. Today there is a
Whitehead-Russell approach to logic, a formalist approach, headed by
Hilbert, and an intuitionist approach headed by Poincaré, Weyl, and
others. All have had profound effect on the foundations of mathe-
matics, and at times the effect has been extremely disturbing. The
intuitionists’ view, for example, if taken literally, would have elimi-
nated a large and important body of mathematics. Current investiga-
tions, however, are showing that the different theories are not so far
apart as they seemed to be a few years ago. See [6, supplements A,:Bz
17, pp. 214-217; 62, pp. 247-255].*

There is space here to present only a somewhat modernized version
of the classical theory.

Simple Statements and Basic Laws of Reasoning

By a statement is here meant a meaningful sentence such as
1t 4s raining. (1)
which has for its negation, or denial, the equally simple statement:
It 48 not raining. (2)

Such an expression as “X is an integer’’ is not a meaningful sentence
until X is replaced by a number.

Assuming the customary meaning of truth and falsity in a factual
sense, few will deny that, if (1) is true, (2) is false. There seems to be
no other possibility, and yet L. E. J. Brouwer, a famous Dutch mathe-
matician of the twentieth century and a leader of the intuitionist school
of thought, has raised some questions about this matter when applied
to infinite sets.

Absurd as it may seem, Brouwer’s position has not been taken with-

# Numbers in brackets refer to entries in the Bibliography.
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out sufficient justification. Not all simple declarative statements can
be either affirmed or denied. This, of course, is true of statements,
such ag, “ World War I was fought to preserve democracy,” whose truth
or falsity might possibly be a matter of opinion or belief. It is true
also of other types of statements. Suppose, for example, a man says:

I am lying.

Is his statement true? If so, he is lying, and his statement is false.
Is his statement false? If so, he is lying, and his statement is true.

Again, suppose that Mr. Qmith is a small-town barber who shaves
those men and only those men of the town who do not shave them-
selves. Which of the following statements is true?

M. Smith shaves himself.
Mr. Smith does not shave himself.

Note the dilemma you are in if you attempt to answer this question.
If you affirm the first statement and deny the second, you are admitting
that Mr. Smith is shaving somebody who shaves himself, contrary to
the hypothesis; if you reverse your opinion, affirming the second and
denying the first, Mr. Smith is not shaving somebody who does not
¢have himself, and in this case, 00, the hypothesis is contradicted.

Again, can you say which of the following mathematical statements
has been proved to be true?

2/ % is a rational number.
V2 is mot a rational number.

Tt will be recalled that a number N is rational if there exist two
integers m, n, such that

N = q

m
N

As late as the year 1941* no one had found two integers m, n satisty-
ing the condition
9vE = T
n
but neither had anyone proved that such integers did not exist. 1t was
therefore impossible to affirm, deny, prove, or disprove either statement.
Fortunately, classical logic avoids controversial questions of such a
nature by assuming in advance of an argument that any given state-
ment is either true or false.
The three cornerstone laws of classical Aristotelian logic, called,
* See Harry Pollard, “The Theory of Algebraic Numbers,” Carus Monographs,
no, 9, p. 45,



8 FOUNDATIONS AND SELECTED EUCLIDEAN GEOMETRY

respectively, the law of identity, the law of the excluded middle, and the
law of noncontradiction, are:

1. A thing is ifself.

9. A statement 1s etther true or false.

3. No statement 1s both true and false.

Long-accepted patterns of reasoning are woven around these three
laws, but these laws are not usable in vast regions of modern mathe-
matics. In 1912, Brouwer challenged the second law, and a few years
later Count Alfred Korzybski, a Polish-American logician, challenged
the first. The third law, which deals with the consistency of a system,
seems to have held its ground better than the other two laws. Still, in
over 2,000 years of trying to reach an agreement on the use of these
laws little has been accomplished, except the realization of the need for
such an agreement.

Compostle Statements

By a composite statement is meant one involving such connecting

words as:
and, or, if-then

Three composite statements are:

It is raining and John is studying. 3)
It is raining or John is studying. (4)
If 4l is raining, then John is studying. (5)

In modern terminology, (3) is called a conjunction, (4) a disjunction,
and (5) an implication.

The conjunction of any two statements p, ¢ s the statement “p and
q,” which is assumed to be Irue when both p and q are true; otherwise, it s
Talse.

Thus, if p is the statement “it is snowing,” and ¢ is the statement
“the wind is blowing,” the conjunction “it is snowing, and the wind is
blowing is true, if it is actually snowing and at the same time the wind
is blowing.

The disjunction of the statements p, ¢ 1is the statement “p or ¢,”
which is assumed fo be true when at least one of the statements s lrue;
otherwise, it is false.

The word “or” in this definition is used in a nonexclusive sense, in
that the disjunction is still true when both p and ¢ are true.

Usually, “or” is used in the exclusive sense illustrated in the state-
ment “either T shall go, or I shall stay,” in which the occurrence of one
thing excludes the occurrence of the other.
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Trom the new meaning of “or,” it follows that the disjunction (4) is
frue if it is raining and John is studying; it is also true if it is not raining
and John is studying; and finally, it is true if it is raining and at the
same time John is not studying. It is false, if it is nof raining and, at
the same time, John is nof studying.

An implication, such as (5), is a statement of the form “if p, then ¢
and is written symbolically p— q. Ifs precise meaning must be
understood.

What does it mean to say, “If it is raining, then John is studying”?
If it is actually raining, the statement states unecquivocally that John
is studying. But, it may not be raining. If so, no information is
given as to whether or not John is studying. It is possible, therefore,
that John might be studying even if it were not raining; hence (5) is
equivalent to the disjunction:

It is not raining, or John is studying.

and an implication p — ¢ means that p is false or ¢ is true, if “or” is
now used in the nonexclusive sense.

The various possibilities of truth and falsity of the statements p, ¢
and the implication p — ¢ are shown in the table below, where Tand F
are the respective abbreviations for true and false.

P } 7 |p—y
T | T ‘ E
¥ T
F|r | T
T | F | F

From this table, it is seen that the implication p — g¢is true for every
combination of truth values of p and ¢ except the one in which p is true
and ¢ isfalse. This means that a frue stalement cannot imply a false one.
Thus, the implication:

If the sun shines today, 1 + 1 = 3.

is false if the sun shines today and is true if the sun does not shine today.
This is the case because 1 + 1 = 3 is false; hence the implication 1s
true only if the statement ‘“the sun shines today” is false.

EXERCISES

1. Give an original example of (a) an implication, (b) a disjunction, explaining
when each is true and false.
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9. Check the truth or falsity of each of the following implications:
(a) If New York is a small eity, then 2 X 2 =4

() If New York is a large city, then 2 %X 2 =5.

(c) If you are & freshman, then the grass is red.

1.4 Deductive Reasoning
Return now to the implication of the preceding section:

If it is raining, then John is studying. (1)
and, to it, add the further information:
It is raining. (2)

Then from (1) and (2) one obtains, by the fundamental rule of infer-
ence, the definite conclusion:

John is studying. (3)

and the complete process or argument by which this new statement is
obtained is called deductive reasoning. Logical and deductive reasoning
are here assumed to be synonymous terms.

There are other ways of describing the deductive process. The con-
clusion (3) is also said to be the inescapable consequence of the hypothe-
ses, or, preferably, (3) is said to be a valid conclusion reached by a valid
argument. It is of the syllogistic type, with its major premise (1), its
minor premise (2), and its inescapable conclusion (3) formed from the
nuteracker of the other two.

In general, if p and ¢ are any two statements, this type of syllogism,
represented symbolically as follows:

pP—4; P; o g
says in words: If one accepts the truth of the implication p — ¢ and
also the truth of p, then one must accept the truth of ¢.

If “not p”’ denotes the denial of statement p, another equally valid
argument is:

P—q; not q; S not p

which, in other words, says that, if one accepts the truth of the implica-
tion p — ¢ and denies the truth of ¢, then one must deny the truth of p.
This is so, because a true statement cannot imply a false one.

A simple example of this latter type of reasoning is:

If it is snowing, the temperature is below zero.
The temperature is not below zero.
Therefore, it is not snowing.
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A mathematical argument of the same type is:

If in triangle ABC side a equals side b, then the oppostle angles A
and B are equal.

Angle A is not equal to angle B.

Therefore, side a is not equal to side b.

1.5 Abstract Nature of Deductive Reasoning

. F_me is stressed in the deductive process, rather than content of the
individual statements. It makes no difference in the validity of the
conclusion whether one is talking about rockets to the moon or about
mere z’s and y’s devoid of physical meaning. It makes no difference
whether the conclusion reached is true or false in a factual sense.

. Manyivalid arguments may be given in which the conclusion is true
in some instances and false in others, as the next argument shows:

dIf you are a member of this class, you are over fwenly-one Years
old.

You are a member of this class.

Therefore, you are over fwenly-one years old.

Even though you are actually seventeen years old, you are here
bound to accept the conclusion as true, if you are a member of this
class and have agreed to the original statement. There is no turning
back. But this should not be a matter for concern. You have not
agreed to accept actual, or factual, truth or falsity but simply the
validity (or logical truth) of an abstract argument of the form:

If you are an X, you are a Y.
You are an X. -
Therefore, you are a Y.

What is an X? A Y? These questions are immaterial. It is as
Bertrand Russell once said, somewhat facetiously: “ Mathematics is
the subject in which we never know what we are talking about nor
whether what we say is true.” His remark makes sense when one
note:s that terms used in the deductive process are undefined, and con-
clusions rest ultimately on unproved (and sometimes me;mingless)
statements.

Conclusions obtained by deductive reasoning are independent of the
naf)u.re of the elements involved and are completely detached from
opinions, beliefs, facts, feelings, or emotions in any way connected with
these elements,
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1.6. Valid and Invalid Arguments. A Circle Test for Validity

By an invalid argument ‘s meant one in which the conclusion isnot a
logical consequence of the hypotheses. Tor example, an argument in
which one assumes the truth of statement p, from the truth of the impli-
cation p — ¢ and the truth of g, is invalid. Symbolically, such an
invalid argument is written:

P4 q; Sp
The following is an example of an invalid argument:

If a quadrilateral is a rhombus, ils diagonals are perpendicular to

each other.
The diagonals of the quadrilateral ABCD are perpendicular to each

other.
Therefore, the quadrilateral ABCD is a rhombus.

That the argument is invalid is shown by reference to Fig. 1.1, where
the diamond-shaped quadrilateral ABCD, which is not a rhombus, has

C
D B A - Beautiful people ———
B-Angels
A
C—Men
A
Fra. 1.1 Fia. 1.2

its diagonals perpendicular. In other words, perpendicularity of its
diagonals is no guarantee that a quadrilateral is a rhombus.

There is a simple circle test for determining the validity of a con-
clusion deduced from statements involving such words as “all,”
“some,” “any,” every,” and it will be illustrated for the following
argument:

All men are angels.
All angels are beautiful.
All men are beautiful.

In applying the test, it will be assumed that two notions, (1) a set of
elements and (2) belonging to a set, are known.

Points of a circle or simply a circle will represent the totality of ele-
ments of a certain set, and placing one cirele inside another will show
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graphically that the set of elements represented by the smaller cirel
belongs.to, or is a subset of, the set represented by the larger cir(?llrc )

Let.mrcle A (Tig. 1.2) represent beautitul people; circle B a,li e.1 ;
apd circle ¢, men. Then, from the first statement ,'m the a,r, u ot
c%rcle (' lies within cirele B; and from the second, circle B lie§ n'l’flrll't’
cirele A. Cirele C therefore lies within circle A4, wilich means th:izlm ”
form a subset of beautiful people, and the conclusion is therefore valfdn

The circle test is applied next to an
. argument whose validity is t
determined by means of the test. alidity is to be

If all good cars are expensive, and
All foreign cars are expensive, then
All foreign cars are good.

Let.circle A (Eig. 1.3) represent expensive things; circle B, good cars;
and circle C, foreign cars. Then, from the first statement, circle B lie;s

: : CO : ¢
A A A A
O
B
() (5) () (d)

A —Expensive things
B—Good cars
C —Foreign cars
Fia. 1.3

.wﬂ:hm CiI-'GIE A;and from the second, circle ' lies within circle 4 ; but no
mform'atlon is given as to the position of circle ' with respect t’o circle
B.. Circle €' might lie within circle B (Fig. 1.3a), be external to B
(Fig. 1.3b), overlap B (Fig. 1.3¢), or include B (Fig. 1.3d). Since one

is not forced to accept any parti ibiliti
: y particular one of these possibilities and rej
the othtlers, the conclusion is invalid. smdreedt

1.7 Deductive Reasoning in an Elementary Proof

A Mogt m.thema,tl.cal proofs consist of chains of simple deductions
from : efinitions, axioms, and previous theorems. Since the syllogistic
orm is cumbersome, the argument is usually abbreviated, as shown in
the proof of the elementary Euclidean theorem: ’

If two straight lines intersect, the vertical angles are equal.

échhe proof Wi.ll be based on only definitions and axioms. Let Za and
e any vertical angles (Fig. 1.4). Then, by definition of a straight
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angle, :
Za + b =a straight angle (D

and /b + Ze = a straight angle (2)

Therefore, by the axiom that “things equal to the same thing are equal

to each other,”
Aa,—l—ﬂ):ib—!;—éc (3)

Hence, by the axiom: “Tf equals are subtracted from equals, the results

are equal,”’
Za = ZLc (4)

Since Za and Zc were any vertical angles (by definition of vertical
angles), the theorem is proved.

B D

b
c a
5 A

C A
Fra. 1.4

A— Things equal to
each other

B~ Things equal to
the same thing

C— The angles
a+b, and b+c

Fia. 1.6
There are two distinct syllogistic arguments in this proof. One of
them leads to conclusion (3), the other to conclusion (4). The circle
test will be used to check the validity of (3), and the test for (4) left
Let circle A (Fig. 1.5) represent the set of things equal
equal to the same thing; and,

finally, circle C, the pair of angles a + b and b + ¢. Since each of
these angles is a straight angle, circle (' lies within circle B, and since
things equal to the same thing are equal to each other, circle B lies
within circle A. Circle ( therefore lies within cirele A, and the validity

of conelusion (3) is established.

as an exercise.
to each other; circle B, the set of things

1.8. Indirect Method of Proof

Not all proofs proceed in the direct manner just shown. Indirect
proofs are extremely powerful and elegant, and yet beginners are
reluctant to use them. This type of proof employs the logical principle
of the excluded middle, in which an investigator assumes that either a
statement or its denial is true. If one is disproved, the other follows.

Tor example, to show that the sum c of two even integers is an even
integer, it is shown that the contrary assumption ‘“cis odd’’ leads to a
contradiction. By the law of the excluded middle, ¢ is either even
or odd and since ¢ cannot be odd, then ¢ is even. ;
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Details of the proof, if aand b are the two evenintegers, are asfollows:

If a+b=c N
then atb_ae b _c
2 22 2

But if each of the quantities a/2 i
: and b/2 is an integer (whi
ch

};hf(; Iclaseé s?illce a agd b are even), their sum is also an intege;nus'ti‘llie
eft- ant. side c?f this last equation 1s therefore an integer; but si;lce be
assumption, ¢ 1s odd, the right-hand side ¢/2 is not an i,nt 4 a
contradiction has been reached. cger, and a

The indirect method is illust in i

rated aga i

elementary Euclidean theorem: e

If two parallel lines are cut b
el y a transversal, the alternate interior angles

Let transversal 7' (Ii i i

Sy (rlr Lg.slh.((?‘)vm;ﬁ aTe two given lines A B and C'D in the
the alternate interior angles AMN o

and MND are equal, it will be
s'hown that the contrary assump-
tion, i.e., the inequality of these
fmgles, leads to a contradiction. Tt
is agsumed in the proof that Theo- |

rem 27, Appendix A, has already © ? ,l«- D

heen proved.
Suppose that the angles AMN
and DNM are not equal, and let a

line PQ through the poi
Then, gh the point M make angle PMN equal to angle DN M.

Fic. 1.6

PQ 1s parallel to CD. (Theorem 27, Appendix A)

;?I?C(l::ﬁ?e through the point M there are two parallels to the line CD
. assuls cc;rllclu:;lon contradicts the parallel axiom (Sec. 5, Appendix B)‘
mption that angles AMN and DNM il ‘
B s e o ot are unequal is false, and
the excluded middle, th J
The student should com i Arip s s
are th i i
pr(g)f e e Bl “I,)) ' e this proof with the much longer direct
- 11321113111': examples and discussions of the indirect method may be found
o :;al;}‘:lre (12, pp. 137.'—153 :62, pp. 70-72].  In passing, however
e tit, although indirect proofs may usually be re’placed bj;r
, there are some theorems which by their very nature pre-

clude the possibility of a direct proof [17, pp. 86-87].



16 FOUNDATIONS AND SELECTED EUCLIDEAN GEOMETRY

EXERCISES

1. Give an indirect proof of the Fueclidean theorem:

If the bisectors of two interior angles of a triangle are equal, the triangle 78 isosceles.
Hint: See [59, p. 141]. How does the indirect proof compare in simplicity with
the direct proof?

2. Are the words “invalid”’ and “false” equivalent in meaning? Explain.

3. Give a direct proof of the Euclidean theorem proved in Sec. 1.8.

Hint: Through the mid-point O of MN (Fig. 1.6), draw a perpendicular to cD,
meeting AB and CD in the respective points B and F. Show that the right trian-
gles EOM and ONF are congruent. '

Determine which of the following arguments are valid:

4. Tf Jay is pitching, our team is winning. Our team is winning; therefore Jay
is pitching.

. If Mr. X is President, he is a Democrat. Mr. X is President; therefore Mr. X
is a Democrat. (If Mr. X is the present President of the United States, is the
conelusion true?)

6. Good canned peaches are expensive, and this can of peaches is good; therefore
{his can of peaches is expensive.

7. No undergraduates have B.A. degrees. No freshmen have B.A. degrees.
Therefore freshmen are undergraduates.

Concluding Remarks

The material here presented is of the selective type, since an exhaus-
tive study of the foundations of geometry is not the primary aim of this
work. However, even this brief introduction, supplemented by the
discussions in the next chapter, will enable the reader to understand,
appreciate, and even anticipate the great changes which have taken
place in geometric thinking since Euclid gave to the world his first-class
model of a logical system.
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