The linear algebra of quantum mechanics

- \(\mathcal{H} \) = set of states \(\psi \) of a physical system \(S \); superposition axiom: \(\mathcal{H} \) is a \(C^* \)-space.

- \(\mathcal{A} \) = set of measurable quantities (observables); eg: positions, momenta, etc.

- For each \(A \in \mathcal{A} \) one has a set \(\sigma(A) \subset \mathbb{R} \), the set of all possible values of \(A \).

- For each \(A \in \mathcal{A} \) one has a set \(\mathcal{H}_A \subset \mathcal{H} \), the set of pure states for \(A \).

- If \(S \) is in state \(\psi^A \) and a measurement of \(A \) is performed then the value of the measurement is \(\lambda^A \) & \(S \) moves to a state equv to \(\psi^A \) (i.e. \(\in \mathcal{C} \cdot \psi^A \)).

- If \(S \) is in a state \(\psi = \sum a_n \psi^A_n \) (where \(\in \mathcal{C} \), \(\psi \) pure) & a meas of \(A \) is performed then the value of meas is one of the \(\lambda^A \), \(S \) moves to a state equv to \(\psi \).

The probability that this happens for an \(n \) is \(a_n^2 \) provided \(\psi \) is normalized.

(i.e. \(\sum |a_n|^2 = 1 \)). The prob is \(p = |a_n|^2 \). The average value of \(A \) (for state \(\psi \)) is \(\sum |a_n|^2 \lambda^A = \sum p_n \lambda^A_n \).

- Clearly \(\langle \psi \| \psi \rangle \) linear in 1st arg; also \(\langle \psi^A_n \| \psi^A_m \rangle = 0 \) for \(m \neq n \) & \(\delta = 1 \) for \(m = n \).

- Axiom: \(\langle \psi \| \psi \rangle \) is Hermitian inner prod. (so \(\{ \psi^A_n \}_n \) orthonormal basis).

- Next aim: justify why "\(A \) acts on \(\mathcal{H} \)" is reasonable. Indeed: \(\forall \psi \) I define \(A \)(\(\sum a_n \psi^A_n \)) = \(\sum a_n \psi^A_n \).

- Computing prob that system \(S \) goes from \(\psi^B \) to \(\psi^A \) after measuring first \(B \) & then \(A \) & \(\forall \psi^A \in \mathcal{H} \), \(\sum \text{prob}(\psi^B \rightarrow \psi^B) \cdot \text{prob}(\psi^B \rightarrow \psi^A) = \sum \langle \psi^C \| \psi^B \rangle \langle \psi^B \| \psi^A \rangle \).

So if \(U = (\langle \psi^C \| \psi^B \rangle) \)

then \(U_A = U \circ U \) \(\circ \) \(U_B \).