HISTORY OF GALOIS THEORY

Part I: Before Galois

1. Babylonians (2000 BC)
 Greeks (Euclid 300 BC)
 Arabs (Omar Khayyam 1000 AD)

 \(x^2 + bx + c = 0 \)
 \(x = \frac{-b \pm \sqrt{b^2 - 4c}}{2} \)
 \(\Delta = b^2 - 4c \)

2. Plato 300's BC:
 - Can one construct \(\sqrt{2} \) with straightedge & compass?
 - (Equivalently: Can one solve \(x^3 - 2 = 0 \) using only sq roots?
 - (Similarly: Can one construct reg poly's, trisect angles, etc.)

3. del Ferro 1500's
 Tartaglia (won contest)
 Cardano (disclosed)

 \(x^3 + px + q = 0 \)
 \(u^3 + v^3 = -q \)
 \(3uv = -p \)

 Same for \(x^4 + ax^3 + bx^2 + cx + d = 0 \)

 Comment: Birth of \(\mathbb{C} \) (blc can happen \(\Delta < 0 \) \(x \in \mathbb{R} \))

4. Gauss 1800's

 Th (FTA) Any \(f \in \mathbb{C}[X] \) is a prod of lin factors (so has roots in \(\mathbb{C} \)).
 Th \(x^m - 1 = 0 \) is "solvable by radicals of deg < m"
 Th \(x^p - 1 = 0 \) is "sol by rad's of deg 2 (square roots)"
 iff \(p = 2^m + 1 \) for some \(m \) (a Fermat prime)
 (equivalently, "a reg poly w/ p sides is constructible"
 iff \(p \) is Fermat).
 Th (indep: Wantzel) \(\sqrt{2} \), \(\cos 20^\circ \) not constructible (Plato's prob).

5. Abel 1800's

 Th \(x^5 + ax^4 + bx^3 + \ldots + e = 0 \) (where a,b,..., e indet) not
 "sol by rad's". (§)

\[\ast \] for some \(p \) prime.
PART II GALOIS & AFTER.

Galois 1800's

Th Let $f \in \mathbb{Q}[x]$ be irreducible (coeff #'s not letters!) & $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ its roots.
Let K be the smallest subfield of \mathbb{C} s.t. $\alpha_1, \ldots, \alpha_n \in K$. (note $K = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$)
Let $G = \text{Gal}(K/\mathbb{Q}) = \{ \sigma : K \to K \text{ field aut.} \}$ (finitegrp.)
Then $f = 0$ "sol by rad's" $\iff G$ solvable
(or: Gauss, Abel: same for Q replaced by any subfield L of C)
(Pbm 1: how to compute G from f w/o knowing α_i's OPEN
2: what G's can occur? (Inverse Gal. problem) \{in general\}

Kronecker 1800's

Th Let f as above be s.t. G abelian. Then its roots α_i are all \mathbb{Q}-lin combinations of #s of the form $\zeta_n^i = \cos \frac{2k\pi i}{n} + i \sin \frac{2k\pi i}{n}$ (Rad.)
(note $\zeta_n^i = f(k/n)$, $f(z) = e^{2\pi iz}$)

K's j纳斯 trauma. Prove synth similar w/ \mathbb{Q} replaced by othersubfields

Hilbert: some of K's “j纳斯” abelian $f(z) = e^{2\pi iz}$ repl by other boldness

Artin 1920's finished “class field th” program (exploit define $G(K/k)$ etc.)
Also w/ f as above he attached to each prime $p \in \mathbb{Z}$
an elt $\sigma_p \in G$, he embedded $G \subset \text{GL}_n(\mathbb{C})$ & set $a_p = \text{tr}(\sigma_p)$ & constructed holo fn $L(z)$ from a_p's.
He introduced the philosophy that L should have some
c (hidden symmetry).
(Hidden symmetry.)

Shafarevich 1970

Th Any solvable group appears for some $f \in \mathbb{Q}[x]$.

Langlands ~1970, Wiles 1995

Cases when Artin's L has the beautiful props.
& alg. geo. analogues Non-abel class field th ????