Given \(M = \mathbb{R}^n \) (space or space time)

A Lie group acting on \(M \) (hence on \(L^2(M) \)) and on a finite dim vect \(\mathcal{V} \)

\(\mathcal{G} = H \rightarrow H \) a \(G \)-equiv linear oper (densely defined !)

\[\mathcal{L} = -\frac{i}{\hbar} \frac{\partial}{\partial t} + \mathcal{V} \]

Examples

1) \(M = \mathbb{R}^3 \), \(G = SO(3) \), \(\mathcal{V} = \mathbb{R}^3 \), \(\mathcal{L} = -\frac{\hbar^2}{2\mu} \Delta + \mathcal{V} \), \(\mathcal{V} = V(r) \).

2) \(M = \mathbb{R}^4 \), \(G = \text{Lorentz} \), \(\mathcal{V} = \mathbb{C}^4 \) w/ \(G \) acting via

\[(A, \mathcal{A}^\dagger) \text{ where } A \in SL(2, \mathbb{C}) \]

\(\mathcal{L} = \text{Dirac equiv op.} \)

Back to general sit. Let \(R = (\text{clos of }) \ker \mathcal{L} \), Then \(G \) acts on \(R \)

Define a Casimir oper as an elt of the center of \(\mathcal{U}(G) \) where \(g = \text{Lie } G \).

If \(W \) is an irreducible rep of \(G \) then any Casimir oper \(C \) induces a

G-act of \(W \) so is a scalar \(g \cdot Id_W \), \(g \in G \); call \(g \) the quantum num of \(W \) corre.

Define an eltary particle as an irr rep of \(G \)

Often \(R = \bigoplus W_j \), \(W_j \) irr. One interprets this by saying that a sol of \(\text{H} \)

is a superpos of eltary particles each of which has some definite quantum nums.

Say \(W_1, W_2 \) are irr rep's \(W \bigoplus W_j \approx \bigoplus V_k \), \(V_k \) irr. One interprets this by saying that a state of a pair of particles \(W_1 \& W_2 \) is a superpos of particles \(V_k \).

\(S^n(W_j) \) represents \(n \) bosons of type \(W_j \).

\(\bigoplus W_j \) in Fermions of type \(W_j \).

Example

\[G = SO(3) = \{ A \in GL(3, \mathbb{R}) \mid \det A = 1 \}, AA^T = I \]

\(A = \frac{1}{2} \mathbb{1} \mid \det(I + EM) = 1 \), \((I + EM)(I + EM^T) = I \)

\[= \frac{1}{2} \mathbb{1} \mid trM = 0, M + M^T = 0 \] \(= \text{Span} \{ (1,0,0), (0,1,0), (0,0,1) \} \)

I + EM acts on \(C^\infty \text{ fun } f(x, y, z) \), \(f: \mathbb{R}^3 \rightarrow \mathbb{C} \) as follows

\[((I + EM) f)(x, y, z) = f(x + y, -x + y, 2) = f(-1 + 0, 0, 0) \]

\(\text{by Shur's Lemma} \)

Sometimes it is true that if \(W_1, W_2 \) have the same quantum nums \(\{ \text{i.e. } \mathcal{C}, q_c(W_1) = q_c(W_2) \} \)

then \(W_1 \& W_2 \) as \(G \)-mod \('s \).
A Casimir operator (ess the only one) is \(C = x^2 + y^2 + z^2 \in U(3) \).

Action of \(C \) on \(C^0(\mathbb{R}^3) \) is by \(L^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \).

In quantum mechanics this op \(L \) is called "total angular momentum" \(\mathbf{L} \).

L Let \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \) & \(P_n = \text{four poles in } x, y, z \) of deg \(n \) w/ C-coeffs. Then

1. \(\Delta \) is \(SO(3) \)-equiv so \(SO(3) \) acts on \(\text{Ker} (\Delta: P_n \to P_{n-2}) = V_n \)
2. \(V_n \) is an irr rep of \(SO(3) \) and every irr rep of \(SO(3) \) is \(\cong \) some \(V_n \).

P The quantum number \(n \) \((V_n) = -n(n+1)\).

\[
\Phi_n(x+i y)^m \in V_n \text{ b/c } \Delta \Phi_n = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) \Phi_n = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})(x+i y)^m = m(m+1) \Phi_n \text{ where } \Phi_n = \Phi_n(x+i y) \in \text{Ker} \Delta.
\]

Now \((\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) \Phi_n = -m(m+1) \Phi_n \).

So \(\Phi_n(x+i y)^m \in V_n \).

Similarly, one computes \(\Phi_n(x+i y)^m \in \text{Ker} \Delta \).

We get \(L^2 \Phi_n = n(n+1) \Phi_n \).

R \(V_n \) appears as many times as \(L^2 \). Indeed \(\forall \Phi_n \in L^2(\mathbb{R}^3), \frac{\partial^2}{\partial x^2} \Phi_n = \Phi_n \).

L For \(\Phi \in C^0(\mathbb{R}^3) \), \(\Delta \Phi = (L^2) \Phi \) \text{ where } \Phi = \Phi(x+i y) \in V_n \).

B Direct comp (hope didn't make a mistake) (Use \(\Delta \Phi = 0 \), \(\Phi(x+i y) \in V_n \).

D Let \(\Phi_n \in V_n \) be a basis of \(V_n \).

L \(\Phi_n \in C^0(\mathbb{R}^3) \) is dual \(L^2(\mathbb{R}^3) \).

Using the above, one can study spectrum of \(L = -\frac{\hbar^2}{2m} \Delta + V \), \(V = V(r) \) as follows.

R Want to study \(\Phi \in L^2 \) \text{ s.t. } \Delta \Phi = E \Phi \text{. Assume } \Phi = \sum \Phi_n \Phi_n \text{ for } \Phi_n \in V_n \).

Eventually leads to \(V = \sum \Phi_n \Phi_n \).