\[\frac{\phi(n)}{n} \leq \frac{6}{\pi^2} \]

- \(\text{If } n \text{ is a prime power, } a \text{ and } b \text{ are relatively prime, } \frac{\phi(a \cdot b)}{ab} = \frac{\phi(a)}{a} \cdot \frac{\phi(b)}{b} \)

- For any prime power \(p^k \), the number of positive integers relatively prime to it is given by \(\phi(p^k) = p^k - p^{k-1} \)

- If \(n \) is the product of distinct primes, \(\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) \)

- If \(a \) and \(b \) are relatively prime, \(\phi(ab) = \phi(a) \phi(b) \)

- The value of \(\phi(n) \) for a given integer \(n \) can be found by expressing \(n \) as a product of distinct prime powers and using the formula above.

- The function \(\phi(n) \) is multiplicative, meaning that if \(n = ab \) where \(\gcd(a, b) = 1 \), then \(\phi(n) = \phi(a) \phi(b) \).

- The number of positive integers less than or equal to \(n \) and relatively prime to \(n \) is given by \(\phi(n) \).

- The sum of the \(\phi \) function over all divisors of \(n \) is equal to \(n \).

- The \(\phi \) function counts the number of integers up to \(n \) that are relatively prime to \(n \).

- The \(\phi \) function is also known as the Euler's totient function.
LEGENDRE SYMBOL FOR $p > 2$, EULER'S CRIT. $p = 2^a, 6^2$

- Constr of \mathbb{F}_p^*, $p \geq 3$ via $x^2 - d = f(x)$, $(\frac{d}{p}) = -1$, hence.
- Constr of $\mathbb{F}_4 \subset \mathbb{F}_8 \subset \mathbb{F}_{16}$.
- Any elt in \mathbb{F}_p^* is a sum of 2^n squares.
- $p \geq 3 \Rightarrow (\mathbb{Z}/p\mathbb{Z})^* \text{ cyclic}$, (not true for $p = 2, n = 3$)
- (Artin, ex. 3, p. 296) $\sigma \in \mathbf{G} \setminus \mathbf{Q}$, $E \in \mathbf{C}$ w.r.t. $\sigma \neq E$. Then A fin. dim. ext. \mathbf{F}_σ is cyclic.
- $\sigma \in G(\mathbf{Q}/\mathbf{Q})$; then A fin. ext. \mathbf{F}_σ is cyclic.
- A # field contains only fin. many roots of 1. [if not $\Phi(k(x))k$
- $K = \mathbf{C}$, F/k field ext. of fields only fin. many fields.
- $\text{disc}(K) = \mathbf{Q}$, $\sigma : k \to k^\sigma$, $\sigma(x) = x + 1$. (always $k = 0$)
- $S = \sum a \sigma$ is finite. Prove $S^2 = p (\frac{-1}{p}) = (1 - \frac{1}{p}) = \alpha P$, $S = \mathbf{F}(\mathbf{F}_p) \subset \mathbf{C}(\mathbf{F}_p, \alpha)$

May ass. F/E normal. Then $\sigma \in G(F/E)$ & $F \langle \sigma \rangle = E$ so $E \subset G(F/E)$

May ass. F/E normal. Then $\sigma \in G(F/E)$ if $G = H_0$

```latex
\begin{align*}
\text{Proof} & \text{of irreducibility. Use}\ $F \subset \mathbf{C}$, use $F$ an ext. of $\mathbf{Q}$ w.r.t. $\sigma$. Set $F_i = F_1(x) / (x^2 + x + 1)$
\end{align*}
```