Strichartz estimates in polygonal domains and cones

Matthew D. Blair

University of New Mexico

March 16, 2011

Joint work with:
- G. Austin Ford (Northwestern)
- Jeremy Marzuola (North Carolina)
The wave equation on \mathbb{R}^n

- Initial value problem for the wave equation

$$\square u := (D^2_t - \Delta)u = 0, \quad (u, \partial_t u)|_{t=0} = (f, g),$$

$$u(t, x) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}, \quad (D_t = -i\partial_t, \quad \Delta \geq 0)$$

- Properties:

$$\| \nabla_{t,x} u(t, \cdot) \|^2_{L^2} = \| \nabla_{t,x} u(0, \cdot) \|^2_{L^2} \quad \text{(energy conservation)}$$

$$\| u(t, \cdot) \|_{L^\infty(\mathbb{R}^n)} \leq C(u)(1 + |t|)^{-\frac{n-1}{2}} \quad \text{(decay inequality)}$$
Nonlinear wave equations

- Semilinear wave equation with power type nonlinearity
 \[\Box u = \pm |u|^{r-1}u \]

- Inhomogeneous energy estimates
 \[\| \nabla_{t,x} u(t, \cdot) \|_{L^2} \lesssim \| \nabla_{t,x} u(0, \cdot) \|_{L^2} + \int_0^t \| \Box u(s, \cdot) \|_{L^2} \, ds \]

- In order to linearize the equation, need to estimate powers of solutions efficiently
 \[\| u^r \|_{L^1(I;L^2(\mathbb{R}^n))} = \| u \|_{r,L^r(I;L^{2r}(\mathbb{R}^n))}^r, \quad I = (-T, T) \]
Strichartz estimates

- Robert Strichartz (1970’s)–estimates for $\Box u = 0$:
 \[
 \|u\|_{L^q(\mathbb{R}^{n+1})} \leq C \left(\|f\|_{\dot{H}^1_x(\mathbb{R}^n)} + \|g\|_{\dot{H}^{-\frac{1}{2}}(\mathbb{R}^n)} \right), \quad q = \frac{2(n+1)}{n-1}
 \]

- Consequence of Stein-Tomas restriction theorem: $\hat{u}(\tau, \xi)$ is supported on the cone $S = \{ \tau^2 = |\xi|^2 \}$,
 \[
 \|u\|_{L^q(\mathbb{R}^{n+1})} \leq C \|\hat{u}\|_{L^2(S)}
 \]
 which is dual to a Fourier restriction estimate
Strichartz estimates on \mathbb{R}^n
Boundary value problems
Estimates on cones

Strichartz estimates

- 80’s/90’s: Ginibre-Velo, Lindblad-Sogge, Keel-Tao, others

$$\|u\|_{L^p(\mathbb{R}; L^q(\mathbb{R}^n))} \leq C \left(\|f\|_{H^\gamma(\mathbb{R}^n)} + \|g\|_{H^{\gamma-1}(\mathbb{R}^n)} \right)$$

- Admissibility conditions:

1. $$\frac{1}{p} + \frac{n}{q} = \frac{n}{2} - \gamma \quad \text{(Scaling)}$$

2. $$\frac{2}{p} + \frac{n-1}{q} \leq \frac{n-1}{2} \quad \text{(Knapp example/Lorentz)}$$
Littlewood-Paley decompositions

- Take a Littlewood-Paley decomposition in the spatial frequencies

\[u = \sum_{k=\infty}^{\infty} u_k, \quad u_k(t, \cdot) = \mathcal{F}^{-1}\{\beta_k(\xi)\hat{u}(t, \xi)\}, \]

\[\text{supp}(\beta_k) \subset \left\{ 2^{k-\frac{1}{2}} < |\xi| < 2^{k+\frac{3}{2}} \right\}, \quad \sum_{k=\infty}^{\infty} \beta_k(\xi) = 1 \]

- The Littlewood-Paley squarefunction estimate reduces matters to

\[\|u_k\|_{L^p(L^q)} \lesssim 2^{\gamma k} \|f_k\|_{L^2} + 2^{\gamma(k-1)} \|g_k\|_{L^2} \quad k \in \mathbb{Z} \]

- Use scale invariance \((t, x) \mapsto (2^{-k} t, 2^{-k} x)\) to reduce to

\[\|u_0\|_{L^p(L^q)} \lesssim \|f_0\|_{L^2} + \|g_0\|_{L^2} \quad (k=0) \]
Littlewood-Paley decompositions

- Take a Littlewood-Paley decomposition in the spatial frequencies

\[u = \sum_{k=-\infty}^{\infty} u_k, \quad u_k(t, \cdot) = \mathcal{F}^{-1}\{\beta_k(\xi)\hat{u}(t, \xi)\}, \]

\[\text{supp}(\beta_k) \subset \left\{ 2^{k-\frac{1}{2}} < |\xi| < 2^{k+\frac{3}{2}} \right\}, \quad \sum_{k=-\infty}^{\infty} \beta_k(\xi) = 1 \]

- The Littlewood-Paley squarefunction estimate reduces matters to

\[\|u_k\|_{L^p(L^q)} \lesssim 2^{\gamma k} \|f_k\|_{L^2} + 2^{\gamma(k-1)} \|g_k\|_{L^2} \quad k \in \mathbb{Z} \]

- Use scale invariance \((t, x) \mapsto (2^{-k} t, 2^{-k} x)\) to reduce to

\[\|u_0\|_{L^p(L^q)} \lesssim \|f_0\|_{L^2} + \|g_0\|_{L^2} \quad (k = 0) \]
Littlewood-Paley decompositions

- Take a Littlewood-Paley decomposition in the spatial frequencies

\[u = \sum_{k=-\infty}^{\infty} u_k, \quad u_k(t, \cdot) = \mathcal{F}^{-1}\{\beta_k(\xi)\hat{u}(t, \xi)\}, \]

\[\text{supp}(\beta_k) \subset \left\{ 2^{k-\frac{1}{2}} < |\xi| < 2^{k+\frac{3}{2}} \right\}, \quad \sum_{k=-\infty}^{\infty} \beta_k(\xi) = 1 \]

- The Littlewood-Paley squarefunction estimate reduces matters to

\[\|u_k\|_{L^p(L^q)} \lesssim 2^{\gamma k} \|f_k\|_{L^2} + 2^{\gamma(k-1)} \|g_k\|_{L^2} \quad k \in \mathbb{Z} \]

- Use scale invariance \((t, x) \mapsto (2^{-k}t, 2^{-k}x)\) to reduce to

\[\|u_0\|_{L^p(L^q)} \lesssim \|f_0\|_{L^2} + \|g_0\|_{L^2} \quad (k = 0) \]
Frequency localized estimates

- Crucial matter: show that
 \[\| u_0(t, \cdot) \|_{L^\infty} \lesssim (1 + |t|)^{-\frac{n-1}{2}} \left(\| f_0 \|_{L^1} + \| g_0 \|_{L^1} \right) \]

- Oscillatory integral approach is most effective
 \[\left| \int e^{i(x - y) \cdot \xi \pm it |\xi|} \alpha(|\xi|) \, d\xi \right| \lesssim (1 + |t|)^{-\frac{n-1}{2}}, \quad \alpha \in C^\infty_c(\mathbb{R}^n) \]

- Can view the Littlewood-Paley multiplier as an operator which regularizes the Schwartz (distributional) kernels of
 \[\frac{\sin(t \sqrt{\Delta})}{\sqrt{\Delta}} \quad \text{and} \quad \cos(t \sqrt{\Delta}) \]
Frequency localized estimates

- Crucial matter: show that
 \[\| u_0(t, \cdot) \|_{L^\infty} \lesssim (1 + |t|)^{-\frac{n-1}{2}} (\| f_0 \|_{L^1} + \| g_0 \|_{L^1}) \]

- Oscillatory integral approach is most effective
 \[\left| \int e^{i(x-y) \cdot \xi \pm it|\xi|} \alpha(|\xi|) \, d\xi \right| \lesssim (1 + |t|)^{-\frac{n-1}{2}}, \quad \alpha \in C_c^\infty(\mathbb{R}_+) \]

- Can view the Littlewood-Paley multiplier as an operator which regularizes the Schwartz (distributional) kernels of
 \[\frac{\sin(t\sqrt{\Delta})}{\sqrt{\Delta}} \quad \text{and} \quad \cos(t\sqrt{\Delta}) \]
Frequency localized estimates

- Crucial matter: show that
 \[\| u_0(t, \cdot) \|_{L^\infty} \lesssim (1 + |t|)^{-\frac{n-1}{2}} (\| f_0 \|_{L^1} + \| g_0 \|_{L^1}) \]

- Oscillatory integral approach is most effective
 \[\left| \int e^{i(x-y) \cdot \xi \pm it|x|} \alpha(|\xi|) \ d\xi \right| \lesssim (1 + |t|)^{-\frac{n-1}{2}}, \quad \alpha \in C_c^\infty(\mathbb{R}^+) \]

- Can view the Littlewood-Paley multiplier as an operator which regularizes the Schwartz (distributional) kernels of
 \[\frac{\sin(t\sqrt{\Delta})}{\sqrt{\Delta}} \text{ and } \cos(t\sqrt{\Delta}) \]
Boundary value problems

Let Ω be a domain in \mathbb{R}^n, and consider solutions to

$$ (D_t^2 - \Delta)u = 0, \quad (u, \partial_t u)\big|_{t=0} = (f, g), $$

$$ u(t, \cdot)|_{\partial \Omega} = 0 \text{ (Dirichlet)} \quad \text{ or } \quad \frac{\partial u}{\partial \nu}(t, \cdot)|_{\partial \Omega} = 0 \text{ (Neumann)} $$

Boundary conditions affect the flow of energy

Trapped rays can preclude a global (in time) estimate
Boundary value problems

- Partial progress on smooth boundaries: Smith-Sogge, Burq-Lebeau-Planchon, MDB-Smith-Sogge

- Common thread—can construct a parametrix for the equation

- Domains with corners? No known effective parametrix
 - Melrose-Vasy-Wunsch: If a singularity lies on a ray which approaches a corner, it lies within the union of a family of rays after the interaction
Partial progress on smooth boundaries: Smith-Sogge, Burq-Lebeau-Planchon, MDB-Smith-Sogge

Common thread—can construct a parametrix for the equation

Domains with corners? No known effective parametrix
 - Melrose-Vasy-Wunsch: If a singularity lies on a ray which approaches a corner, it lies within the union of a family of rays after the interaction
Partial progress on smooth boundaries: Smith-Sogge, Burq-Lebeau-Planchon, MDB-Smith-Sogge

Common thread—can construct a parametrix for the equation

Domains with corners? No known effective parametrix

- Melrose-Vasy-Wunsch: If a singularity lies on a ray which approaches a corner, it lies within the union of a family of rays after the interaction
Sommerfeld’s example

Sommerfeld (1896) did explicit computations in the exterior of a wedge—he showed that when a wavefront interacts with the tip, a spherical wave of singularities is formed, even into the shadow region.

(Figure from Friedlander’s *Sound Pulses*)
Main theorem for domains

Theorem (MDB, Ford, Marzuola)

Let Ω be a domain in \mathbb{R}^2 whose boundary consists of a finite number of line segments. Then any solution to the wave equation with Dirichlet or Neumann BC’s satisfies

$$\|u\|_{L^p((-T,T);L^q(\Omega))} \lesssim \|f\|_{H^\gamma(\Omega)} + \|g\|_{H^{\gamma-1}(\Omega)}$$

$$\frac{1}{p} + \frac{2}{q} = 1 - \gamma \quad \text{(scaling)}$$

$$\frac{2}{p} + \frac{1}{q} \leq \frac{1}{2} \quad \text{(Knapp admissibility)}$$
Doubling the domain

- Since the estimate is local in time, finite speed of propagation means that it suffices to work locally in space, that is, over sets as small as you like.
- Away from the vertices: use the method of images.
- Near the vertices: impose polar coordinates \((r, \theta)\) centered at the vertex. If the angle is \(\alpha\), \((0, \delta) \times [0, \alpha] \subset \mathbb{R}_+ \times S^1\) will describe the neighborhood.
- This neighborhood can be “doubled” by gluing a copy of the corner on to the original.
Doubling the domain

Since the estimate is local in time, finite speed of propagation means that it suffices to work locally in space, that is, over sets as small as you like.

Away from the vertices: use the method of images.

Near the vertices: impose polar coordinates \((r, \theta)\) centered at the vertex. If the angle is \(\alpha\), \((0, \delta) \times [0, \alpha] \subset \mathbb{R}_+ \times S^1\) will describe the neighborhood.

This neighborhood can be “doubled” by gluing a copy of the corner on to the original.
Doubling the domain

- Since the estimate is local in time, finite speed of propagation means that it suffices to work locally in space, that is, over sets as small as you like.
- Away from the vertices: use the method of images.
- Near the vertices: impose polar coordinates \((r, \theta)\) centered at the vertex. If the angle is \(\alpha\), \((0, \delta) \times [0, \alpha] \subset \mathbb{R}_+ \times S^1\) will describe the neighborhood.
- This neighborhood can be “doubled" by gluing a copy of the corner on to the original.
Since the estimate is local in time, finite speed of propagation means that it suffices to work locally in space, that is, over sets as small as you like.

Away from the vertices: use the method of images.

Near the vertices: impose polar coordinates \((r, \theta)\) centered at the vertex. If the angle is \(\alpha\), \((0, \delta) \times [0, \alpha] \subset \mathbb{R}_+ \times S^1\) will describe the neighborhood.

This neighborhood can be “doubled" by gluing a copy of the corner on to the original.
Doubling the domain

Doubling gives \((0, \delta) \times \mathbb{R}/2\alpha\) equipped with the metric
\[dr^2 + r^2d\theta^2,\]
a subset of the Euclidean cone

\[C(S^1_\rho) = \mathbb{R}_+ \times \mathbb{R}/2\pi\rho,\] the Euclidean cone of radius \(\rho\)
\((\rho = \alpha/\pi)\). It has the flat metric
\[g = dr^2 + r^2d\theta^2.\]
Doubling the domain

- Dirichlet solutions can be extended by writing
 \[u(t, r, \theta) = \frac{1}{\sqrt{\alpha}} \sum_{j=1}^{\infty} u_j(t, r) \sin \left(\frac{j \pi \theta}{\alpha} \right) \]

- Neumann solutions can be extended by writing
 \[u(t, r, \theta) = u_0(t, r) + \frac{1}{\sqrt{\alpha}} \sum_{j=1}^{\infty} u_j(t, r) \cos \left(\frac{j \pi \theta}{\alpha} \right) \]
Main theorem for cones

Theorem (MDB, Ford, Marzuola)

Let $C(S^1_\rho)$ be the Euclidean cone of radius $\rho > 0$. Then for any admissible triple (p, q, γ)

$$
\|u\|_{L^p(R;L^q(C(S^1_\rho)))} \lesssim \|f\|_{\dot{H}^\gamma(C(S^1_\rho))} + \|g\|_{\dot{H}^\gamma-1(C(S^1_\rho))}
$$

- On $C(S^1_\rho)$, wave equation involves the Laplace-Beltrami operator

$$
-\Delta g = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}
$$
The Spectral Theorem

Spectral Theorem

There exists a measure space \((Y, \mu)\) and a unitary map \(W : L^2(Y, \mu) \rightarrow L^2(C(S^1_\rho))\) and a measurable function \(a(y)\) on \(Y\) such that

\[
W^{-1} \Delta g W h(y) = a(y) h(y), \quad \text{whenever } W h \in \text{Dom}(\Delta g).
\]

Furthermore, functions \(f(\Delta g)\) can be defined by

\[
W^{-1} f(\Delta g) W g(y) = f(a(y)) g(y)
\]

Can take a Littlewood-Paley decomp. w.r.t. the spectrum of \(\Delta_g\)

\[
l = \sum_{k=-\infty}^{\infty} \beta_k(\sqrt{\Delta_g})
\]
The Spectral Theorem

Spectral Theorem

There exists a measure space \((Y, \mu)\) and a unitary map \(W : L^2(Y, \mu) \to L^2(C(S^1_\rho))\) and a measurable function \(a(y)\) on \(Y\) such that

\[W^{-1} \Delta_g W h(y) = a(y)h(y), \quad \text{whenever } W h \in \text{Dom}(\Delta_g). \]

Furthermore, functions \(f(\Delta_g)\) can be defined by

\[W^{-1} f(\Delta_g) W g(y) = f(a(y))g(y) \]

Can take a Littlewood-Paley decomp. w.r.t. the spectrum of \(\Delta_g\)

\[l = \sum_{k=-\infty}^{\infty} \beta_k(\sqrt{\Delta_g}) \]
The Spectral Theorem

There exists a measure space \((Y, \mu)\) and a unitary map \(W : L^2(Y, \mu) \to L^2(C(S^1_\rho))\) and a measurable function \(a(y)\) on \(Y\) such that

\[
W^{-1} \Delta_g W h(y) = a(y)h(y), \quad \text{whenever } W h \in \text{Dom}(\Delta_g).
\]

Furthermore, functions \(f(\Delta_g)\) can be defined by

\[
W^{-1} f(\Delta_g) W g(y) = f(a(y))g(y)
\]

Can take a Littlewood-Paley decomp. w.r.t. the spectrum of \(\Delta_g\)

\[
l = \sum_{k=-\infty}^{\infty} \beta_k(\sqrt{\Delta_g})
\]
Functional calculus on cones

- Begin with separated solutions to the Helmholtz eqn
 \((\Delta g - \lambda^2)g(r)\varphi_\nu(\theta) = 0\), with \(-\varphi''_\nu(\theta) = \nu^2 \varphi_\nu(\theta)\)
- \(g(r)\) must satisfy the Bessel-type equation

\[
L_\nu g = -g''(r) - \frac{1}{r} g'(r) + \frac{\nu^2}{r^2} g(r) = \lambda^2 g(r) \Rightarrow g(r) = c_\nu(\lambda r)
\]

- Taking \(c_\nu(\lambda r) = J_\nu(\lambda r)\), define the Hankel transform

\[
H_\nu(g)(\lambda) = \int_0^{\infty} g(r) J_\nu(\lambda r) r \, dr
\]

- \(H_\nu\) defines a unitary map \(H_\nu : L^2(\mathbb{R}_+, r \, dr) \to L^2(\mathbb{R}_+, \lambda \, d\lambda)\)
 and \(H_\nu \circ H_\nu = I, H_\nu(L_\nu g)(\lambda) = \lambda^2 H_\nu(g)(\lambda)\)
Functional calculus on cones

- Begin with separated solutions to the Helmholtz eqn
 \((\Delta g - \lambda^2)g(r)\varphi_{\nu}(\theta) = 0, \text{ with } -\varphi''_{\nu}(\theta) = \nu^2\varphi_{\nu}(\theta)\)

- \(g(r)\) must satisfy the Bessel-type equation

 \[
 L_{\nu}g = -g''(r) - \frac{1}{r}g'(r) + \frac{\nu^2}{r^2}g(r) = \lambda^2 g(r) \Rightarrow g(r) = c_{\nu}(\lambda r)
 \]

- Taking \(c_{\nu}(\lambda r) = J_{\nu}(\lambda r)\), define the Hankel transform

 \[
 H_{\nu}(g)(\lambda) = \int_{0}^{\infty} g(r)J_{\nu}(\lambda r)r \, dr
 \]

- \(H_{\nu}\) defines a unitary map \(H_{\nu} : L^2(\mathbb{R}_+, r \, dr) \rightarrow L^2(\mathbb{R}_+, \lambda \, d\lambda)\)
 and \(H_{\nu} \circ H_{\nu} = I, H_{\nu}(L_{\nu}g)(\lambda) = \lambda^2 H_{\nu}(g)(\lambda)\)
Use this to create a spectral representation of Δ_g, Schwartz kernel of $f(\Delta_g)$ will have the form

$$K_f(r_1, \theta_1; r_2, \theta_2) = \sum_{\nu} \tilde{K}_f(r_1, r_2, \nu) \varphi_\nu(\theta_1) \overline{\varphi_\nu(\theta_2)}$$

where ν indexes an O.N. basis of eigenfunctions and

$$\tilde{K}_f(r_1, r_2, \nu) = \int_{0}^{\infty} f(\lambda^2) J_\nu(\lambda r_1) J_\nu(\lambda r_2) \lambda \, d\lambda$$

Use this to understand kernels of $e^{-it\sqrt{\Delta_g}}$
Use this to create a spectral representation of Δ_g, Schwartz kernel of $f(\Delta_g)$ will have the form

$$K_f(r_1, \theta_1; r_2, \theta_2) = \sum_{\nu} \tilde{K}_f(r_1, r_2, \nu) \varphi_{\nu}(\theta_1) \overline{\varphi_{\nu}(\theta_2)}$$

where ν indexes an O.N. basis of eigenfunctions and

$$\tilde{K}_f(r_1, r_2, \nu) = \int_0^\infty f(\lambda^2) J_{\nu}(\lambda r_1) J_{\nu}(\lambda r_2) \lambda \, d\lambda$$

Use this to understand kernels of $e^{-it\sqrt{\Delta_g}}$.
Lipschitz-Hankel integral

\[(Q_{\nu-\frac{1}{2}} = \text{Legendre function of the 2nd kind, order } \nu - \frac{1}{2})\]

\[
\int_0^\infty e^{-it\lambda} J_\nu(\lambda r_1) J_\nu(\lambda r_2) d\lambda = \frac{1}{\pi (r_1 r_2)^{-\frac{1}{2}}} Q_{\nu-\frac{1}{2}} \left(\frac{r_1^2 + r_2^2 - t^2}{2r_1 r_2} \right)
\]

Now sum to obtain formulae for \(\sin(t \sqrt{\Delta g})/\sqrt{\Delta g}\), \(\cos(t \sqrt{\Delta g})\)

\[
K_f(r_1, \theta_1; r_2, \theta_2) = \frac{1}{2\pi\rho} \sum_{j=\infty}^{\infty} \tilde{K}_f \left(r_1, r_2, \frac{|j|}{\rho} \right) \exp \left(\frac{ij(\theta_1 - \theta_2)}{\rho} \right)
\]
Cheeger-Taylor: formulas for the kernel of $\frac{\sin(t \sqrt{\Delta_g})}{\sqrt{\Delta_g}}$ on cones

MDB-Ford-Marzuola: formulas for $\cos(t \sqrt{\Delta_g})$ when $\rho < 1$

Kernels above take the form

$$K_{geom}(r_1, \theta_1; r_2, \theta_2) + K_{diff}(r_1, \theta_1; r_2, \theta_2)$$

"K_{geom}" consists of terms arising from a formal application of the method of images

"K_{diff}" arises from diffraction by the cone tip
Formulae for the solution operators

- Cheeger-Taylor: formulas for the kernel of \(\sin(t \sqrt{\Delta_g})/\sqrt{\Delta_g} \) on cones
- MDB-Ford-Marzuola: formulas for \(\cos(t \sqrt{\Delta_g}) \) when \(\rho < 1 \)
- Kernels above take the form

\[
K_{\text{geom}}(r_1, \theta_1; r_2, \theta_2) + K_{\text{diff}}(r_1, \theta_1; r_2, \theta_2)
\]

- "\(K_{\text{geom}} \)" consists of terms arising from a formal application of the method of images
- "\(K_{\text{diff}} \)" arises from diffraction by the cone tip
Good news and bad news

- Littlewood-Paley works as before and the wave equation is invariant under dilations
- Problem: Have good formulae for e.g. \(\sin(t \sqrt{\Delta_g}) / \sqrt{\Delta_g} \), but not \(\sin(t \sqrt{\Delta_g}) \beta_0(\sqrt{\Delta_g}) \)
- Very difficult to obtain oscillatory integrals analogous to those on \(\mathbb{R}^2 \)
- Take a new perspective on the problem in \(\mathbb{R}^2 \) and regularize the kernel of \(\sin(t \sqrt{\Delta}) / \sqrt{\Delta} \),

\[
K(t, x, y) = \pi^{-1} \left(t^2 - |x - y|^2 \right)^{-\frac{1}{2}}
\]
Good news and bad news

- Littlewood-Paley works as before and the wave equation is invariant under dilations
- Problem: Have good formulae for e.g. $\sin(t\sqrt{\Delta_g})/\sqrt{\Delta_g}$, but not $\frac{\sin(t\sqrt{\Delta_g})}{\sqrt{\Delta_g}}\beta_0(\sqrt{\Delta_g})$

- Very difficult to obtain oscillatory integrals analogous to those on \mathbb{R}^2
- Take a new perspective on the problem in \mathbb{R}^2 and regularize the kernel of $\sin(t\sqrt{\Delta})/\sqrt{\Delta}$,

$$K(t, x, y) = \pi^{-1}(t^2 - |x - y|^2)^{-\frac{1}{2}}$$
Good news and bad news

- Littlewood-Paley works as before and the wave equation is invariant under dilations.
- Problem: Have good formulae for e.g. \(\sin(t \sqrt{\Delta_g})/\sqrt{\Delta_g} \), but not \(\frac{\sin(t \sqrt{\Delta_g})}{\sqrt{\Delta_g}} \beta_0(\sqrt{\Delta_g}) \).
- Very difficult to obtain oscillatory integrals analogous to those on \(\mathbb{R}^2 \).
- Take a new perspective on the problem in \(\mathbb{R}^2 \) and regularize the kernel of \(\sin(t \sqrt{\Delta})/\sqrt{\Delta} \),

\[
K(t, x, y) = \pi^{-1} (t^2 - |x - y|^2)^{-\frac{1}{2}}
\]
Good news and bad news

- Littlewood-Paley works as before and the wave equation is invariant under dilations.
- Problem: Have good formulae for e.g. \(\sin(t \sqrt{\Delta_g}) / \sqrt{\Delta_g} \), but not \(\frac{\sin(t \sqrt{\Delta_g})}{\sqrt{\Delta_g}} \beta_0(\sqrt{\Delta_g}) \).

- Very difficult to obtain oscillatory integrals analogous to those on \(\mathbb{R}^2 \).
- Take a new perspective on the problem in \(\mathbb{R}^2 \) and regularize the kernel of \(\sin(t \sqrt{\Delta}) / \sqrt{\Delta} \),

\[
K(t, x, y) = \pi^{-1} \left(t^2 - |x - y|^2 \right)_+^{-\frac{1}{2}}
\]
The averaging approach on \mathbb{R}^2

- Treat Littlewood Paley operator as a regularizing operator

\[
\int K(t, x, y)\beta_0(\sqrt{\Delta})g_0(y) \, dy = \int \left(\beta_0(\sqrt{\Delta}y)K(t, x, y)\right) g_0(y) \, dy
\]

- On \mathbb{R}^2, convolution kernel of $\beta_0(\sqrt{\Delta})$ is a Schwartz function, rapidly decreasing on the unit scale.

- Morally, $|\beta_0(\sqrt{\Delta}y)K(t, x, y)|$ is controlled by its average on a set of size one.

- Averages are bounded since $(t^2 - r^2)^{-\frac{1}{2}} \leq t^{-\frac{1}{2}}(t - r)^{-\frac{1}{2}}$ and the second factor is integrable in r.
The averaging approach on \mathbb{R}^2

- Treat Littlewood Paley operator as a regularizing operator

$$\int K(t, x, y)\beta_0(\sqrt{\Delta})g_0(y) \, dy = \int \left(\beta_0(\sqrt{\Delta_y})K(t, x, y)\right) g_0(y) \, dy$$

- On \mathbb{R}^2, convolution kernel of $\beta_0(\sqrt{\Delta})$ is a Schwartz function, rapidly decreasing on the unit scale
 - Morally, $|\beta_0(\sqrt{\Delta_y})K(t, x, y)|$ is controlled by its average on a set of size one
 - Averages are bounded since $(t^2 - r^2)^{-\frac{1}{2}} \leq t^{-\frac{1}{2}}(t - r)^{-\frac{1}{2}}$ and the second factor is integrable in r
The averaging approach on \mathbb{R}^2

- Treat Littlewood Paley operator as a regularizing operator

$$\int K(t, x, y) \beta_0(\sqrt{\Delta}) g_0(y) \, dy = \int \left(\beta_0(\sqrt{\Delta} y) K(t, x, y) \right) g_0(y) \, dy$$

- On \mathbb{R}^2, convolution kernel of $\beta_0(\sqrt{\Delta})$ is a Schwartz function, rapidly decreasing on the unit scale

- Morally, $|\beta_0(\sqrt{\Delta} y) K(t, x, y)|$ is controlled by its average on a set of size one

- Averages are bounded since $(t^2 - r^2)^{-\frac{1}{2}} \leq t^{-\frac{1}{2}} (t - r)^{-\frac{1}{2}}$ and the second factor is integrable in r
The averaging approach on \mathbb{R}^2

- Treat Littlewood Paley operator as a regularizing operator
 \[
 \int K(t, x, y) \beta_0(\sqrt{\Delta}) g_0(y) \, dy = \int \left(\beta_0(\sqrt{\Delta_y}) K(t, x, y) \right) g_0(y) \, dy
 \]

- On \mathbb{R}^2, convolution kernel of $\beta_0(\sqrt{\Delta})$ is a Schwartz function, rapidly decreasing on the unit scale

- Morally, $|\beta_0(\sqrt{\Delta_y}) K(t, x, y)|$ is controlled by its average on a set of size one

- Averages are bounded since $(t^2 - r^2)^{-\frac{1}{2}} \leq t^{-\frac{1}{2}} (t - r)^{-\frac{1}{2}}$ and the second factor is integrable in r
The averaging approach on the Euclidean cone

Heat kernel results give bounds on the kernel of $\beta_0(\sqrt{\Delta_g})$ in terms of the distance function on $C(S^1_\rho)$, yields similar control via averages.

Behavior of the geometric term is similar to the corresponding propagator on $\mathbb{R}^2 \Rightarrow$ averaging approach carries over to the cone.

We prove pointwise bounds on the diffractive term that display a similar character:

$$|K_{diff}(r_1, \theta_1; r_2, \theta_2)| \leq (t^2 - (r_1 + r_2)^2)^{-\frac{1}{2}}$$
The averaging approach on the Euclidean cone

- Heat kernel results give bounds on the kernel of $\beta_0(\sqrt{\Delta_g})$ in terms of the distance function on $C(S^1_\rho)$, yields similar control via averages.
- Behavior of the geometric term is similar to the corresponding propagator on $\mathbb{R}^2 \Rightarrow$ averaging approach carries over to the cone.
- We prove pointwise bounds on the diffractive term that display a similar character.

$$|K_{\text{diff}}(r_1, \theta_1; r_2, \theta_2)| \leq (t^2 - (r_1 + r_2)^2)^{-\frac{1}{2}}$$
The averaging approach on the Euclidean cone

- Heat kernel results give bounds on the kernel of $\beta_0(\sqrt{\Delta_g})$ in terms of the distance function on $C(S^1_{\rho})$, yielding similar control via averages.
- Behavior of the geometric term is similar to the corresponding propagator on $\mathbb{R}^2 \Rightarrow$ averaging approach carries over to the cone.
- We prove pointwise bounds on the diffractive term that display a similar character:

$$|K_{\text{diff}}(r_1, \theta_1; r_2, \theta_2)| \leq (t^2 - (r_1 + r_2)^2)^{-\frac{1}{2}}$$