Math 562, Spring 2019
 Assignment 5, due Wednesday, April 10

Hand in solutions to the following exercises:

1. Let $U \subset \mathbb{C}$ be open and let $f=u+i v: U \rightarrow \mathbb{C}$ be continuously differentiable, with $u=\operatorname{Re} f, v=\operatorname{Im} f$ as usual. Let $\bar{U}=\{\bar{z}: z \in U\}$.
(a) Show that the following are equivalent:
i. $z \mapsto f(\bar{z})$ is holomorphic on \bar{U}.
ii. $z \mapsto \overline{f(z)}$ is holomorphic on U.
iii. $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$ on U.
iv. $\frac{\partial f}{\partial z}=0$ on U.

We say that f is conjugate holomorphic if it satisfies any of these 4 conditions.
(b) Recall from $\S 2.2$ of Greene \& Krantz that if $|w|=1$, the directional derivative of f in the direction of w is defined as $D_{w} f(P)=\lim _{t \rightarrow 0} \frac{f(P+t w)-f(P)}{t}$. Prove that if f is conjugate holomorphic and $\frac{\partial f}{\partial \bar{z}}$ does not vanish at P, then it reverses angles in the following sense: if $\left|w_{1}\right|,\left|w_{2}\right|=1$ and $e^{i \theta} w_{1}=w_{2}$, then the directional derivatives of f satisfy $e^{-i \theta} D_{w_{1}} f(P)=D_{w_{2}} f(P)$.
2. Explain the fallacy in this apparent counterexample to the little Picard theorem:
"Let $f(z)=\exp (\exp z)$, that is, f is the composition of $\exp z$ with itself. This is entire as it is the composition of 2 entire functions. Since $\exp z$ never assumes the value 0 , neither does f since $f(\mathbb{C}) \subset \exp (\mathbb{C})$. Moreover, $f(z)=\exp (\exp z) \neq e^{0}=1$ for any $z \in \mathbb{C}$. Hence f omits both 0 and 1 from its range, but is nonconstant, showing the little Picard theorem is false."
3. Let f be a nonconstant entire function such that $f(1+z)=1+f(z)$ for all $z \in \mathbb{C}$. Determine the range of f, that is, the set $f(\mathbb{C})$. Justify your answer.
4. Suppose $f: \mathbb{C} \rightarrow \widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ is a meromorphic function, where as usual, we take $f(P)=\infty$ if f has a pole at P. Show that if $\widehat{\mathbb{C}} \backslash f(\mathbb{C})$ contains at least three distinct elements, then f is constant.
Hint: Use linear fractional transformations to reduce to the case where $\infty \notin f(\mathbb{C})$.
5. Use the big Picard theorem to show that an entire function which is not a polynomial takes on every complex value but one infinitely often.

Reading: Read through the handout on covering maps and the Picard theorem.
On your own: Greene \& Krantz: Chapter 6, Exercise 30 (most of this was done in class). Also, the following exercises:

1. Prove that if f is a nonconstant entire function and $b^{2} \neq 4 a c$, then the function $g(z)=a f^{2}(z)+b f(z)+c$ has a zero.
2. Show that if f is conjugate holomorphic, then its real and imaginary parts are harmonic.
3. Show that if w is harmonic, f is conjugate holomorphic, and $w \circ f$ is defined, then the composition is also harmonic.
