# Math 562, Spring 2019 <br> Assignment 2, due Wednesday, February 6 

## Hand in solutions to the following exercises:

1. Greene \& Krantz, Chapter 7, Exercise 19.
2. Find a function $u(z)$ harmonic on $U=\{z:|z|<2,|z-1|>1\}$ such that $u(z)=1$ on the outer boundary $\{z:|z|=2, z \neq 2\}$ and $u(z)=3$ on the inner boundary $\{z:|z-1|=1, z \neq 2\}$. As always, show your work and justify your answer.

Hint: Map $U$ to a simpler domain by a Möbius transformation.
3. Let $D=D(0,1)$. Recall from the bottom of p. 213 in Greene \& Krantz that when $a=r e^{i \theta} \in D$, the Poisson kernel $\frac{1}{2 \pi} \cdot \frac{1-|a|^{2}}{\left|a-e^{i \psi}\right|^{2}}$ can be rewritten as $P_{r}(\theta-\psi)$ where

$$
P_{r}(\phi)=\frac{1}{2 \pi} \cdot \frac{1-r^{2}}{1-2 r \cos \phi+r^{2}} .
$$

Note that the factor of $\frac{1}{2 \pi}$ is part of the definition of $P_{r}$
(a) Prove the following identities for $0 \leq r<1$ :

$$
2 \pi P_{r}(\phi)=\operatorname{Re}\left(\frac{1+r e^{i \phi}}{1-r e^{i \phi}}\right) \quad \text { and } \quad 2 \pi P_{r}(\phi)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \phi}
$$

(b) Greene \& Krantz, Chapter 7, Exercise 32.
(c) Suppose that $f: \bar{D} \rightarrow \mathbb{C}$ is a continuous function such that both $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic on $D$. Show that $f$ is holomorphic on $D$ if and only if

$$
\int_{0}^{2 \pi} f\left(e^{i \phi}\right) e^{i n \phi} d \phi=0 \quad \text { for all } n=1,2,3, \ldots
$$

Note: By summing over real and imaginary parts, it is not hard to see that $f\left(r e^{i \theta}\right)=\int_{0}^{2 \pi} f\left(e^{i \psi}\right) P_{r}(\theta-\psi) d \psi$ for $r<1$.
4. Find all entire functions $f(z)$ which are analytic and bounded on the upper half plane $U=\{z: \operatorname{Im} z>0\}$, continuous on $\bar{U}$, and real-valued on $\operatorname{Im} z=0$ (the real axis).

On your own: Greene \& Krantz: Ch. 1, Exercise $34^{1}$; Ch. 7, Exercise 1², $2^{3}$, 4, 10, $23^{4}$. Also, the following exercises (see the next page):

[^0]1. (a) Show that if $u$ is a harmonic function in a holomorphically simply connected domain $U \subset \mathbb{C}$, then $u(z)=\log |f(z)|$ for some nowhere vanishing holomorphic function $f$ on $U$.
(b) Find a harmonic conjugate of $u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ on the domain $\mathbb{C} \backslash[0,+\infty)$.

Reading: Greene \& Krantz, §7.1-7.6. We will not cover §7.7-7.8. Make sure to read through the book's proof of the maximum principle for harmonic functions (Theorem 7.2.1) as the trick there is commonly used for harmonic function problems.


[^0]:    ${ }^{1}$ Yes, a Chapter 1 exercise! It's not hard, but is significant to revisit given the material in Ch. 7. In particular, how does this show that $\overline{F(\bar{z})}$ is holomorphic on $\{z: \bar{z} \in U\}$ whenever $F$ is holomorphic on $U$ ?
    ${ }^{2}$ Why is this result a consequence of Exercise 1 above (a.k.a. Exercise 19 in the text)?
    ${ }^{3}$ This may give insight to Exercise 23 in the text.
    ${ }^{4}$ This one isn't hard given Lemma 7.3 .2 , but it is important as it is a property that we will use later on.

