Math 562, Spring 2019

Assignment 1, due Wednesday, January 30

Hand in solutions to the following exercises:

1. Find a linear fractional transformation that simultaneously maps the unit circle $|z|=1$ and the line $y=x$ onto the coordinate axes $x=0$ and $y=0$ respectively. Make sure to justify your answer.
2. Suppose f is holomorphic on the right half plane $U=\{w \in \mathbb{C}: \operatorname{Re} w>0\}$ and satisfies $|f(w)|<1$ for all $w \in U$. Show that if $f(1)=0$, then

$$
|f(w)| \leq\left|\frac{w-1}{w+1}\right| \quad \text { for all } w \in U
$$

Hint: Transfer the problem to the unit disc. Recall that the Cayley transform $z \mapsto i \frac{1-z}{1+z}$ maps the unit disc conformally to the upper half plane (cf. Ch. 1, Exercise 9).
3. Greene \& Krantz, Chapter 6, Exercise 22.

Hint: It may be helpful to revisit the last paragraph in the proof of Proposition 6.5.7.
4. (a) Let $D=D(0,1)$ be the open unit disc and let P, Q be distinct points in D. Suppose $\phi: D(0,1) \rightarrow D(0,1)$ is a conformal map from the unit disc to itself which fixes P, Q, that is $\phi(P)=P, \phi(Q)=Q$. Prove that ϕ is the identity map.
Note: Some algebraic tedium can be avoided by reducing to the case where $P=0$, but this should be justified by appealing to the transformations in 6.2.2.
(b) (Greene \& Krantz, Chapter 6 , Exercise 12 rewritten). Let $\Omega \varsubsetneqq \mathbb{C}$ be a holomorphically simply connected domain and let P, Q be distinct points of Ω. Let ϕ_{1} and ϕ_{2} be conformal self-maps of Ω. If $\phi_{1}(P)=\phi_{2}(P)$ and $\phi_{1}(Q)=\phi_{2}(Q)$, then prove that $\phi_{1} \equiv \phi_{2}$ (i.e. the functions are identically equal).

On your own: Greene \& Krantz: Ch. 6, Exercise 20 (this is actually rather straightforward once you revisit Corollary 3.5.2). Also, the following exercises:

1. If $T z=\frac{a z+b}{c z+d}$, find z_{2}, z_{3}, z_{4} such that $T z$ is equal to the cross-ratio $\left(z, z_{2}, z_{3}, z_{4}\right)$
2. Find the linear fractional transformation that maps $-1,0,1$ to $-i, 1, i$ respectively.
3. Given one conformal equivalence h from an open set $U \subset \mathbb{C}$ to $D=D(0,1)$, can you describe all the others in terms of h ?
4. (a) Prove (or find a proof) that any linear fractional transformation is the composition of translations, dilations, and the inversion map (i.e. $z \mapsto \frac{1}{z}$).
(b) Greene \& Krantz, Chapter 6, Exercise 31. The parenthetical comment is an important qualifier here, just think about what happens with inversion.

Reading: Greene \& Krantz, finish Chapter 6, start Chapter 7. Review $\S 3.5, \S 6.2$, and the Schwarz lemma in preparation for the proof of the Riemann mapping theorem.

