Math 561, Fall 2018
 Assignment 8, due Wednesday, October 24

Hand in solutions to the following exercises:

1. Greene \& Krantz, Chapter 3, Exercise 37.
2. Greene \& Krantz, Chapter 3, Exercise 40.
3. Greene \& Krantz, Chapter 4, Exercise 3.

Note: There is of course an implicit assumption that f does not vanish on $U \backslash\{P\}$.
4. Greene \& Krantz, Chapter 4, Exercise 5.

Note: Don't forget the part (g) on p. 146! Also, make sure to justify your answers.
5. Let $f(z)$ be an analytic function on $\{z: 0<|z|<2\}$ such that $f\left((-1)^{n} / n\right)=(-1)^{n}$ for all positive integers n. Prove that

$$
\inf _{0<|z|<2}|f(z)|=0
$$

On your own: Greene \& Krantz: Chapter 3, Exercises 42, 49, 60^{1}. Chapter 4, Exercises 1, 4, 8a. Also the following problem:

1. Let U be a connected open set, $P \in U$, and f be a nonconstant analytic function on $U \backslash\{P\}$. Suppose that f takes on a certain value α at least once on any punctured disk $D(P, r) \backslash\{P\}$ (i.e. $\alpha \in f(D(P, r) \backslash\{P\})$ for each $r>0$ with $D(P, r) \subset U$). Prove that f has an essential singularity at P.
2. Let $A=\sum_{n=0}^{\infty} a_{n}, B=\sum_{n=0}^{\infty} b_{n}$ be convergent, complex series and define $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$. Consult a real analysis book to find sufficient conditions (and a proof!) which ensure that $\sum_{n=0}^{\infty} c_{n}=A B$. Then on your own, use this to prove that if e^{z} is defined by $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$, then $e^{w+z}=e^{w} e^{z}$ for any $w, z \in \mathbb{C}$.

Reading: Greene \& Krantz: finish Chapter 3, start Chapter 4.

[^0]
[^0]: ${ }^{1}$ This is admittedly a nonessential problem for what we are concerned with in this class. This exercise is better suited for a course in real analysis such as Math 510 . Nonetheless, you should at least contemplate why this means that differentiability in the complex sense yields much different properties in contrast to what can be said about C^{∞} functions on the real line.

