Math 561, Fall 2018
 Assignment 7, due Wednesday, October 10

Hand in solutions to the following exercises:

1. Greene \& Krantz, Chapter 3, Exercise \#26.
2. Greene \& Krantz, Chapter 3, Exercise \#28.
3. Greene \& Krantz, Chapter 3, Exercise \#32.
4. Prove the following result involving a slight relaxation of the hypothesis in Theorem 3.4.4 of Greene \& Krantz:
If $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function and if for some real number C and some $\alpha>0$ it holds that

$$
|f(z)| \leq C|z|^{\alpha} \quad \text { for all }|z|>1
$$

then f is a polynomial of degree $\lfloor\alpha\rfloor$ (the greatest integer less than or equal to α).

On your own: Greene \& Krantz: Chapter 3, Exercises 21, 27, 29, 31, 36. Also the following problem:

1. Suppose $p(z)=a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ is a complex polynomial in z of degree 3 . If $|p(z)| \leq 1$ on the unit circle $\{z \in \mathbb{C}:|z|=1\}$, show that $\left|a_{3}\right| \leq 1$.

Reading: Greene \& Krantz 3.3-3.5.

