Math 561, Fall 2018
 Assignment 6
 Not Collected

On your own:

1. (a) Prove that the geometric series $\sum_{k=0}^{\infty} z^{k}$ has radius of convergence equal to 1 and converges to $\frac{1}{1-z}$ for $|z|<1$.
(b) Greene \& Krantz, Chapter 3, Exercise \#10.
2. Greene \& Krantz, Chapter 3, Exercise \#11, but replace the series in part (f) with

$$
\sum_{k=0}^{\infty}\left(2+(-1)^{k}\right)^{k} z^{k}
$$

3. (a) Review the root and ratio tests from calculus/real analysis which give sufficient conditions for a series to converge absolutely. Why are they applicable to series whose terms are complex numbers?
(b) As noted in Week 1, the function e^{z} can be defined by the power series

$$
e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} .
$$

Prove that the radius of convergence of this power series is $R=\infty$. Conclude that e^{z} is an entire function, i.e. a function which is holomorphic on all of \mathbb{C}.
(c) Define $\sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$ and $\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)$. Compute their power series, show that the radius of convergence is $R=\infty$ and conclude that they define entire functions. Then observe that these power series agree with the usual ones from calculus when $z \in \mathbb{R}$.
(d) Greene \& Krantz, Chapter 3, Exercise \#15.
4. (a) Suppose f is analytic on $D(P, r)$ and unbounded on that disc in that there is no M satisfying $|f(z)| \leq M$ for all $z \in D(P, r)$. Prove that the radius of convergence of power series for f about P is equal to r.
(b) The function $\frac{1}{\cos z}$ has a power series expansion at $P=0$. Without finding the series, show that its radius of convergence is $\frac{\pi}{2}$.
Note: Exercise care here-showing that the radius of convergence is less than $\pi / 2$ is not the same as showing that it is equal to $\pi / 2$.

Reading: Greene \& Krantz 3.2-3.3.

