Math 561, Fall 2018
 Assignment 5, due Wednesday, September 26

Hand in solutions to the following exercises:

1. Greene \& Krantz, Chapter 2, Exercise \#32.

Note: The Green's theorem argument works here, but it makes the problem a little too easy. Instead take this as an opportunity to explore the contour deformations from class and §2.6 in the text.
2. Greene \& Krantz, Chapter 2, Exercise \#36.
3. Greene \& Krantz, Chapter 2, Exercise \#40.
4. (a) Suppose that a curve C is the boundary of a domain $\Omega \subset \mathbb{C}$. The standard conclusion in Green's theorem reads as $\oint_{C} u d x+v d y=\iint_{\Omega} v_{x}-u_{y} d x d y$. Show that this in turn implies that

$$
\oint_{C} F d z=2 i \iint_{\Omega} \frac{\partial F}{\partial \bar{z}} d x d y .
$$

In other words, show that the identity $(*)$ on p . 490 of the text implies the identity $(* *)$ on the same page.
(b) Greene \& Krantz, Chapter 2, Exercise \#44.

Hint: Argue that for any $z_{0} \in U$,

$$
\lim _{r \rightarrow 0+} \frac{1}{\pi r^{2}} \iint_{D\left(z_{0}, r\right)} \frac{\partial F}{\partial \bar{z}} d x d y=\frac{\partial F}{\partial \bar{z}}\left(z_{0}\right) .
$$

You don't really need to involve uniform continuity here as in the previous assignment, it should be sufficient just to use continuity of $\frac{\partial F}{\partial z}(z)$ at z_{0}.

On your own: Greene \& Krantz: Chapter 2, Exercises 24, 26, 37. Chapter 3, Exercises 2, 5(b,c) ${ }^{1}$.
Reading: Greene \& Krantz 3.1-3.2.

[^0]
[^0]: ${ }^{1}$ We proved part (a) in class during our discussion of connectedness so there's no need to prove it again.

