Math 561, Fall 2018
 Assignment 3, due Wednesday, September 12

Hand in solutions to the following exercises (from Chapters 1 and 2):

1. Greene \& Krantz, Chapter 1, Exercise \#52.

Tip (in addition to the given hint): The antiderivative of $\frac{1}{z}$ "should" be $\log z$, the inverse function of e^{z}. But this raises the question of what exactly $\log z$ is! Think about how you might be able to define $\log \left(r e^{i \theta}\right)$ and show that it can be defined on a slit annulus, e.g. $\tilde{U}:=U \backslash\{x \in \mathbb{R}: x<0\}$, forcing the difference between this and any holomorphic antiderivative on U to be constant on \tilde{U}. The first exercise in Assignment 2 may be helpful to this end. Exercise \#36 in Chapter 1 may be helpful to check that your $\log z$ does indeed give you a holomorphic antiderivative on \tilde{U}.
2. Complete these 2 closely related exercises:
(a) Greene \& Krantz, Chapter 2, Exercise \#1.
(b) Greene \& Krantz, Chapter 2, Exercise \#2.
3. Greene \& Krantz, Chapter 2, Exercise \#13.

Note: Be careful with the chain rule part, either adapt the usual proof of the chain rule for functions of 1 real variable or appeal to Exercise \#49 in Chapter 1 (along with any needed Theorems from Ch. 2).
4. Suppose that $U \subset \mathbb{C}$ is open and that $f: U \rightarrow \mathbb{C}$ is a C^{1} function with $f=u+i v$ giving the real and imaginary parts. Recall the definition of directional derivative at a point $z \in U$ in the direction of $w \in \mathbb{C}$ from Theorem 2.2.3:

$$
D_{w} f(z)=\lim _{t \rightarrow 0} \frac{f(z+t w)-f(z)}{t}
$$

Suppose that $e^{i \theta} D_{w_{1}} f(z)=D_{w_{2}} f(z)$ whenever $\left|w_{1}\right|=\left|w_{2}\right|=1$ and $e^{i \theta} w_{1}=w_{2}$. In other words, if w_{2} is obtained by a rotation of w_{1} through an angle of θ, then $D_{w_{2}} f(z)$ is obtained by a rotation of $D_{w_{2}} f(z)$ through an angle of θ. Prove that $\frac{\partial f}{\partial \bar{z}}$ vanishes at z (or equivalently the Cauchy-Riemann equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ are satisfied at the point z).

On your own: Greene \& Krantz: Ch. 1, Exercise 51 and Ch. 2 Exercises 4, 5, 7, 10, 14. Also the following problems:

1. Identity $\left({ }^{* * *}\right)$ on p. 32 of Greene \& Krantz text states that

$$
f(\gamma(b))-f(\gamma(a))=\int_{a}^{b} \frac{\partial f}{\partial z}(\gamma(t)) \frac{d \gamma}{d t}(t) d t
$$

giving a version of the fundamental theorem of calculus for holomorphic functions. The proof on p.31-32 starts with the left hand side of this identity, then manipulates this until the right hand side is obtained. As a means of familiarization, go the other way around with this derivation: start with the right hand side, then manipulate until you obtain the left hand side.
2. Prove Proposition 2.1.9 in the Greene \& Krantz text. What happens if instead ϕ is a decreasing function?

Reading: Greene \& Krantz 2.1-2.3.

