## Math 561, Fall 2018 Assignment 2, due Wednesday, September 5

Hand in solutions to the following exercises. You may use the chain rule in several variables as much as you like, in particular it is important for Exercises 3 and 4.

- 1. Suppose that  $U \subset \mathbb{R}^2$  is open and connected. In 1b, consider U to be a subset of  $\mathbb{C}$ .
  - (a) Suppose that  $f:U\to\mathbb{R}$  has first partial derivatives satisfying  $\frac{\partial f}{\partial x}(x,y)=0$  and  $\frac{\partial f}{\partial y}(x,y)=0$  for all  $(x,y)\in U$ . Prove that f(x,y) is constant on U.

Note: Use the result from class that if  $U \subset \mathbb{R}^2$  is open and connected, then any two points in U can be joined by a polygonal path consisting of line segments parallel to the coordinate axes.

- (b) Suppose that  $f:U\to\mathbb{C}$  satisfies  $\frac{\partial f}{\partial z}=0$  and  $\frac{\partial f}{\partial \bar{z}}=0$  for all  $z\in U$ . Prove that f is constant on U.
- 2. Greene & Krantz, Chapter 1, Exercise #33.
- 3. Greene & Krantz, Chapter 1, Exercise #36.
- 4. Greene & Krantz, Chapter 1, Exercise #49.

On your own (i.e. do not hand these in for a grade):

Greene & Krantz Ch. 1, Exercises 23, 26, 27, 28, 30<sup>1</sup>, 34, 41, 46 and the following problem:

- 1. (Better late than never) Let  $z \in \mathbb{C}$ . Prove the following identities.
  - (a) Re  $(z) = \frac{1}{2}(z + \bar{z})$ .
  - (b) Im  $(z) = \frac{1}{2i}(z \bar{z})$ .
  - (c)  $\operatorname{Re}(iz) = -\operatorname{Im}(z)$ .
  - (d)  $\operatorname{Im}(iz) = \operatorname{Re}(z)$ .

**Reading**: Finish your review of topology, at least have the two sections from Taylor's book read, as well as Conway's treatment of connected sets. Also Greene & Krantz 1.3-1.5.

<sup>&</sup>lt;sup>1</sup>Find a proof which does not appeal to Exercise 1 above, rather just deduce that each coefficient of the polynomial vanishes.