Math 561, Fall 2018

Assignment 2, due Wednesday, September 5

Hand in solutions to the following exercises. You may use the chain rule in several variables as much as you like, in particular it is important for Exercises 3 and 4.

1. Suppose that $U \subset \mathbb{R}^{2}$ is open and connected. In 1 b , consider U to be a subset of \mathbb{C}.
(a) Suppose that $f: U \rightarrow \mathbb{R}$ has first partial derivatives satisfying $\frac{\partial f}{\partial x}(x, y)=0$ and $\frac{\partial f}{\partial y}(x, y)=0$ for all $(x, y) \in U$. Prove that $f(x, y)$ is constant on U.
Note: Use the result from class that if $U \subset \mathbb{R}^{2}$ is open and connected, then any two points in U can be joined by a polygonal path consisting of line segments parallel to the coordinate axes.
(b) Suppose that $f: U \rightarrow \mathbb{C}$ satisfies $\frac{\partial f}{\partial z}=0$ and $\frac{\partial f}{\partial z}=0$ for all $z \in U$. Prove that f is constant on U.
2. Greene \& Krantz, Chapter 1, Exercise \#33.
3. Greene \& Krantz, Chapter 1, Exercise \#36.
4. Greene \& Krantz, Chapter 1, Exercise \#49.

On your own (i.e. do not hand these in for a grade):
Greene \& Krantz Ch. 1, Exercises 23, 26, 27, 28, $30^{1}, 34,41,46$ and the following problem:

1. (Better late than never) Let $z \in \mathbb{C}$. Prove the following identities.
(a) $\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})$.
(b) $\operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})$.
(c) $\operatorname{Re}(i z)=-\operatorname{Im}(z)$.
(d) $\operatorname{Im}(i z)=\operatorname{Re}(z)$.

Reading: Finish your review of topology, at least have the two sections from Taylor's book read, as well as Conway's treatment of connected sets. Also Greene \& Krantz 1.3-1.5.

[^0]
[^0]: ${ }^{1}$ Find a proof which does not appeal to Exercise 1 above, rather just deduce that each coefficient of the polynomial vanishes.

