Math 561, Fall 2018

Assignment 1, due Wednesday, August 29

- 1. Greene & Krantz, Chapter 1, Exercise #9.
- 2. Greene & Krantz, Chapter 1, Exercise #10.

Note: For these first two exercises, part of the work is in showing that ranges of the functions ϕ , ψ are indeed contained in the upper half plane $U = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Once this is done, you may want to proceed by constructing an inverse function using algebraic methods.

- 3. Greene & Krantz, Chapter 1, Exercise #12.
- 4. (a) Use Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ to derive *DeMoivre's formula*: $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$
 - (b) Use Euler's formula to derive the identities
 - i. $\sin(\theta \pm \psi) = \sin \theta \cos \psi \pm \cos \theta \sin \psi$
 - ii. $\cos(\theta \pm \psi) = \cos\theta\cos\psi \mp \sin\theta\sin\psi$
 - (c) Use induction on n to prove that $|\sin(n\theta)| \le n |\sin \theta|$ for $n = 1, 2, 3 \dots$
- 5. Given $(x,y) \in \mathbb{R}^2$, define $M_{x,y}$ to be the 2×2 matrix

$$M_{x,y} = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}.$$

Let $\Omega = \{M_{x,y} : (x,y) \in \mathbb{R}^2\}$, that is, Ω is the set of 2×2 matrices of the form $M_{x,y}$. It's not hard to see that the mapping $\Phi : \mathbb{C} \to \Omega$ defined by $\Phi(z) = M_{x,y}$ with $x = \operatorname{Re} z$, $y = \operatorname{Im} z$ is a bijection and $\Phi(w+z) = \Phi(w) + \Phi(z)$ so Ω is closed under matrix addition. Moreover, $\Phi(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\Phi(i) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. If z = x + iy, w = u + iv are in standard form, prove that Φ and Ω satisfy the following properties:

- (a) $\Phi(z \cdot w) = \Phi(z)\Phi(w)$, that is, $\Phi(z \cdot w)$ is the matrix product $M_{x,y}M_{u,v}$. As a corollary, observe that Ω is closed under matrix multiplication and that $M_{x,y}M_{u,v} = M_{u,v}M_{x,y}$.
- (b) $|z| = \det \Phi(z)$.
- (c) If $z \neq 0$, prove that $\Phi(1/z) = (M_{x,y})^{-1}$, that is, $\Phi(1/z)$ is the matrix inverse of $M_{x,y} = \Phi(z)$.
- (d) $\Phi(\bar{z}) = (M_{x,y})^T$, that is, $\Phi(\bar{z})$ is the transpose of $\Phi(z)$.
- (e) If $r = \sqrt{x^2 + y^2}$, then the matrix product $M_{x,y}M_{1/r,0}$ is a rotation matrix, that is, there exists θ such that

$$M_{x,y}M_{1/r,0} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Do this without appealing to part 5a.

Given these results, \mathbb{C} can be viewed as space of matrices Ω , though it is not typically advantageous to take this viewpoint. However, one exception is when considering the geometry of complex multiplication. To see this, fix $w_0 = u_0 + iv_0 \in \mathbb{C}$ and note that part 5a shows that

$$\begin{bmatrix} u_0x - v_0y & -(v_0x + u_0y) \\ v_0x + u_0y & u_0x - v_0y \end{bmatrix} = \begin{bmatrix} u_0 & -v_0 \\ v_0 & u_0 \end{bmatrix} \begin{bmatrix} x & -y \\ y & x \end{bmatrix}.$$

Hence the first column on the left hand side here determines the image of the point $(x, y) \in \mathbb{R}^2$ under $M_{u_0,v_0} = \Phi(w_0)$. This shows that the action of the linear map M_{u_0,v_0} on \mathbb{R}^2 is equivalent to taking the product $w_0 z$ for $z \in \mathbb{C}$.

6. Let (X,d) be a metric space and suppose $E \subset X$. Define the interior and closure of E as

$$E^{\circ} = \bigcup \{U : U \subset E \text{ and } U \text{ is open } \},$$

$$\bar{E} = \bigcap \{F : F \supset E \text{ and } F \text{ is closed } \}.$$

In other words, E° is the union of all open sets contained in E and \bar{E} is the intersection of all closed sets containing E.

- (a) Prove that $p \in E^{\circ}$ if and only if there exists r > 0 such that $B(p,r) \subset E$.
- (b) Prove that $p \in \overline{E}$ if and only if $B(p,r) \cap E \neq \emptyset$ for every r > 0.

On your own (i.e. do not hand these in for a grade):

Greene & Krantz Ch. 1, Exercises 1-3 and 13-14 (as needed for review), 4, 5, 8, 22, 23 and the following problems:

- 1. Let X, Y be sets and let $f: X \to Y$ be a function. A *left inverse* for f is a function $g: Y \to X$ satisfying $(g \circ f)(x) = x$ for all $x \in X$. A *right inverse* for f is a function $h: Y \to X$ such that $f \circ h(y) = y$ for all $y \in Y$. Assuming the axiom of choice, prove the following:
 - (a) The function f has a left inverse if and only if it is injective.
 - (b) The function f has a right inverse if and only if it is surjective.
- 2. Let X,Y be sets and let $f:X\to Y$ be a function. Suppose $E,E_\alpha\subset Y,\,G\subset X$
 - (a) $f^{-1}(E^C) = [f^{-1}(E)]^C$
 - (b) $f(f^{-1}(E)) \subset E$
 - (c) $G \subset f^{-1}(f(G))$
 - (d) $f^{-1}(\cup_{\alpha} E_{\alpha}) = \cup_{\alpha} f^{-1}(E_{\alpha})$
 - (e) $f^{-1}(\cap_{\alpha} E_{\alpha}) = \cap_{\alpha} f^{-1}(E_{\alpha})$

Find examples of functions f such that equality in 2b and 2c fails to hold. Prove that equality in 2b holds whenever f is surjective and equality in 2c holds whenever f is injective.

- 3. Prove the following statements concerning open and closed sets in a metric space (X,d).
 - (a) X and \emptyset are both open and closed.
 - (b) If $\{U_{\alpha}\}_{{\alpha}\in A}$ is an arbitrary collection of open sets, then $\cup_{{\alpha}\in A}U_{\alpha}$ is open.
 - (c) If $U_1, \ldots U_k$ is a finite collection of open sets, then $\bigcap_{j=1}^k U_j$ is open.
 - (d) If $\{F_{\alpha}\}_{{\alpha}\in A}$ is an arbitrary collection of closed sets, then $\cap_{{\alpha}\in A}F_{\alpha}$ is open.
 - (e) If $F_1, \ldots F_k$ is a finite collection of closed sets, then $\bigcup_{j=1}^k F_j$ is open.
 - (f) In general, the finite collection hypothesis in 3c and 3e is necessary.

Reading: Greene & Krantz §1.1-1.3.