Math 561, Fall 2018 Assignment 13, due Friday, December 7

Hand in solutions to the following exercises:

- 1. Greene & Krantz, Chapter 6, Exercise 14.
- 2. Let $U \subset \mathbb{C}$ be open with $P \in U$. Suppose $f : U \setminus \{P\} \to \mathbb{C}$ is holomorphic and injective so that P is an isolated singularity.
 - (a) Prove that P is not an essential singularity. Hint: Consider $\overline{D}(P,r) \subsetneq U$ and show that $f(D(P,r) \setminus \{P\})$ is not dense in \mathbb{C} .
 - (b) Suppose the singularity at P is removable. Prove that the holomorphic extension of f to all of U is injective.

Hint: If we had that $\hat{f}(P) = \hat{f}(Q)$ for some $Q \neq P$, then the open mapping should imply that f(w) = f(z) for some w, z near P, Q respectively.

- (c) Suppose the singularity at P is not removable. Prove that f has a simple pole.
- (d) Use the previous parts to classify all conformal maps from $\mathbb{C} \setminus \{0\}$ to itself. Note: This means your answer should be of the form "A holomorphic function $\phi : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ is conformal if and only if \cdots ".
- 3. (a) Find a conformal map from the upper half-plane to $\{z: |\text{Re}\,z| < \frac{\pi}{2}\}$. Hint: Consider a logarithm.
 - (b) Show that $\phi(w) = -w + \sqrt{w^2 1}$ maps the upper half-plane conformally onto the upper half-disc $\{z : |z| < 1, \text{Im } z > 0\}$. Which branch of the square root function should be taken here? What is the inverse of ϕ ?

Hint: Consider the image of the real axis under ϕ .

(c) Find a conformal map from the slit unit disc $D(0,1) \setminus \{x+i0: 0 \le x \le 1\}$ to the strip $\{z: |\text{Re } z| < 1\}$. You may express your answer as the composition of conformal maps.

On your own: Greene & Krantz: Ch. 6, Exercises 32, 33. Also, the following exercises:

- 1. Suppose that $U, V \subset \mathbb{C}$ are open and that there exists a conformal map $\phi: U \to V$. Prove that if U is holomorphically simply connected, then so is V. Conclude that the unit disc D(0,1) and the punctured disc $D(0,1) \setminus \{0\}$ are not conformally equivalent.
- 2. Give a complete proof that Lemma 6.2.2, filling in any missing details from class/the text. In particular, why is it enough to know that $\phi_a(D) \subset D$ whenever |a| < 1 and $\phi_a \circ \phi_{-a}(z) = z$?
- 3. (A "Chapter 1"-type exercise to shed a little more light on Rouché's theorem) Suppose $z, w \in \mathbb{C}$ and that |z w| = |z| + |w|. Prove that there exists $\omega \in \mathbb{C}$ of unit modulus such that ωz lies on the nonnegative real line and ωw lies on the nonpositive real line. This shows that z, w lie on "opposite" sides of a line through the origin.
- 4. Let f(z) be holomorphic on the unit disc D with $|f(z)| \le 1$ and $f(\alpha) = 0$ for some $\alpha \in D$. Prove that $|f(z)| \le |\frac{z-\alpha}{1-\bar{\alpha}z}|$.

Note: This was a recent qualifier problem. It is closely related to the Schwarz-Pick lemma, but try to limit yourself to Proposition 5.5.1 and Lemma 6.2.2.

5. Find a conformal map from the upper half plane to $\mathbb{C} \setminus (-\infty, 1]$.

Reading: Greene & Krantz, §6.1-6.3, §6.6.