Math 561, Fall 2018
 Assignment 13, due Friday, December 7

Hand in solutions to the following exercises:

1. Greene \& Krantz, Chapter 6, Exercise 14.
2. Let $U \subset \mathbb{C}$ be open with $P \in U$. Suppose $f: U \backslash\{P\} \rightarrow \mathbb{C}$ is holomorphic and injective so that P is an isolated singularity.
(a) Prove that P is not an essential singularity.

Hint: Consider $\bar{D}(P, r) \varsubsetneqq U$ and show that $f(D(P, r) \backslash\{P\})$ is not dense in \mathbb{C}.
(b) Suppose the singularity at P is removable. Prove that the holomorphic extension of f to all of U is injective.
Hint: If we had that $\hat{f}(P)=\hat{f}(Q)$ for some $Q \neq P$, then the open mapping should imply that $f(w)=f(z)$ for some w, z near P, Q respectively.
(c) Suppose the singularity at P is not removable. Prove that f has a simple pole.
(d) Use the previous parts to classify all conformal maps from $\mathbb{C} \backslash\{0\}$ to itself.

Note: This means your answer should be of the form "A holomorphic function ϕ : $\mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ is conformal if and only if \ldots ".
3. (a) Find a conformal map from the upper half-plane to $\left\{z:|\operatorname{Re} z|<\frac{\pi}{2}\right\}$.

Hint: Consider a logarithm.
(b) Show that $\phi(w)=-w+\sqrt{w^{2}-1}$ maps the upper half-plane conformally onto the upper half-disc $\{z:|z|<1, \operatorname{Im} z>0\}$. Which branch of the square root function should be taken here? What is the inverse of ϕ ?
Hint: Consider the image of the real axis under ϕ.
(c) Find a conformal map from the slit unit disc $D(0,1) \backslash\{x+i 0: 0 \leq x \leq 1\}$ to the strip $\{z:|\operatorname{Re} z|<1\}$. You may express your answer as the composition of conformal maps.

On your own: Greene \& Krantz: Ch. 6, Exercises 32, 33. Also, the following exercises:

1. Suppose that $U, V \subset \mathbb{C}$ are open and that there exists a conformal map $\phi: U \rightarrow V$. Prove that if U is holomorphically simply connected, then so is V. Conclude that the unit disc $D(0,1)$ and the punctured disc $D(0,1) \backslash\{0\}$ are not conformally equivalent.
2. Give a complete proof that Lemma 6.2.2, filling in any missing details from class/the text. In particular, why is it enough to know that $\phi_{a}(D) \subset D$ whenever $|a|<1$ and $\phi_{a} \circ \phi_{-a}(z)=z$?
3. (A "Chapter 1"-type exercise to shed a little more light on Rouché's theorem) Suppose $z, w \in$ \mathbb{C} and that $|z-w|=|z|+|w|$. Prove that there exists $\omega \in \mathbb{C}$ of unit modulus such that ωz lies on the nonnegative real line and ωw lies on the nonpositive real line. This shows that z, w lie on "opposite" sides of a line through the origin.
4. Let $f(z)$ be holomorphic on the unit disc D with $|f(z)| \leq 1$ and $f(\alpha)=0$ for some $\alpha \in D$. Prove that $|f(z)| \leq\left|\frac{z-\alpha}{1-\bar{\alpha} z}\right|$.
Note: This was a recent qualifier problem. It is closely related to the Schwarz-Pick lemma, but try to limit yourself to Proposition 5.5.1 and Lemma 6.2.2.
5. Find a conformal map from the upper half plane to $\mathbb{C} \backslash(-\infty, 1]$.

Reading: Greene \& Krantz, §6.1-6.3, §6.6.

