Math 561, Fall 2018
 Assignment 12, due Friday, November 30

Hand in solutions to the following exercises:

1. (Greene \& Krantz, Chapter 5, Exercise 8, rewritten) Let $f: U \rightarrow \mathbb{C}$ be holomorphic. Assume that $\bar{D}(P, r+\delta) \subset U$ for some $r, \delta>0$ and that f is nonvanishing on $\partial D(P, r)$. Show there exists $\epsilon>0$ depending only on f, P, r so that if g is holomorphic on U and

$$
\sup _{\zeta \in \bar{D}(P, r+\delta)}|f(\zeta)-g(\zeta)|<\epsilon,
$$

then f and g have the same number of zeros in $D(P, r)$, counting multiplicities.
Note: It may be helpful to set $M=\sup _{\zeta \in \bar{D}(P, r+\delta)}|f(\zeta)|, m=\inf _{\zeta \in \partial D(P, r)}|f(\zeta)|$, observing that $m>0$, so that $\sup _{\zeta \in \bar{D}(P, r+\delta)}|g(\zeta)|<M+\epsilon, \inf _{\zeta \in \partial D(P, r)}|f(\zeta)|>m-\epsilon$. You will likely want to restrict attention to $\epsilon \leq m / 2$, or another small fraction of m (why?). The role of the δ in the above is so that the Cauchy estimates give upper bounds on $\sup _{\zeta \in \partial D(P, r)}\left|f^{\prime}(\zeta)-g^{\prime}(\zeta)\right|$ and $\sup _{\zeta \in \partial D(P, r)}\left|f^{\prime}(\zeta)\right|$. See also the very similar Exercise 1 in the "On your own" section below.
2. Show that the polynomial $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ has all of its roots in the disc $D(0, R)$ where $R=1+\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n-1}\right|\right\}$.
3. Suppose f is continuous on $\bar{D}(0,1)$, holomorphic on $D(0,1)$, and satisfies $|f(z)| \geq \sqrt{|z|}$ for all $|z| \leq 1$. Prove that $|f(0)| \geq 1$.
Hint: Apply the maximum principle to $\frac{1}{f(z)}$. The catch is that nothing says that $f(0) \neq 0$ to begin with, so you have show that $\frac{1}{f(z)}$ has a removable singularity at 0 .
4. Suppose U is a bounded domain (i.e. a connected open set which is bounded). Suppose that f is continuous on \bar{U} and holomorphic on U. Show that if there is a constant $c \geq 0$ such that $|f(z)|=c$ for all $z \in \partial U$, then either f has a zero in U or f is a constant function.

On your own: Greene \& Krantz: Ch. 5, Exercises $6^{1}, 10,11,14^{2}$. Also, the following exercise:

1. Suppose $f_{j}, g_{j}: X \rightarrow \mathbb{C}$ are sequences of functions on a set X converging uniformly to bounded limit functions f, g respectively. Show that the products $f_{j} \cdot g_{j}$ converge uniformly to $f \cdot g$. Show that if the g_{j} are nonvanishing on X and the limit function g satisfies $|g(x)| \geq m>0$ for all $x \in X$, then the quotients f_{j} / g_{j} converge to f / g uniformly on X.

Reading: Greene \& Krantz, finish Chapter 5, start Chapter 6.

[^0]
[^0]: ${ }^{1}$ A holomorphic logarithm refers to a holomorphic function g satisfying $e^{g(z)} \equiv f(z)$. Use what you know about holomorphic antiderivatives from Chapter 1.
 ${ }^{2}$ Don't hesitate to use Exercise 1 (or Exercise 8 in Ch.5) from above here. Recall that a continuous function on a compact set is always uniformly continuous.

