Math 561, Fall 2018

Assignment 11, due Wednesday, November 21

Hand in solutions to the following exercises:

1. (a) Prove that if $\alpha \in \mathbb{C}$ is not an integer on the real axis, then

$$
\sum_{k=-\infty}^{\infty} \frac{1}{(k+\alpha)^{2}}=\frac{\pi^{2}}{\sin ^{2} \pi \alpha}
$$

(b) Manipulate the identity in part (a) and take limits as $\alpha \rightarrow 0$ to give a proof that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .
$$

2. Suppose f is holomorphic on an open set U containing $\{z:|z|>R\}$ for some $R>0$ so that f is given by a convergent Laurent series $f(z)=\sum_{j=-\infty}^{\infty} a_{j} z^{j}$ on $\{z:|z|>R\}$. Define the residue at infinity of f as $\operatorname{Res}_{f}(\infty)=-a_{-1}$, where a_{-1} is the coefficient of z^{-1} in the Laurent expansion.
(a) Since f is holomorphic on $\{z:|z|>R\}$, the function $H(z)=z^{-2} f(1 / z)$ is holomorphic on $D^{*}(0,1 / R)$. Prove that $\operatorname{Res}_{f}(\infty)=-\operatorname{Res}_{H}(0)$.
(b) Suppose $s>R$. Apply Proposition 4.2.4 to the function H and perform a change of variables to show that

$$
\operatorname{Res}_{f}(\infty)=\frac{1}{2 \pi i} \oint_{|z|=s} f(z) d z
$$

where the line integral is oriented clockwise.
Note: Be careful with the change of variables, limit yourself to the change of variables theorem for functions of a single variable (" u-substitution").
3. Suppose that f is an entire function for which there exists $M, R>0$ and $n \in \mathbb{N}$ such that $|f(z)| \geq M|z|^{n}$. Prove that f is a polynomial of degree at least n.
4. Greene \& Krantz, Chapter 5, Exercise 2.

Note: You should be able to express your answer in terms of $g\left(P_{1}\right), \ldots, g\left(P_{k}\right)$. There is nothing special about taking the disc to be centered at 0 with radius 1 , so treat this only as a convenience and convince yourself that this works more broadly.
5. Greene \& Krantz, Chapter 5, Exercise 3.

On your own: Greene \& Krantz: Ch. 4, Exercises 18, 28, 59, 60, 61, 65. Ch. 5, Exercises 1, 4, 8. Also, the following exercises:

1. Prove that if $w \in \mathbb{C}$ is not an integer on the real axis, then $\pi \cot \pi w=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \frac{1}{n+w}$.
2. (a) Suppose f is bounded and holomorphic except at a finite number of isolated singularities in \mathbb{C}. Prove that f is constant.
(b) Let f be holomorphic except at a finite number of poles and suppose that for some $M, R>0$ and $n \in \mathbb{N},|f(z)| \leq M|z|^{n}$ whenever $|z|>R$. Prove that f must be a rational function.

Reading: Greene \& Krantz: finish Chapter 4, start Chapter 5, namely §5.1.

