Math 561, Fall 2018
 Assignment 10, due Wednesday, November 7
 Not Collected

On your own:

1. Suppose $f: D^{*}\left(P, r_{0}\right) \rightarrow \mathbb{C}$ has a simple pole at P. For $0<r<r_{0}$, define $\gamma_{r}(t)=$ $P+r e^{i t}$ over the domain $[\alpha, \alpha+\theta]$ where $\alpha \in \mathbb{R}$ and $\theta>0$. Prove by direct computation that

$$
\lim _{r \rightarrow 0+} \oint_{\gamma_{r}} f(z) d z=i \theta \operatorname{Res}_{f}(P)
$$

Hint: Begin by observing that $f(z)=\frac{\operatorname{Res}_{f}(P)}{z-P}+g(z)$ on $D^{*}\left(P, r_{0}\right)$ for some $g(z)$ with a removable singularity at P.
2. Suppose that $f: D^{*}\left(0, r_{0}\right) \rightarrow \mathbb{C}$ has an isolated singularity at P and that $f(z)=f(-z)$ for all $z \in D^{*}\left(0, r_{0}\right)$. Prove that $\operatorname{Res}_{f}(0)=0$.
3. Use the calculus of residues to compute the following integrals:
(a) $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$.
(b) $\int_{0}^{\infty} \frac{1}{1+x^{2 n}} d x=\frac{\pi / 2 n}{\sin (\pi / 2 n)}$.

Hint: Consider what happens to f along the rays $\{t: t>0\}$ and $\left\{t e^{i \pi / n}: t>0\right\}$.
(c) $\int_{-\infty}^{\infty} \frac{x}{\sinh x} d x$.

Hint: What happens if you consider rectangular contours with 2 parallel sides on $\operatorname{Im}(z)=0$ and $\operatorname{Im}(z)=\pi i$? This actually won't work, because $z / \sinh z$ has a pole at πi, but there are ways around this. The result in Problem 1 above may be helpful to this end. Note that the singularity of $z / \sinh z$ at 0 is removable.
(d) $\int_{0}^{\infty} \frac{1}{p(x)} d x$, where $p(x)$ is a polynomial with no zeros on the nonnegative real axis. Note: Express your answer in terms of the residues of $1 / p(z)$. But give a more explicit answer in the special case where all zeros of $p(z)$ are simple and the result in Exercise 38 applies. If you follow the method outlined in Example 4.6.5, give proofs that the limit of the integrals over $\eta_{R}^{2}, \eta_{R}^{4}$ vanishes as $R \rightarrow \infty$.
(e) $\int_{-\infty}^{\infty} \frac{e^{b x}}{e^{a x}+1}=\frac{\pi}{a \sin (\pi b / a)}$, where $a>b>0$.

Hint: Try a rectangular contour of height $2 \pi / a$.

Reading: Greene \& Krantz: finish Chapter 4.

