Math 402/502, Spring 2020

Assignment 5, due Wednesday, February 27

Problems to hand in:

1. Decide if the following sequences of functions converge uniformly, pointwise but not uniformly, or neither on the given set E. Justify your answers.
(a) $f_{n}(x)=x / n, E=(0,1)$.
(b) $f_{n}(x)=\sin (x / n), E=\mathbb{R}$.
(c) $f_{n}(x)=\sin (n \pi x), E=\mathbb{Q}$.
(d) $f_{n}(x)=x^{2}+\frac{x}{n}, E=[0, \infty)$.
2. (a) Wade, Exercise 7.1.3.
(b) Suppose f_{n}, g_{n} are sequences of functions on a set $E \subset \mathbb{R}$. Show that if f_{n} is a uniformly bounded sequence and $g_{n} \rightarrow 0$ uniformly on E, then $f_{n} g_{n} \rightarrow 0$ on E.
3. Wade, Exercise 7.1.7.
4. Wade, Exercise 7.2.5.

Hint: You may of course assume all the usual properties of sine and cosine from calculus. Begin by proving that $|\sin x| \leq|x|$ for all $x \in \mathbb{R}$, either the mean value theorem or the fundamental theorem of calculus are effective to this end. You may also find it helpful to use that $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$.

On your own: Wade 7.1.1, 7.1.6, 7.2.2 as well as the following problems:

1. Consider the following sequences of functions on the given domain E in the context of Exercise 1 above:
(a) $f_{n}(x)=x^{n}(1-x), E=[0,1]$. Hint: Find the maximum of $x^{n}(1-x)$ on $[0,1]$.
(b) $f_{n}(x)=\sin (x / n), E=[-b, b]$ with $b>0$.
2. Suppose $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on a set $E \subset \mathbb{R}$ and let $\alpha \in \mathbb{R}$ be a constant. Show that $f_{n}+g_{n} \rightarrow f+g$ uniformly and $\alpha f_{n} \rightarrow \alpha f$ uniformly on E.
3. Show that the series $\sum_{k=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{k}}$ converges pointwise to 0 if $x=0$ and to $1+x^{2}$ if $x \neq 0$. Is the convergence uniform on $[-1,1]$? Is the convergence uniform on $[b, \infty)$ if $b>0$? Justify your answers.

Reading: Wade, sections 7.1-7.4.

