Math 402/502, Spring 2020
Assignment 3, due Thursday, February 13

Problems to hand in:

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function which is integrable on $[c, b]$ for each $c \in(a, b)$. Prove that f is integrable on $[a, b]$ and that $\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a+} \int_{c}^{b} f(x) d x$.
Note: This is reminiscent of Exercise 5.1.3 in the text; on your own, observe that it actually follows from the exercise here.
2. Wade, Exercise 5.2.6.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function, i.e f is differentiable and f^{\prime} is a continuous function. Use the first mean value theorem for integrals (Theorem $5.24)$ to derive the usual mean value theorem for derivatives, namely that there exists $c \in[a, b]$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Note: Clearly your solution must involve Theorem 5.24, it should not appeal to the usual proofs of the mean value theorem you may have encountered in Math 401/501. It should be noted that the exercise here furnishes a weaker result than the usual mean value theorem (Theorem 4.15(ii)), as the latter does not assume that f is continuously differentiable, just merely differentiable.
4. Wade, Exercise 5.3.7.

Note: The purpose of this exercise is to define the natural logarithm from principles in calculus, then derive some of the key properties of this function from the definition. For example, even though it is well-known that $\log (x y)=\log x+\log y$, in (d) you are to derive that property from the given definition, using a change of variables to justify

$$
\int_{1}^{x y} \frac{d t}{t}=\int_{1}^{x} \frac{d t}{t}+\int_{x}^{x y} \frac{d t}{t}=\int_{1}^{x} \frac{d t}{t}+\int_{1}^{y} \frac{d t}{t}
$$

5. Let $I \subset \mathbb{R}$ be an interval and fix $a \in I$. Suppose that $f: I \rightarrow \mathbb{R}$ is $n+1$-times continuously differentiable, that is, $f^{(k)}(x)$ (the k-th derivative of $f(x)$) exists for all $1 \leq k \leq n+1$ and defines a continuous function. Prove Taylor's theorem with integral remainder: for each $x \in I, f(x)$ satisfies

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)
$$

with $R_{n}(x)$ given by

$$
R_{n}(x)=\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t
$$

Hint: The statement is amenable to an induction argument, and the $n=0$ case is just the Fundamental Theorem of Calculus. Use integration by parts and that

$$
-\frac{1}{n!} \frac{d}{d t}(x-t)^{n}=\frac{1}{(n-1)!}(x-t)^{n-1}
$$

On your own (i.e. do not hand these in for a grade): Wade 5.2.10 (along with 3.1.8 if needed), 5.4.2(a,b) as well as the following problem:

Using the conventions $\int_{a}^{a} f(x) d x=0$ and $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$ when $b<a$, show that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

regardless of the ordering of a, b, c in the real number line. Note that by elementary combinatorics, there are $3!=6$ possible choices for the ordering of a, b, c (e.g. $a<b<c, a<c<$ $b, b<a<c, \ldots)$.

Reading: Wade, finish your reading of §5.1-5.3, review the definition of improper integral in §5.4.

