Math 402/502, Spring 2020
 Assignment 2, due Thursday, February 6

Problems to hand in:

1. Wade, Exercise 5.1.3.
2. Wade, Exercise 5.1.4.
3. Wade, Exercise 5.1.8.
4. Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are bounded functions and that there exists a uniform constant $C>0$ such that $|f(x)-f(y)| \leq C|g(x)-g(y)|$ for all $x, y \in[a, b]$. Show that if g is integrable, then f is also integrable.
Hint: Use the following identity from the "on your own" section in the previous homework: Given a bounded function $f:[a, b] \rightarrow \mathbb{R}$ and a partition P of $[a, b]$: $M_{j}(f)-m_{j}(f)=\sup \left\{|f(t)-f(s)|: t, s \in\left[x_{j-1}, x_{j}\right]\right\}$.
On your own (i.e. do not hand these in for a grade): Wade 5.1.5, 5.1.10 ${ }^{1}$, as well as the following problems:
5. Suppose $g:[a, b] \rightarrow \mathbb{R}$ is integrable. Use Exercise \#4 above to show that the following functions are also integrable on $[a, b]$
(a) g^{2}
(b) \sqrt{g}, with the additional assumption that there is a uniform constant $c>0$ such that $g(x) \geq c$ for all $x \in[a, b]$. (Begin by showing that $\sqrt{g(x)}-\sqrt{g(y)}=$ $\left.\frac{g(x)-g(y)}{\sqrt{g(x)}+\sqrt{g(y)}}\right)$.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $\left\{y_{1}, \ldots, y_{n}\right\} \subset[a, b]$ a finite collection of points in $[a, b]$. Suppose $f(x)=0$ for each $x \in[a, b] \backslash\left\{y_{1}, \ldots, y_{n}\right\}$, that is, f vanishes except at finitely many points in $[a, b]$. Prove that f is integrable on $[a, b]$ and that $\int_{a}^{b} f(x) d x=0$. Conclude that given this exercise and Theorem 5.19 in the text (linear property of the integral) that Exercise 5.1.6 in the text follows easily.
7. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function such that $m \leq f(x) \leq M$ for every $x \in[a, b]$ (i.e. m, M are lower and upper bounds for the range of f respectively). Prove that for any partition P,

$$
m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)
$$

Conclude that the sets $\{L(f, P): P$ is a partition $\}$ and $\{U(f, P): P$ is a partition $\}$ are bounded sets in \mathbb{R}. Note that this ensures that the upper and lower integrals $U(f)$ and $L(f)$ are well-defined to begin with!

Reading: Wade, Sections 5.1, 5.2, start 5.3.

[^0]
[^0]: ${ }^{1}$ The absolute values appearing in $|U(f, P)-L(f, P)|<\varepsilon$ here aren't really necessary since the difference is always nonnegative for any partition P (see Remark 5.6).

