Math 402/502, Spring 2020

Assignment 1, due Thursday, January 30

Problems to hand in

1. Suppose $x, y \in \mathbb{R}$. Use a proof by contrapositive to show the following statement:

If $x \leq y+\epsilon$ for every $\epsilon>0$, then $x \leq y$.
Note: the contrapositive isn't at all hard to show here, but like the "on your own" problem below, this principle comes up frequently. We will be presented with numerous situations where it is prohibitive or simply inefficient to show $x \leq y$ directly, but approximation arguments will allow us to see $x \leq y+\epsilon$ for arbitrary choices of $\epsilon>0$.
2. Suppose $A \subset \mathbb{R}$ is a nonempty set which is bounded from above and below. Prove that

$$
\sup A-\inf A=\sup \left\{\left|a_{1}-a_{2}\right|: a_{1}, a_{2} \in A\right\}=\sup \left\{a_{1}-a_{2}: a_{1}, a_{2} \in A\right\}
$$

3. Let $f(x)=\frac{x}{x+1}$, which is well-defined and continuous on any subset of $\mathbb{R} \backslash\{-1\}$.
(a) Use the $\epsilon-\delta$ definition to directly show that f is uniformly continuous on any interval of the form (a, ∞), provided $a>-1$.
(b) On the other hand, prove that f is not uniformly continuous on $(-1, \infty)$ by showing that for each $0<\delta<\frac{1}{2}$, there exists $x, y \in(-1, \infty)$ such that $|x-y|<\delta$, but $|f(x)-f(y)| \geq 1$.
4. Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is said to be Lipschitz continuous on I if there exists a constant $M>0$ such that

$$
|f(x)-f(y)| \leq M|x-y| \quad \text { for all } x, y \in I .
$$

(a) Prove that if f is Lipschitz continuous on I, it is uniformly continuous on I.
(b) Suppose that f is differentiable on I and that $f^{\prime}(x)$ is a bounded function on I. Prove that f is Lipschitz continuous (and hence uniformly continuous).
5. Wade, Exercise 3.4.6.

Hint: One way to proceed is to use sequences: start by arguing that if f were unbounded, then there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in I such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. Then apply Bolzano-Weierstrass to the x_{n} 's to extract a subsequence which is Cauchy.

On your own: Wade, 1.3.0, 1.3.8 ${ }^{1}$, 3.4.1(a,b), 3.4.2(a,b,c), and the following problems:

1. Suppose $a, b, c, d \in \mathbb{R}$ and that $a \leq b \leq c \leq d$. Show that $c-b \leq d-a$. (This isn't hard, but the principle comes up frequently, so gaining familiarity with it is worthwhile.)

[^0]2. Suppose $X \subset \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$ is a bounded function. Given a nonempty set $E \subset X$, use Problem 2 above to show that
$$
\sup _{t \in E} f(t)-\inf _{t \in E} f(t)=\sup \{|f(t)-f(s)|: t, s \in E\}=\sup \{f(t)-f(s): t, s \in E\} .
$$

Note: This is nearly immediate from Problem 2 above (just set $A=f(E)$!), but is important to acknowledge since it is used in the theory of the Riemann integral.
3. (a) Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some $k>0$, then f is uniformly continuous on $[0, \infty)$.
(b) Show that \sqrt{x} is uniformly continuous on $[0, \infty)$.

Hint: Don't forget about \#4b above.
Reading: Wade, Sections 1.3, 3.4. Start Chapter 5 for week 2 of class. Review limits at infinity (e.g. $\S 3.2$ in the Wade text).

[^0]: ${ }^{1}$ Essentially the exercise is asking you to $\operatorname{show} \sup (A \cup B)=\max (\sup A, \sup B)$.

