## Math 401/501, Fall 2018 Assignment 8, due Wednesday, October 24

## Exercises to hand in:

- 1. Ross, Exercise 11.4.
- 2. Ross, Exercise 11.8.

Note: You may assume that the sequence is bounded for the sake of simplicity, though it is possible to obtain this result formally when  $\liminf_{n\to\infty}s_n=\pm\infty$ . On your own, think about how you might prove these other cases. Also, recall that we proved that if S is bounded below, then  $\inf S = -\sup(-S)$  where  $-S = \{-s : s \in S\}$ .

- 3. Ross, Exercise 12.4.
- 4. Ross, Exercise 12.6.

Hint: You may use the result in Exercise 7 of Assignment 4 in this class.

5. Ross, Exercise 12.14.

Hint: It is well known that the number e satisfies  $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ . You may use this fact in this exercise.

- 6. Ross, Exercise 14.2.
- 7. Ross, Exercise 14.8.

Hint: If  $a, b \ge 0$ , then  $(\sqrt{a} - \sqrt{b})^2 \ge 0$ .

On your own: Ross, Exercises 11.1, 11.3, 11.5, 12.1, 12.3, 14.1, 14.3, 14.5, 14.7.

**Reading**: Ross, §11, 12, 14, 15.