Math 401/501, Fall 2018 Assignment 7, due Wednesday, October 10

Exercises to hand in:

- 1. Ross, Exercise 10.4.
- 2. Ross, Exercise 10.7.
- 3. Ross, Exercise 10.10.
- 4. Ross, Exercise 10.12.
- 5. Let $x \in \mathbb{R}$ be a real number. Show that there exists a sequence (s_n) with $s_n \in \mathbb{Q} \{x\}$ for each n such that $\lim s_n = x$. In other words, prove that there exists a sequence of rationals not equal to x converging to x.
- 6. Compute $\limsup_{n\to\infty} s_n$ and $\liminf_{n\to\infty} s_n$ for the following sequences, fully justify your answer by appealing to the definition of the limit supremum and limit infimum.
 - (a) $s_n = (-1)^n + \frac{1}{n}$.
 - (b) $s_n = (-2)^n$.
 - (c) $s_n = n$.
 - (d) $s_{2k-1} = 0$, $s_{2k} = -k^2$ (which defines the sequence for even and odd n respectively).

On your own: Ross, Exercises 10.1, 10.2, 10.9, 10.11.

Reading: Ross, §10-11.