Math 401/501, Fall 2018
Assignment 7, due Wednesday, October 10

Exercises to hand in:

1. Ross, Exercise 10.4.
2. Ross, Exercise 10.7.
3. Ross, Exercise 10.10.
4. Ross, Exercise 10.12.
5. Let $x \in \mathbb{R}$ be a real number. Show that there exists a sequence $\left(s_{n}\right)$ with $s_{n} \in \mathbb{Q}-\{x\}$ for each n such that $\lim s_{n}=x$. In other words, prove that there exists a sequence of rationals not equal to x converging to x.
6. Compute $\limsup \sup _{n \rightarrow \infty} s_{n}$ and $\liminf _{n \rightarrow \infty} s_{n}$ for the following sequences, fully justify your answer by appealing to the definition of the limit supremum and limit infimum.
(a) $s_{n}=(-1)^{n}+\frac{1}{n}$.
(b) $s_{n}=(-2)^{n}$.
(c) $s_{n}=n$.
(d) $s_{2 k-1}=0, s_{2 k}=-k^{2}$ (which defines the sequence for even and odd n respectively).

On your own: Ross, Exercises 10.1, 10.2, 10.9, 10.11.
Reading: Ross, §10-11.

