Math 401/501, Fall 2018
 Assignment 4, due Wednesday, September 19

Exercises to hand in:

1. Ross, Exercise 1.6.
2. Ross, Exercise 1.8. Hint for 8b: First prove that if $n \geq 4$, then $n+1=\left(1+\frac{1}{n}\right) n \leq 2 n<n^{2}$.
3. Ross, Exercise 3.6.
4. Let $x, y \in \mathbb{R}$ be such that for all $\epsilon>0, x \leq y+\epsilon$. Show that $x \leq y$. Is this different from Exercise 3.8 in Ross?
Hint: A proof by contrapositive is effective here.
5. Ross, Exercise 4.16.
6. (a) Suppose $x \in \mathbb{Q}$ with $x \neq 0$ and $y \in \mathbb{R}-\mathbb{Q}$. Show that their product $x y$ is irrational.
(b) Prove the density of $\mathbb{R}-\mathbb{Q}$: Show that given $a, b \in \mathbb{R}$ and $a<b$, then there exists $s \in \mathbb{R}-\mathbb{Q}$ such that $a<s<b$.
Hint: Apply the density of rationals to $a / \sqrt{2}$ and $b / \sqrt{2}$.
7. Let $S \subset \mathbb{R}$ be a nonempty bounded subset. Given $k \in \mathbb{R}$ define $k S=\{k s: s \in S\}$. Prove the following:
(a) If $k \geq 0$, then $\sup (k S)=k \cdot \sup S$.
(b) If $k<0$, then $\sup (k S)=k \cdot \inf S$.

On your own:

- Ross, Exercises 1.1, 1.3, 1.5, 1.9, 1.11, 2.1, 2.3, 3.5, 3.7, 4.1, 4.3, 4.7, 4.15, 5.1.
- Complement Exercise 7 above by showing that in addition to the identities there, $\inf (k S)=$ $k \cdot \inf S$ if $k \geq 0$ and $\inf (k S)=k \cdot \sup S$ if $k<0$. Achieving this by appealing directly to the definitions will be more insightful, while appealing to the reflection principle $-\sup (-S)=$ $\inf S$ in Corollary 4.5 will be easier.
- Complement Exercise 6a by showing that

1. The product of two rational numbers is rational.
2. There exist two irrational numbers whose product is rational.
3. If $x, y \in \mathbb{R}$ and $x y \in \mathbb{Q}-\{0\}$, then either both x, y are rational or they are both irrational. (This actually follows easily from Exercise 6a.)

Reading: Ross Chapter 1.

