Math 401/501, Fall 2018

Assignment 13, due Wednesday, December 5

Exercises to hand in:

- 1. Ross, Exercise 32.6.
- 2. Define $f:[0,1] \to \mathbb{R}$ as f(x) = x for rational x and f(x) = 0 for irrational x. Show that for each partition $P = \{t_0, t_1, \ldots, t_n\}$ of [0,1], we have that $U(f,P) > \frac{1}{2}$. Use this to conclude that f is not integrable on [0,1].

Hint: Show that $M(f, [t_{k-1}, t_k]) = t_k$ and that $t_k > \frac{1}{2}(t_k + t_{k-1})$.

3. (a) Suppose $f:[a,b]\to\mathbb{R}$ is a bounded function. Prove that if $S\subset[a,b]$,

$$M(f,S) - m(f,S) = \sup\{|f(x) - f(y)| : x, y \in S\}$$

Hint: This is a variation on an exercise from Assignment 5. Consider different strategies to see that $M(f,S)-m(f,S) \leq \sup\{|f(x)-f(y)|: x,y \in S\}$ and $M(f,S)-m(f,S) \geq \sup\{|f(x)-f(y)|: x,y \in S\}$. For the former, try "approximating the supremum/infimum": given $\epsilon > 0$ consider $x,y \in S$ such that $M(f,S)-\epsilon/2 < f(x)$, $m(f,S)+\epsilon/2 > f(y)$, but justify why these exist to begin with!

- (b) Suppose $f, g : [a, b] \to \mathbb{R}$ are bounded functions and that there exists a uniform constant C > 0 such that $|f(x) f(y)| \le C|g(x) g(y)|$ for all $x, y \in [a, b]$. Show that if g is integrable, then f is also integrable.
- 4. (a) Use Exercise 3b above to show that if g is integrable on [a, b], then so is g^2 .
 - (b) Show that if f, g are integrable functions on [a, b], then so is their product fg. Hint: Start by showing that $4fg = (f + g)^2 - (f - g)^2$.

On your own: Ross, Exercises 32.7¹, 33.13. Also the following:

1. Suppose $a, b, c, d \in \mathbb{R}$ and that $a \leq b \leq c \leq d$. Show that $c - b \leq d - a$, with equality if and only if a = b = c = d.

Note: This is not hard, but this principle comes up frequently in these exercises and beyond, so it is worthwhile to be very familiar with it.

- 2. Suppose $g:[a,b]\to\mathbb{R}$ is integrable and that there is a uniform constant c>0 such that $g(x)\geq c$ for all $x\in[a,b]$. Use Exercise #3b above to show that the following functions are also integrable on [a,b]
 - (a) \sqrt{g} . Hint: Begin by showing that $\sqrt{g(x)} \sqrt{g(y)} = \frac{g(x) g(y)}{\sqrt{g(x)} + \sqrt{g(y)}}$.
 - (b) $\frac{1}{g}$.
- 3. Let $E = \{\frac{1}{n} : n \in \mathbb{N}\}$. Prove that the function $f : [0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & x \in E, \\ 0 & x \notin E \end{cases}$$

is integrable on [0,1]. What is the value of $\int_0^1 f(x) dx$?

Reading: Ross, §32, 33, 34.

¹This is an important exercise even though it is not collected. Justify all steps in the hint in the back.