Math 401/501, Fall 2018

Assignment 13, due Wednesday, December 5

Exercises to hand in:

1. Ross, Exercise 32.6 .
2. Define $f:[0,1] \rightarrow \mathbb{R}$ as $f(x)=x$ for rational x and $f(x)=0$ for irrational x. Show that for each partition $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[0,1]$, we have that $U(f, P)>\frac{1}{2}$. Use this to conclude that f is not integrable on $[0,1]$.
Hint: Show that $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=t_{k}$ and that $t_{k}>\frac{1}{2}\left(t_{k}+t_{k-1}\right)$.
3. (a) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function. Prove that if $S \subset[a, b]$,

$$
M(f, S)-m(f, S)=\sup \{|f(x)-f(y)|: x, y \in S\}
$$

Hint: This is a variation on an exercise from Assignment 5. Consider different strategies to see that $M(f, S)-m(f, S) \leq \sup \{|f(x)-f(y)|: x, y \in S\}$ and $M(f, S)-$ $m(f, S) \geq \sup \{|f(x)-f(y)|: x, y \in S\}$. For the former, try "approximating the supremum/infimum": given $\epsilon>0$ consider $x, y \in S$ such that $M(f, S)-\epsilon / 2<f(x)$, $m(f, S)+\epsilon / 2>f(y)$, but justify why these exist to begin with!
(b) Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are bounded functions and that there exists a uniform constant $C>0$ such that $|f(x)-f(y)| \leq C|g(x)-g(y)|$ for all $x, y \in[a, b]$. Show that if g is integrable, then f is also integrable.
4. (a) Use Exercise 3 b above to show that if g is integrable on $[a, b]$, then so is g^{2}.
(b) Show that if f, g are integrable functions on $[a, b]$, then so is their product $f g$. Hint: Start by showing that $4 f g=(f+g)^{2}-(f-g)^{2}$.

On your own: Ross, Exercises $32.7^{1}, 33.13$. Also the following:

1. Suppose $a, b, c, d \in \mathbb{R}$ and that $a \leq b \leq c \leq d$. Show that $c-b \leq d-a$, with equality if and only if $a=b=c=d$.
Note: This is not hard, but this principle comes up frequently in these exercises and beyond, so it is worthwhile to be very familiar with it.
2. Suppose $g:[a, b] \rightarrow \mathbb{R}$ is integrable and that there is a uniform constant $c>0$ such that $g(x) \geq c$ for all $x \in[a, b]$. Use Exercise $\# 3 \mathrm{~b}$ above to show that the following functions are also integrable on $[a, b]$
(a) \sqrt{g}. Hint: Begin by showing that $\sqrt{g(x)}-\sqrt{g(y)}=\frac{g(x)-g(y)}{\sqrt{g(x)}+\sqrt{g(y)}}$.
(b) $\frac{1}{g}$.
3. Let $E=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Prove that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & x \in E \\ 0 & x \notin E\end{cases}
$$

is integrable on $[0,1]$. What is the value of $\int_{0}^{1} f(x) d x ?$
Reading: Ross, §32, 33, 34.

[^0]
[^0]: ${ }^{1}$ This is an important exercise even though it is not collected. Justify all steps in the hint in the back.

